src/lemon/kruskal.h
changeset 1435 8e85e6bbefdf
parent 1434 d8475431bbbb
child 1436 e0beb94d08bf
     1.1 --- a/src/lemon/kruskal.h	Sat May 21 21:04:57 2005 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,348 +0,0 @@
     1.4 -/* -*- C++ -*-
     1.5 - * src/lemon/kruskal.h - Part of LEMON, a generic C++ optimization library
     1.6 - *
     1.7 - * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
     1.9 - *
    1.10 - * Permission to use, modify and distribute this software is granted
    1.11 - * provided that this copyright notice appears in all copies. For
    1.12 - * precise terms see the accompanying LICENSE file.
    1.13 - *
    1.14 - * This software is provided "AS IS" with no warranty of any kind,
    1.15 - * express or implied, and with no claim as to its suitability for any
    1.16 - * purpose.
    1.17 - *
    1.18 - */
    1.19 -
    1.20 -#ifndef LEMON_KRUSKAL_H
    1.21 -#define LEMON_KRUSKAL_H
    1.22 -
    1.23 -#include <algorithm>
    1.24 -#include <lemon/unionfind.h>
    1.25 -
    1.26 -/**
    1.27 -@defgroup spantree Minimum Cost Spanning Tree Algorithms
    1.28 -@ingroup galgs
    1.29 -\brief This group containes the algorithms for finding a minimum cost spanning
    1.30 -tree in a graph
    1.31 -
    1.32 -This group containes the algorithms for finding a minimum cost spanning
    1.33 -tree in a graph
    1.34 -*/
    1.35 -
    1.36 -///\ingroup spantree
    1.37 -///\file
    1.38 -///\brief Kruskal's algorithm to compute a minimum cost tree
    1.39 -///
    1.40 -///Kruskal's algorithm to compute a minimum cost tree.
    1.41 -
    1.42 -namespace lemon {
    1.43 -
    1.44 -  /// \addtogroup spantree
    1.45 -  /// @{
    1.46 -
    1.47 -  /// Kruskal's algorithm to find a minimum cost tree of a graph.
    1.48 -
    1.49 -  /// This function runs Kruskal's algorithm to find a minimum cost tree.
    1.50 -  /// \param G The graph the algorithm runs on. The algorithm considers the
    1.51 -  /// graph to be undirected, the direction of the edges are not used.
    1.52 -  ///
    1.53 -  /// \param in This object is used to describe the edge costs. It must
    1.54 -  /// be an STL compatible 'Forward Container'
    1.55 -  /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    1.56 -  /// where X is the type of the costs. It must contain every edge in
    1.57 -  /// cost-ascending order.
    1.58 -  ///\par
    1.59 -  /// For the sake of simplicity, there is a helper class KruskalMapInput,
    1.60 -  /// which converts a
    1.61 -  /// simple edge map to an input of this form. Alternatively, you can use
    1.62 -  /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
    1.63 -  /// the edge costs are given by an edge map.
    1.64 -  ///
    1.65 -  /// \retval out This must be a writable \c bool edge map.
    1.66 -  /// After running the algorithm
    1.67 -  /// this will contain the found minimum cost spanning tree: the value of an
    1.68 -  /// edge will be set to \c true if it belongs to the tree, otherwise it will
    1.69 -  /// be set to \c false. The value of each edge will be set exactly once.
    1.70 -  ///
    1.71 -  /// \return The cost of the found tree.
