src/lemon/lp_base.h
changeset 1435 8e85e6bbefdf
parent 1434 d8475431bbbb
child 1436 e0beb94d08bf
     1.1 --- a/src/lemon/lp_base.h	Sat May 21 21:04:57 2005 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,907 +0,0 @@
     1.4 -/* -*- C++ -*-
     1.5 - * src/lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
     1.6 - *
     1.7 - * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
     1.9 - *
    1.10 - * Permission to use, modify and distribute this software is granted
    1.11 - * provided that this copyright notice appears in all copies. For
    1.12 - * precise terms see the accompanying LICENSE file.
    1.13 - *
    1.14 - * This software is provided "AS IS" with no warranty of any kind,
    1.15 - * express or implied, and with no claim as to its suitability for any
    1.16 - * purpose.
    1.17 - *
    1.18 - */
    1.19 -
    1.20 -#ifndef LEMON_LP_BASE_H
    1.21 -#define LEMON_LP_BASE_H
    1.22 -
    1.23 -#include<vector>
    1.24 -#include<map>
    1.25 -#include<limits>
    1.26 -#include<cmath>
    1.27 -
    1.28 -#include<lemon/utility.h>
    1.29 -#include<lemon/error.h>
    1.30 -#include<lemon/invalid.h>
    1.31 -
    1.32 -//#include"lin_expr.h"
    1.33 -
    1.34 -///\file
    1.35 -///\brief The interface of the LP solver interface.
    1.36 -///\ingroup gen_opt_group
    1.37 -namespace lemon {
    1.38 -  
    1.39 -  ///Internal data structure to convert floating id's to fix one's
    1.40 -    
    1.41 -  ///\todo This might be implemented to be also usable in other places.
    1.42 -  class _FixId 
    1.43 -  {
    1.44 -    std::vector<int> index;
    1.45 -    std::vector<int> cross;
    1.46 -    int first_free;
    1.47 -  public:
    1.48 -    _FixId() : first_free(-1) {};
    1.49 -    ///Convert a floating id to a fix one
    1.50 -
    1.51 -    ///\param n is a floating id
    1.52 -    ///\return the corresponding fix id
    1.53 -    int fixId(int n) {return cross[n];}
    1.54 -    ///Convert a fix id to a floating one
    1.55 -
    1.56 -    ///\param n is a fix id
    1.57 -    ///\return the corresponding floating id
    1.58 -    int floatingId(int n) { return index[n];}
    1.59 -    ///Add a new floating id.
    1.60 -
    1.61 -    ///\param n is a floating id
    1.62 -    ///\return the fix id of the new value
    1.63 -    ///\todo Multiple additions should also be handled.
    1.64 -    int insert(int n)
    1.65 -    {
    1.66 -      if(n>=int(cross.size())) {
    1.67 -	cross.resize(n+1);
    1.68 -	if(first_free==-1) {
    1.69 -	  cross[n]=index.size();
    1.70 -	  index.push_back(n);
    1.71 -	}
    1.72 -	else {
    1.73 -	  cross[n]=first_free;
    1.74 -	  int next=index[first_free];
    1.75 -	  index[first_free]=n;
    1.76 -	  first_free=next;
    1.77 -	}
    1.78 -	return cross[n];
    1.79 -      }
    1.80 -      ///\todo Create an own exception type.
    1.81 -      else throw LogicError(); //floatingId-s must form a continuous range;
    1.82 -    }
    1.83 -    ///Remove a fix id.
    1.84 -
    1.85 -    ///\param n is a fix id
    1.86 -    ///
    1.87 -    void erase(int n) 
    1.88 -    {
    1.89 -      int fl=index[n];
    1.90 -      index[n]=first_free;
    1.91 -      first_free=n;
    1.92 -      for(int i=fl+1;i<int(cross.size());++i) {
    1.93 -	cross[i-1]=cross[i];
    1.94 -	index[cross[i]]--;
    1.95 -      }
    1.96 -      cross.pop_back();
    1.97 -    }
    1.98 -    ///An upper bound on the largest fix id.
    1.99 -
   1.100 -    ///\todo Do we need this?
   1.101 -    ///
   1.102 -    std::size_t maxFixId() { return cross.size()-1; }
   1.103 -  
   1.104 -  };
   1.105 -    
   1.106 -  ///Common base class for LP solvers
   1.107 -  
   1.108 -  ///\todo Much more docs
   1.109 -  ///\ingroup gen_opt_group
   1.110 -  class LpSolverBase {
   1.111 -
   1.112 -  public:
   1.113 -
   1.114 -    ///\e
   1.115 -    enum SolveExitStatus {
   1.116 -      ///\e
   1.117 -      SOLVED = 0,
   1.118 -      ///\e
   1.119 -      UNSOLVED = 1
   1.120 -    };
   1.121 -      
   1.122 -    ///\e
   1.123 -    enum SolutionStatus {
   1.124 -      ///Feasible solution has'n been found (but may exist).
   1.125 -
   1.126 -      ///\todo NOTFOUND might be a better name.
   1.127 -      ///
   1.128 -      UNDEFINED = 0,
   1.129 -      ///The problem has no feasible solution
   1.130 -      INFEASIBLE = 1,
   1.131 -      ///Feasible solution found
   1.132 -      FEASIBLE = 2,
   1.133 -      ///Optimal solution exists and found
   1.134 -      OPTIMAL = 3,
   1.135 -      ///The cost function is unbounded
   1.136 -
   1.137 -      ///\todo Give a feasible solution and an infinite ray (and the
   1.138 -      ///corresponding bases)
   1.139 -      INFINITE = 4
   1.140 -    };
   1.141 -      
   1.142 -    ///The floating point type used by the solver
   1.143 -    typedef double Value;
   1.144 -    ///The infinity constant
   1.145 -    static const Value INF;
   1.146 -    ///The not a number constant
   1.147 -    static const Value NaN;
   1.148 -    
   1.149 -    ///Refer to a column of the LP.
   1.150 -
   1.151 -    ///This type is used to refer to a column of the LP.
   1.152 -    ///
   1.153 -    ///Its value remains valid and correct even after the addition or erase of
   1.154 -    ///other columns.
   1.155 -    ///
   1.156 -    ///\todo Document what can one do with a Col (INVALID, comparing,
   1.157 -    ///it is similar to Node/Edge)
   1.158 -    class Col {
   1.159 -    protected:
   1.160 -      int id;
   1.161 -      friend class LpSolverBase;
   1.162 -    public:
   1.163 -      typedef Value ExprValue;
   1.164 -      typedef True LpSolverCol;
   1.165 -      Col() {}
   1.166 -      Col(const Invalid&) : id(-1) {}
   1.167 -      bool operator<(Col c) const  {return id<c.id;}
   1.168 -      bool operator==(Col c) const  {return id==c.id;}
   1.169 -      bool operator!=(Col c) const  {return id==c.id;}
   1.170 -    };
   1.171 -
   1.172 -    ///Refer to a row of the LP.
   1.173 -
   1.174 -    ///This type is used to refer to a row of the LP.
   1.175 -    ///
   1.176 -    ///Its value remains valid and correct even after the addition or erase of
   1.177 -    ///other rows.
   1.178 -    ///
   1.179 -    ///\todo Document what can one do with a Row (INVALID, comparing,
   1.180 -    ///it is similar to Node/Edge)
   1.181 -    class Row {
   1.182 -    protected:
   1.183 -      int id;
   1.184 -      friend class LpSolverBase;
   1.185 -    public:
   1.186 -      typedef Value ExprValue;
   1.187 -      typedef True LpSolverRow;
   1.188 -      Row() {}
   1.189 -      Row(const Invalid&) : id(-1) {}
   1.190 -      typedef True LpSolverRow;
   1.191 -      bool operator<(Row c) const  {return id<c.id;}
   1.192 -      bool operator==(Row c) const  {return id==c.id;}
   1.193 -      bool operator!=(Row c) const  {return id==c.id;} 
   1.194 -   };
   1.195 -    
   1.196 -    ///Linear expression of variables and a constant component
   1.197 -    
   1.198 -    ///This data structure strores a linear expression of the variables
   1.199 -    ///(\ref Col "Col"s) and also has a constant component.
   1.200 -    ///
   1.201 -    ///There are several ways to access and modify the contents of this
   1.202 -    ///container.
   1.203 -    ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   1.204 -    ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
   1.205 -    ///read and modify the coefficients like
   1.206 -    ///these.
   1.207 -    ///\code
   1.208 -    ///e[v]=5;
   1.209 -    ///e[v]+=12;
   1.210 -    ///e.erase(v);
   1.211 -    ///\endcode
   1.212 -    ///or you can also iterate through its elements.
   1.213 -    ///\code
   1.214 -    ///double s=0;
   1.215 -    ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   1.216 -    ///  s+=i->second;
   1.217 -    ///\endcode
   1.218 -    ///(This code computes the sum of all coefficients).
   1.219 -    ///- Numbers (<tt>double</tt>'s)
   1.220 -    ///and variables (\ref Col "Col"s) directly convert to an
   1.221 -    ///\ref Expr and the usual linear operations are defined so  
   1.222 -    ///\code
   1.223 -    ///v+w
   1.224 -    ///2*v-3.12*(v-w/2)+2
   1.225 -    ///v*2.1+(3*v+(v*12+w+6)*3)/2
   1.226 -    ///\endcode
   1.227 -    ///are valid \ref Expr "Expr"essions.