    1.72 -
    1.73 -  template <class GR, class IN, class OUT>
    1.74 -  typename IN::value_type::second_type
    1.75 -  kruskal(GR const& G, IN const& in, 
    1.76 -		 OUT& out)
    1.77 -  {
    1.78 -    typedef typename IN::value_type::second_type EdgeCost;
    1.79 -    typedef typename GR::template NodeMap<int> NodeIntMap;
    1.80 -    typedef typename GR::Node Node;
    1.81 -
    1.82 -    NodeIntMap comp(G, -1);
    1.83 -    UnionFind<Node,NodeIntMap> uf(comp); 
    1.84 -      
    1.85 -    EdgeCost tot_cost = 0;
    1.86 -    for (typename IN::const_iterator p = in.begin(); 
    1.87 -	 p!=in.end(); ++p ) {
    1.88 -      if ( uf.join(G.target((*p).first),
    1.89 -		   G.source((*p).first)) ) {
    1.90 -	out.set((*p).first, true);
    1.91 -	tot_cost += (*p).second;
    1.92 -      }
    1.93 -      else {
    1.94 -	out.set((*p).first, false);
    1.95 -      }
    1.96 -    }
    1.97 -    return tot_cost;
    1.98 -  }
    1.99 -
   1.100 -  /* A work-around for running Kruskal with const-reference bool maps... */
   1.101 -
   1.102 -  /// Helper class for calling kruskal with "constant" output map.
   1.103 -
   1.104 -  /// Helper class for calling kruskal with output maps constructed
   1.105 -  /// on-the-fly.
   1.106 -  ///
   1.107 -  /// A typical examle is the following call:
   1.108 -  /// <tt>kruskal(G, some_input, makeSequenceOutput(iterator))</tt>.
   1.109 -  /// Here, the third argument is a temporary object (which wraps around an
   1.110 -  /// iterator with a writable bool map interface), and thus by rules of C++
   1.111 -  /// is a \c const object. To enable call like this exist this class and
   1.112 -  /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
   1.113 -  /// third argument.
   1.114 -  template<class Map>
   1.115 -  class NonConstMapWr {
   1.116 -    const Map &m;
   1.117 -  public:
   1.118 -    typedef typename Map::Value Value;
   1.119 -
   1.120 -    NonConstMapWr(const Map &_m) : m(_m) {}
   1.121 -
   1.122 -    template<class Key>
   1.123 -    void set(Key const& k, Value const &v) const { m.set(k,v); }
   1.124 -  };
   1.125 -
   1.126 -  template <class GR, class IN, class OUT>
   1.127 -  inline
   1.128 -  typename IN::value_type::second_type
   1.129 -  kruskal(GR const& G, IN const& edges, OUT const& out_map)
   1.130 -  {
   1.131 -    NonConstMapWr<OUT> map_wr(out_map);
   1.132 -    return kruskal(G, edges, map_wr);
   1.133 -  }  
   1.134 -
   1.135 -  /* ** ** Input-objects ** ** */
   1.136 -
   1.137 -  /// Kruskal's input source.
   1.138 -
   1.139 -  /// Kruskal's input source.
   1.140 -  ///
   1.141 -  /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
   1.142 -  ///
   1.143 -  /// \sa makeKruskalMapInput()
   1.144 -  ///
   1.145 -  ///\param GR The type of the graph the algorithm runs on.
   1.146 -  ///\param Map An edge map containing the cost of the edges.
   1.147 -  ///\par
   1.148 -  ///The cost type can be any type satisfying
   1.149 -  ///the STL 'LessThan comparable'
   1.150 -  ///concept if it also has an operator+() implemented. (It is necessary for
   1.151 -  ///computing the total cost of the tree).
   1.152 -  ///
   1.153 -  template<class GR, class Map>
   1.154 -  class KruskalMapInput
   1.155 -    : public std::vector< std::pair<typename GR::Edge,
   1.156 -				    typename Map::Value> > {
   1.157 -    
   1.158 -  public:
   1.159 -    typedef std::vector< std::pair<typename GR::Edge,
   1.160 -				   typename Map::Value> > Parent;
   1.161 -    typedef typename Parent::value_type value_type;
   1.162 -
   1.163 -  private:
   1.164 -    class comparePair {
   1.165 -    public:
   1.166 -      bool operator()(const value_type& a,
   1.167 -		      const value_type& b) {
   1.168 -	return a.second < b.second;
   1.169 -      }
   1.170 -    };
   1.171 -
   1.172 -  public:
   1.173 -
   1.174 -    void sort() {
   1.175 -      std::sort(this->begin(), this->end(), comparePair());
   1.176 -    }
   1.177 -
   1.178 -    KruskalMapInput(GR const& G, Map const& m) {
   1.179 -      typedef typename GR::EdgeIt EdgeIt;
   1.180 -      
   1.181 -      for(EdgeIt e(G);e!=INVALID;++e) push_back(value_type(e, m[e]));
   1.182 -      sort();
   1.183 -    }
   1.184 -  };
   1.185 -
   1.186 -  /// Creates a KruskalMapInput object for \ref kruskal()
   1.187 -
   1.188 -  /// It makes easier to use 
   1.189 -  /// \ref KruskalMapInput by making it unnecessary 
   1.190 -  /// to explicitly give the type of the parameters.