   1.228 -    ///The usual assignment operations are also defined.
   1.229 -    ///\code
   1.230 -    ///e=v+w;
   1.231 -    ///e+=2*v-3.12*(v-w/2)+2;
   1.232 -    ///e*=3.4;
   1.233 -    ///e/=5;
   1.234 -    ///\endcode
   1.235 -    ///- The constant member can be set and read by \ref constComp()
   1.236 -    ///\code
   1.237 -    ///e.constComp()=12;
   1.238 -    ///double c=e.constComp();
   1.239 -    ///\endcode
   1.240 -    ///
   1.241 -    ///\note \ref clear() not only sets all coefficients to 0 but also
   1.242 -    ///clears the constant components.
   1.243 -    ///
   1.244 -    ///\sa Constr
   1.245 -    ///
   1.246 -    class Expr : public std::map<Col,Value>
   1.247 -    {
   1.248 -    public:
   1.249 -      typedef LpSolverBase::Col Key; 
   1.250 -      typedef LpSolverBase::Value Value;
   1.251 -      
   1.252 -    protected:
   1.253 -      typedef std::map<Col,Value> Base;
   1.254 -      
   1.255 -      Value const_comp;
   1.256 -  public:
   1.257 -      typedef True IsLinExpression;
   1.258 -      ///\e
   1.259 -      Expr() : Base(), const_comp(0) { }
   1.260 -      ///\e
   1.261 -      Expr(const Key &v) : const_comp(0) {
   1.262 -	Base::insert(std::make_pair(v, 1));
   1.263 -      }
   1.264 -      ///\e
   1.265 -      Expr(const Value &v) : const_comp(v) {}
   1.266 -      ///\e
   1.267 -      void set(const Key &v,const Value &c) {
   1.268 -	Base::insert(std::make_pair(v, c));
   1.269 -      }
   1.270 -      ///\e
   1.271 -      Value &constComp() { return const_comp; }
   1.272 -      ///\e
   1.273 -      const Value &constComp() const { return const_comp; }
   1.274 -      
   1.275 -      ///Removes the components with zero coefficient.
   1.276 -      void simplify() {
   1.277 -	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   1.278 -	  Base::iterator j=i;
   1.279 -	  ++j;
   1.280 -	  if ((*i).second==0) Base::erase(i);
   1.281 -	  j=i;
   1.282 -	}
   1.283 -      }
   1.284 -
   1.285 -      ///Sets all coefficients and the constant component to 0.
   1.286 -      void clear() {
   1.287 -	Base::clear();
   1.288 -	const_comp=0;
   1.289 -      }
   1.290 -
   1.291 -      ///\e
   1.292 -      Expr &operator+=(const Expr &e) {
   1.293 -	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   1.294 -	  (*this)[j->first]+=j->second;
   1.295 -	///\todo it might be speeded up using "hints"
   1.296 -	const_comp+=e.const_comp;
   1.297 -	return *this;
   1.298 -      }
   1.299 -      ///\e
   1.300 -      Expr &operator-=(const Expr &e) {
   1.301 -	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   1.302 -	  (*this)[j->first]-=j->second;
   1.303 -	const_comp-=e.const_comp;
   1.304 -	return *this;
   1.305 -      }
   1.306 -      ///\e
   1.307 -      Expr &operator*=(const Value &c) {
   1.308 -	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.309 -	  j->second*=c;
   1.310 -	const_comp*=c;
   1.311 -	return *this;
   1.312 -      }
   1.313 -      ///\e
   1.314 -      Expr &operator/=(const Value &c) {
   1.315 -	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.316 -	  j->second/=c;
   1.317 -	const_comp/=c;
   1.318 -	return *this;
   1.319 -      }
   1.320 -    };
   1.321 -    
   1.322 -    ///Linear constraint
   1.323 -
   1.324 -    ///This data stucture represents a linear constraint in the LP.
   1.325 -    ///Basically it is a linear expression with a lower or an upper bound
   1.326 -    ///(or both). These parts of the constraint can be obtained by the member
   1.327 -    ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
   1.328 -    ///respectively.
   1.329 -    ///There are two ways to construct a constraint.
   1.330 -    ///- You can set the linear expression and the bounds directly
   1.331 -    ///  by the functions above.
   1.332 -    ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
   1.333 -    ///  are defined between expressions, or even between constraints whenever
   1.334 -    ///  it makes sense. Therefore if \c e and \c f are linear expressions and
   1.335 -    ///  \c s and \c t are numbers, then the followings are valid expressions
   1.336 -    ///  and thus they can be used directly e.g. in \ref addRow() whenever
   1.337 -    ///  it makes sense.
   1.338 -    ///  \code
   1.339 -    ///  e<=s
   1.340 -    ///  e<=f
   1.341 -    ///  s<=e<=t
   1.342 -    ///  e>=t
   1.343 -    ///  \endcode
   1.344 -    ///\warning The validity of a constraint is checked only at run time, so
   1.345 -    ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
   1.346 -    ///\ref LogicError exception.
   1.347 -    class Constr
   1.348 -    {
   1.349 -    public:
   1.350 -      typedef LpSolverBase::Expr Expr;
   1.351 -      typedef Expr::Key Key;
   1.352 -      typedef Expr::Value Value;
   1.353 -      
   1.354 -//       static const Value INF;
   1.355 -//       static const Value NaN;
   1.356 -
   1.357 -    protected:
   1.358 -      Expr _expr;
   1.359 -      Value _lb,_ub;
   1.360 -    public:
   1.361 -      ///\e
   1.362 -      Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   1.363 -      ///\e
   1.364 -      Constr(Value lb,const Expr &e,Value ub) :
   1.365 -	_expr(e), _lb(lb), _ub(ub) {}
   1.366 -      ///\e
   1.367 -      Constr(const Expr &e,Value ub) : 
   1.368 -	_expr(e), _lb(NaN), _ub(ub) {}
   1.369 -      ///\e
   1.370 -      Constr(Value lb,const Expr &e) :
   1.371 -	_expr(e), _lb(lb), _ub(NaN) {}
   1.372 -      ///\e
   1.373 -      Constr(const Expr &e) : 
   1.374 -	_expr(e), _lb(NaN), _ub(NaN) {}
   1.375 -      ///\e
   1.376 -      void clear() 
   1.377 -      {
   1.378 -	_expr.clear();
   1.379 -	_lb=_ub=NaN;
   1.380 -      }
   1.381 -
   1.382 -      ///Reference to the linear expression 
   1.383 -      Expr &expr() { return _expr; }
   1.384 -      ///Cont reference to the linear expression 
   1.385 -      const Expr &expr() const { return _expr; }
   1.386 -      ///Reference to the lower bound.
   1.387 -
   1.388 -      ///\return
   1.389 -      ///- -\ref INF: the constraint is lower unbounded.
   1.390 -      ///- -\ref NaN: lower bound has not been set.
   1.391 -      ///- finite number: the lower bound
   1.392 -      Value &lowerBound() { return _lb; }
   1.393 -      ///The const version of \ref lowerBound()
   1.394 -      const Value &lowerBound() const { return _lb; }
   1.395 -      ///Reference to the upper bound.
   1.396 -
   1.397 -      ///\return
   1.398 -      ///- -\ref INF: the constraint is upper unbounded.
   1.399 -      ///- -\ref NaN: upper bound has not been set.
   1.400 -      ///- finite number: the upper bound
   1.401 -      Value &upperBound() { return _ub; }
   1.402 -      ///The const version of \ref upperBound()
   1.403 -      const Value &upperBound() const { return _ub; }
   1.404 -      ///Is the constraint lower bounded?
   1.405 -      bool lowerBounded() const { 
   1.406 -	using namespace std;
   1.407 -	return finite(_lb);
   1.408 -      }
   1.409 -      ///Is the constraint upper bounded?
   1.410 -      bool upperBounded() const {
   1.411 -	using namespace std;
   1.412 -	return finite(_ub);
   1.413 -      }
   1.414 -    };
   1.415 -    
   1.416 -
   1.417 -  protected:
   1.418 -    _FixId rows;
   1.419 -    _FixId cols;
   1.420 -
   1.421 -    //Abstract virtual functions
   1.422 -    virtual LpSolverBase &_newLp() = 0;
   1.423 -    virtual LpSolverBase &_copyLp() = 0;
   1.424 -
   1.425 -    virtual int _addCol() = 0;
   1.426 -    virtual int _addRow() = 0;
   1.427 -    virtual void _setRowCoeffs(int i, 
   1.428 -			       int length,
   1.429 -                               int  const * indices, 
   1.430 -                               Value  const * values ) = 0;
   1.431 -    virtual void _setColCoeffs(int i, 
   1.432 -			       int length,
   1.433 -                               int  const * indices, 
   1.434 -                               Value  const * values ) = 0;
   1.435 -    virtual void _setCoeff(int row, int col, Value value) = 0;
   1.436 -    virtual void _setColLowerBound(int i, Value value) = 0;
   1.437 -    virtual void _setColUpperBound(int i, Value value) = 0;
   1.438 -//     virtual void _setRowLowerBound(int i, Value value) = 0;
   1.439 -//     virtual void _setRowUpperBound(int i, Value value) = 0;
   1.440 -    virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