   1.191 -  ///
   1.192 -  /// In most cases you possibly
   1.193 -  /// want to use the function kruskalEdgeMap() instead.
   1.194 -  ///
   1.195 -  ///\param G The type of the graph the algorithm runs on.
   1.196 -  ///\param m An edge map containing the cost of the edges.
   1.197 -  ///\par
   1.198 -  ///The cost type can be any type satisfying the
   1.199 -  ///STL 'LessThan Comparable'
   1.200 -  ///concept if it also has an operator+() implemented. (It is necessary for
   1.201 -  ///computing the total cost of the tree).
   1.202 -  ///
   1.203 -  ///\return An appropriate input source for \ref kruskal().
   1.204 -  ///
   1.205 -  template<class GR, class Map>
   1.206 -  inline
   1.207 -  KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &G,const Map &m)
   1.208 -  {
   1.209 -    return KruskalMapInput<GR,Map>(G,m);
   1.210 -  }
   1.211 -  
   1.212 -  
   1.213 -
   1.214 -  /* ** ** Output-objects: simple writable bool maps ** ** */
   1.215 -  
   1.216 -
   1.217 -
   1.218 -  /// A writable bool-map that makes a sequence of "true" keys
   1.219 -
   1.220 -  /// A writable bool-map that creates a sequence out of keys that receives
   1.221 -  /// the value "true".
   1.222 -  ///
   1.223 -  /// \sa makeKruskalSequenceOutput()
   1.224 -  ///
   1.225 -  /// Very often, when looking for a min cost spanning tree, we want as
   1.226 -  /// output a container containing the edges of the found tree. For this
   1.227 -  /// purpose exist this class that wraps around an STL iterator with a
   1.228 -  /// writable bool map interface. When a key gets value "true" this key
   1.229 -  /// is added to sequence pointed by the iterator.
   1.230 -  ///
   1.231 -  /// A typical usage:
   1.232 -  /// \code
   1.233 -  /// std::vector<Graph::Edge> v;
   1.234 -  /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
   1.235 -  /// \endcode
   1.236 -  /// 
   1.237 -  /// For the most common case, when the input is given by a simple edge
   1.238 -  /// map and the output is a sequence of the tree edges, a special
   1.239 -  /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
   1.240 -  ///
   1.241 -  /// \warning Not a regular property map, as it doesn't know its Key
   1.242 -
   1.243 -  template<class Iterator>
   1.244 -  class KruskalSequenceOutput {
   1.245 -    mutable Iterator it;
   1.246 -
   1.247 -  public:
   1.248 -    typedef bool Value;
   1.249 -
   1.250 -    KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   1.251 -
   1.252 -    template<typename Key>
   1.253 -    void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
   1.254 -  };
   1.255 -
   1.256 -  template<class Iterator>
   1.257 -  inline
   1.258 -  KruskalSequenceOutput<Iterator>
   1.259 -  makeKruskalSequenceOutput(Iterator it) {
   1.260 -    return KruskalSequenceOutput<Iterator>(it);
   1.261 -  }
   1.262 -
   1.263 -
   1.264 -
   1.265 -  /* ** ** Wrapper funtions ** ** */
   1.266 -
   1.267 -
   1.268 -
   1.269 -  /// \brief Wrapper function to kruskal().