   1.441 -    virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   1.442 -    virtual void _clearObj()=0;
   1.443 -//     virtual void _setObj(int length,
   1.444 -//                          int  const * indices, 
   1.445 -//                          Value  const * values ) = 0;
   1.446 -    virtual SolveExitStatus _solve() = 0;
   1.447 -    virtual Value _getPrimal(int i) = 0;
   1.448 -    virtual Value _getPrimalValue() = 0;
   1.449 -    virtual SolutionStatus _getPrimalStatus() = 0;
   1.450 -    virtual void _setMax() = 0;
   1.451 -    virtual void _setMin() = 0;
   1.452 -    
   1.453 -    //Own protected stuff
   1.454 -    
   1.455 -    //Constant component of the objective function
   1.456 -    Value obj_const_comp;
   1.457 -    
   1.458 -
   1.459 -
   1.460 -    
   1.461 -  public:
   1.462 -
   1.463 -    ///\e
   1.464 -    LpSolverBase() : obj_const_comp(0) {}
   1.465 -
   1.466 -    ///\e
   1.467 -    virtual ~LpSolverBase() {}
   1.468 -
   1.469 -    ///Creates a new LP problem
   1.470 -    LpSolverBase &newLp() {return _newLp();}
   1.471 -    ///Makes a copy of the LP problem
   1.472 -    LpSolverBase &copyLp() {return _copyLp();}
   1.473 -    
   1.474 -    ///\name Build up and modify of the LP
   1.475 -
   1.476 -    ///@{
   1.477 -
   1.478 -    ///Add a new empty column (i.e a new variable) to the LP
   1.479 -    Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
   1.480 -
   1.481 -    ///\brief Adds several new columns
   1.482 -    ///(i.e a variables) at once
   1.483 -    ///
   1.484 -    ///This magic function takes a container as its argument
   1.485 -    ///and fills its elements
   1.486 -    ///with new columns (i.e. variables)
   1.487 -    ///\param t can be
   1.488 -    ///- a standard STL compatible iterable container with
   1.489 -    ///\ref Col as its \c values_type
   1.490 -    ///like
   1.491 -    ///\code
   1.492 -    ///std::vector<LpSolverBase::Col>
   1.493 -    ///std::list<LpSolverBase::Col>
   1.494 -    ///\endcode
   1.495 -    ///- a standard STL compatible iterable container with
   1.496 -    ///\ref Col as its \c mapped_type
   1.497 -    ///like
   1.498 -    ///\code
   1.499 -    ///std::map<AnyType,LpSolverBase::Col>
   1.500 -    ///\endcode
   1.501 -    ///- an iterable lemon \ref concept::WriteMap "write map" like 
   1.502 -    ///\code
   1.503 -    ///ListGraph::NodeMap<LpSolverBase::Col>
   1.504 -    ///ListGraph::EdgeMap<LpSolverBase::Col>
   1.505 -    ///\endcode
   1.506 -    ///\return The number of the created column.
   1.507 -#ifdef DOXYGEN
   1.508 -    template<class T>
   1.509 -    int addColSet(T &t) { return 0;} 
   1.510 -#else
   1.511 -    template<class T>
   1.512 -    typename enable_if<typename T::value_type::LpSolverCol,int>::type
   1.513 -    addColSet(T &t,dummy<0> = 0) {
   1.514 -      int s=0;
   1.515 -      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   1.516 -      return s;
   1.517 -    }
   1.518 -    template<class T>
   1.519 -    typename enable_if<typename T::value_type::second_type::LpSolverCol,
   1.520 -		       int>::type
   1.521 -    addColSet(T &t,dummy<1> = 1) { 
   1.522 -      int s=0;
   1.523 -      for(typename T::iterator i=t.begin();i!=t.end();++i) {
   1.524 -	i->second=addCol();
   1.525 -	s++;
   1.526 -      }
   1.527 -      return s;
   1.528 -    }
   1.529 -    template<class T>
   1.530 -    typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
   1.531 -		       int>::type
   1.532 -    addColSet(T &t,dummy<2> = 2) { 
   1.533 -      ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
   1.534 -      int s=0;
   1.535 -      for(typename T::ValueSet::iterator i=t.valueSet().begin();
   1.536 -	  i!=t.valueSet().end();
   1.537 -	  ++i)
   1.538 -	{
   1.539 -	  *i=addCol();
   1.540 -	  s++;
   1.541 -	}
   1.542 -      return s;
   1.543 -    }
   1.544 -#endif
   1.545 -
   1.546 -    ///Add a new empty row (i.e a new constaint) to the LP
   1.547 -
   1.548 -    ///This function adds a new empty row (i.e a new constaint) to the LP.
   1.549 -    ///\return The created row
   1.550 -    Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   1.551 -
   1.552 -    ///Set a row (i.e a constaint) of the LP
   1.553 -
   1.554 -    ///\param r is the row to be modified
   1.555 -    ///\param l is lower bound (-\ref INF means no bound)
   1.556 -    ///\param e is a linear expression (see \ref Expr)
   1.557 -    ///\param u is the upper bound (\ref INF means no bound)
   1.558 -    ///\bug This is a temportary function. The interface will change to
   1.559 -    ///a better one.
   1.560 -    ///\todo Option to control whether a constraint with a single variable is
   1.561 -    ///added or not.
   1.562 -    void setRow(Row r, Value l,const Expr &e, Value u) {
   1.563 -      std::vector<int> indices;
   1.564 -      std::vector<Value> values;
   1.565 -      indices.push_back(0);
   1.566 -      values.push_back(0);
   1.567 -      for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
   1.568 -	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   1.569 -	  indices.push_back(cols.floatingId((*i).first.id));
   1.570 -	  values.push_back((*i).second);
   1.571 -	}
   1.572 -      _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
   1.573 -		    &indices[0],&values[0]);
   1.574 -//       _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
   1.575 -//       _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
   1.576 -       _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp());
   1.577 -    }
   1.578 -
   1.579 -    ///Set a row (i.e a constaint) of the LP
   1.580 -
   1.581 -    ///\param r is the row to be modified
   1.582 -    ///\param c is a linear expression (see \ref Constr)
   1.583 -    void setRow(Row r, const Constr &c) {
   1.584 -      setRow(r,
   1.585 -	     c.lowerBounded()?c.lowerBound():-INF,
   1.586 -	     c.expr(),
   1.587 -	     c.upperBounded()?c.upperBound():INF);
   1.588 -    }
   1.589 -
   1.590 -    ///Add a new row (i.e a new constaint) to the LP
   1.591 -
   1.592 -    ///\param l is the lower bound (-\ref INF means no bound)
   1.593 -    ///\param e is a linear expression (see \ref Expr)
   1.594 -    ///\param u is the upper bound (\ref INF means no bound)
   1.595 -    ///\return The created row.
   1.596 -    ///\bug This is a temportary function. The interface will change to
   1.597 -    ///a better one.
   1.598 -    Row addRow(Value l,const Expr &e, Value u) {
   1.599 -      Row r=addRow();
   1.600 -      setRow(r,l,e,u);
   1.601 -      return r;
   1.602 -    }
   1.603 -
   1.604 -    ///Add a new row (i.e a new constaint) to the LP
   1.605 -
   1.606 -    ///\param c is a linear expression (see \ref Constr)
   1.607 -    ///\return The created row.
   1.608 -    Row addRow(const Constr &c) {
   1.609 -      Row r=addRow();
   1.610 -      setRow(r,c);
   1.611 -      return r;
   1.612 -    }
   1.613 -
   1.614 -    /// Set the lower bound of a column (i.e a variable)
   1.615 -
   1.616 -    /// The upper bound of a variable (column) has to be given by an 
   1.617 -    /// extended number of type Value, i.e. a finite number of type 
   1.618 -    /// Value or -\ref INF.
   1.619 -    void colLowerBound(Col c, Value value) {
   1.620 -      _setColLowerBound(cols.floatingId(c.id),value);
   1.621 -    }
   1.622 -    /// Set the upper bound of a column (i.e a variable)
   1.623 -
   1.624 -    /// The upper bound of a variable (column) has to be given by an 
   1.625 -    /// extended number of type Value, i.e. a finite number of type 
   1.626 -    /// Value or \ref INF.
   1.627 -    void colUpperBound(Col c, Value value) {
   1.628 -      _setColUpperBound(cols.floatingId(c.id),value);
   1.629 -    };
   1.630 -    /// Set the lower and the upper bounds of a column (i.e a variable)
   1.631 -
   1.632 -    /// The lower and the upper bounds of
   1.633 -    /// a variable (column) have to be given by an 
   1.634 -    /// extended number of type Value, i.e. a finite number of type 
   1.635 -    /// Value, -\ref INF or \ref INF.
   1.636 -    void colBounds(Col c, Value lower, Value upper) {
   1.637 -      _setColLowerBound(cols.floatingId(c.id),lower);
   1.638 -      _setColUpperBound(cols.floatingId(c.id),upper);
   1.639 -    }
   1.640 -    
   1.641 -//     /// Set the lower bound of a row (i.e a constraint)
   1.642 -
   1.643 -//     /// The lower bound of a linear expression (row) has to be given by an 
   1.644 -//     /// extended number of type Value, i.e. a finite number of type 
   1.645 -//     /// Value or -\ref INF.