   1.270 -  /// Input is from an edge map, output is a plain bool map.
   1.271 -  ///
   1.272 -  /// Wrapper function to kruskal().
   1.273 -  /// Input is from an edge map, output is a plain bool map.
   1.274 -  ///
   1.275 -  ///\param G The type of the graph the algorithm runs on.
   1.276 -  ///\param in An edge map containing the cost of the edges.
   1.277 -  ///\par
   1.278 -  ///The cost type can be any type satisfying the
   1.279 -  ///STL 'LessThan Comparable'
   1.280 -  ///concept if it also has an operator+() implemented. (It is necessary for
   1.281 -  ///computing the total cost of the tree).
   1.282 -  ///
   1.283 -  /// \retval out This must be a writable \c bool edge map.
   1.284 -  /// After running the algorithm
   1.285 -  /// this will contain the found minimum cost spanning tree: the value of an
   1.286 -  /// edge will be set to \c true if it belongs to the tree, otherwise it will
   1.287 -  /// be set to \c false. The value of each edge will be set exactly once.
   1.288 -  ///
   1.289 -  /// \return The cost of the found tree.
   1.290 -
   1.291 -  template <class GR, class IN, class RET>
   1.292 -  inline
   1.293 -  typename IN::Value
   1.294 -  kruskalEdgeMap(GR const& G,
   1.295 -		 IN const& in,
   1.296 -		 RET &out) {
   1.297 -    return kruskal(G,
   1.298 -		   KruskalMapInput<GR,IN>(G,in),
   1.299 -		   out);
   1.300 -  }
   1.301 -
   1.302 -  /// \brief Wrapper function to kruskal().
   1.303 -  /// Input is from an edge map, output is an STL Sequence.
   1.304 -  ///
   1.305 -  /// Wrapper function to kruskal().
   1.306 -  /// Input is from an edge map, output is an STL Sequence.
   1.307 -  ///
   1.308 -  ///\param G The type of the graph the algorithm runs on.
   1.309 -  ///\param in An edge map containing the cost of the edges.
   1.310 -  ///\par
   1.311 -  ///The cost type can be any type satisfying the
   1.312 -  ///STL 'LessThan Comparable'
   1.313 -  ///concept if it also has an operator+() implemented. (It is necessary for
   1.314 -  ///computing the total cost of the tree).
   1.315 -  ///
   1.316 -  /// \retval out This must be an iteraror of an STL Container with
   1.317 -  /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   1.318 -  /// The algorithm copies the elements of the found tree into this sequence.
   1.319 -  /// For example, if we know that the spanning tree of the graph \c G has
   1.320 -  /// say 53 edges then
   1.321 -  /// we can put its edges into a STL vector \c tree with a code like this.
   1.322 -  /// \code
   1.323 -  /// std::vector<Edge> tree(53);
   1.324 -  /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin());
   1.325 -  /// \endcode
   1.326 -  /// Or if we don't know in advance the size of the tree, we can write this.
   1.327 -  /// \code
   1.328 -  /// std::vector<Edge> tree;
   1.329 -  /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree));
   1.330 -  /// \endcode
   1.331 -  ///
   1.332 -  /// \return The cost of the found tree.
   1.333 -  ///
   1.334 -  /// \bug its name does not follow the coding style.
   1.335 -
   1.336 -  template <class GR, class IN, class RET>
   1.337 -  inline
   1.338 -  typename IN::Value
   1.339 -  kruskalEdgeMap_IteratorOut(const GR& G,
   1.340 -			     const IN& in,
   1.341 -			     RET out)
   1.342 -  {
   1.343 -    KruskalSequenceOutput<RET> _out(out);
   1.344 -    return kruskal(G, KruskalMapInput<GR,IN>(G, in), _out);
   1.345 -  }
   1.346 -
   1.347 -  /// @}
   1.348 -
   1.349 -} //namespace lemon
   1.350 -
   1.351 -#endif //LEMON_KRUSKAL_H