   1.646 -//     void rowLowerBound(Row r, Value value) {
   1.647 -//       _setRowLowerBound(rows.floatingId(r.id),value);
   1.648 -//     };
   1.649 -//     /// Set the upper bound of a row (i.e a constraint)
   1.650 -
   1.651 -//     /// The upper bound of a linear expression (row) has to be given by an 
   1.652 -//     /// extended number of type Value, i.e. a finite number of type 
   1.653 -//     /// Value or \ref INF.
   1.654 -//     void rowUpperBound(Row r, Value value) {
   1.655 -//       _setRowUpperBound(rows.floatingId(r.id),value);
   1.656 -//     };
   1.657 -
   1.658 -    /// Set the lower and the upper bounds of a row (i.e a constraint)
   1.659 -
   1.660 -    /// The lower and the upper bounds of
   1.661 -    /// a constraint (row) have to be given by an 
   1.662 -    /// extended number of type Value, i.e. a finite number of type 
   1.663 -    /// Value, -\ref INF or \ref INF.
   1.664 -    void rowBounds(Row c, Value lower, Value upper) {
   1.665 -      _setRowBounds(rows.floatingId(c.id),lower, upper);
   1.666 -      // _setRowUpperBound(rows.floatingId(c.id),upper);
   1.667 -    }
   1.668 -    
   1.669 -    ///Set an element of the objective function
   1.670 -    void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
   1.671 -    ///Set the objective function
   1.672 -    
   1.673 -    ///\param e is a linear expression of type \ref Expr.
   1.674 -    ///\bug The previous objective function is not cleared!
   1.675 -    void setObj(Expr e) {
   1.676 -      _clearObj();
   1.677 -      for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
   1.678 -	objCoeff((*i).first,(*i).second);
   1.679 -      obj_const_comp=e.constComp();
   1.680 -    }
   1.681 -
   1.682 -    ///Maximize
   1.683 -    void max() { _setMax(); }
   1.684 -    ///Minimize
   1.685 -    void min() { _setMin(); }
   1.686 -
   1.687 -    
   1.688 -    ///@}
   1.689 -
   1.690 -
   1.691 -    ///\name Solve the LP
   1.692 -
   1.693 -    ///@{
   1.694 -
   1.695 -    ///\e
   1.696 -    SolveExitStatus solve() { return _solve(); }
   1.697 -    
   1.698 -    ///@}
   1.699 -    
   1.700 -    ///\name Obtain the solution
   1.701 -
   1.702 -    ///@{
   1.703 -
   1.704 -    ///\e
   1.705 -    SolutionStatus primalStatus() {
   1.706 -      return _getPrimalStatus();
   1.707 -    }
   1.708 -
   1.709 -    ///\e
   1.710 -    Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
   1.711 -
   1.712 -    ///\e
   1.713 -
   1.714 -    ///\return
   1.715 -    ///- \ref INF or -\ref INF means either infeasibility or unboundedness
   1.716 -    /// of the primal problem, depending on whether we minimize or maximize.
   1.717 -    ///- \ref NaN if no primal solution is found.
   1.718 -    ///- The (finite) objective value if an optimal solution is found.
   1.719 -    Value primalValue() { return _getPrimalValue()+obj_const_comp;}
   1.720 -    ///@}
   1.721 -    
   1.722 -  };  
   1.723 -
   1.724 -  ///\e
   1.725 -  
   1.726 -  ///\relates LpSolverBase::Expr
   1.727 -  ///
   1.728 -  inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
   1.729 -				      const LpSolverBase::Expr &b) 
   1.730 -  {
   1.731 -    LpSolverBase::Expr tmp(a);
   1.732 -    tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.733 -    return tmp;
   1.734 -  }
   1.735 -  ///\e
   1.736 -  
   1.737 -  ///\relates LpSolverBase::Expr
   1.738 -  ///
   1.739 -  inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
   1.740 -				      const LpSolverBase::Expr &b) 
   1.741 -  {
   1.742 -    LpSolverBase::Expr tmp(a);
   1.743 -    tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.744 -    return tmp;
   1.745 -  }
   1.746 -  ///\e
   1.747 -  
   1.748 -  ///\relates LpSolverBase::Expr
   1.749 -  ///
   1.750 -  inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
   1.751 -				      const LpSolverBase::Value &b) 
   1.752 -  {
   1.753 -    LpSolverBase::Expr tmp(a);
   1.754 -    tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.755 -    return tmp;
   1.756 -  }
   1.757 -  
   1.758 -  ///\e
   1.759 -  
   1.760 -  ///\relates LpSolverBase::Expr
   1.761 -  ///
   1.762 -  inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
   1.763 -				      const LpSolverBase::Expr &b) 
   1.764 -  {
   1.765 -    LpSolverBase::Expr tmp(b);
   1.766 -    tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.767 -    return tmp;
   1.768 -  }
   1.769 -  ///\e
   1.770 -  
   1.771 -  ///\relates LpSolverBase::Expr
   1.772 -  ///
   1.773 -  inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
   1.774 -				      const LpSolverBase::Value &b) 
   1.775 -  {
   1.776 -    LpSolverBase::Expr tmp(a);
   1.777 -    tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.778 -    return tmp;
   1.779 -  }
   1.780 -  
   1.781 -  ///\e
   1.782 -  
   1.783 -  ///\relates LpSolverBase::Constr
   1.784 -  ///
   1.785 -  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   1.786 -					 const LpSolverBase::Expr &f) 
   1.787 -  {
   1.788 -    return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
   1.789 -  }
   1.790 -
   1.791 -  ///\e
   1.792 -  
   1.793 -  ///\relates LpSolverBase::Constr
   1.794 -  ///
   1.795 -  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
   1.796 -					 const LpSolverBase::Expr &f) 
   1.797 -  {
   1.798 -    return LpSolverBase::Constr(e,f);
   1.799 -  }
   1.800 -
   1.801 -  ///\e
   1.802 -  
   1.803 -  ///\relates LpSolverBase::Constr
   1.804 -  ///
   1.805 -  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   1.806 -					 const LpSolverBase::Value &f) 
   1.807 -  {
   1.808 -    return LpSolverBase::Constr(e,f);
   1.809 -  }
   1.810 -
   1.811 -  ///\e
   1.812 -  
   1.813 -  ///\relates LpSolverBase::Constr
   1.814 -  ///
   1.815 -  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   1.816 -					 const LpSolverBase::Expr &f) 
   1.817 -  {
   1.818 -    return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
   1.819 -  }
   1.820 -
   1.821 -
   1.822 -  ///\e
   1.823 -  
   1.824 -  ///\relates LpSolverBase::Constr
   1.825 -  ///
   1.826 -  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
   1.827 -					 const LpSolverBase::Expr &f) 
   1.828 -  {
   1.829 -    return LpSolverBase::Constr(f,e);
   1.830 -  }
   1.831 -
   1.832 -
   1.833 -  ///\e
   1.834 -  
   1.835 -  ///\relates LpSolverBase::Constr
   1.836 -  ///
   1.837 -  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   1.838 -					 const LpSolverBase::Value &f) 
   1.839 -  {
   1.840 -    return LpSolverBase::Constr(f,e);
   1.841 -  }
   1.842 -
   1.843 -  ///\e
   1.844 -  
   1.845 -  ///\relates LpSolverBase::Constr
   1.846 -  ///
   1.847 -  inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
   1.848 -					 const LpSolverBase::Expr &f) 
   1.849 -  {
   1.850 -    return LpSolverBase::Constr(0,e-f,0);
   1.851 -  }
   1.852 -
   1.853 -  ///\e
   1.854 -  
   1.855 -  ///\relates LpSolverBase::Constr
   1.856 -  ///
   1.857 -  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
   1.858 -					 const LpSolverBase::Constr&c) 
   1.859 -  {
   1.860 -    LpSolverBase::Constr tmp(c);
   1.861 -    ///\todo Create an own exception type.
   1.862 -    if(!isnan(tmp.lowerBound())) throw LogicError();
   1.863 -    else tmp.lowerBound()=n;
   1.864 -    return tmp;
   1.865 -  }
   1.866 -  ///\e
   1.867 -  
   1.868 -  ///\relates LpSolverBase::Constr
   1.869 -  ///
   1.870 -  inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
   1.871 -					 const LpSolverBase::Value &n)
   1.872 -  {
   1.873 -    LpSolverBase::Constr tmp(c);
   1.874 -    ///\todo Create an own exception type.
   1.875 -    if(!isnan(tmp.upperBound())) throw LogicError();
   1.876 -    else tmp.upperBound()=n;
   1.877 -    return tmp;
   1.878 -  }
   1.879 -
   1.880 -  ///\e
   1.881 -  
   1.882 -  ///\relates LpSolverBase::Constr
   1.883 -  ///
   1.884 -  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
   1.885 -					 const LpSolverBase::Constr&c) 
   1.886 -  {
   1.887 -    LpSolverBase::Constr tmp(c);
   1.888 -    ///\todo Create an own exception type.
   1.889 -    if(!isnan(tmp.upperBound())) throw LogicError();
   1.890 -    else tmp.upperBound()=n;
   1.891 -    return tmp;
   1.892 -  }
   1.893 -  ///\e
   1.894 -  
   1.895 -  ///\relates LpSolverBase::Constr
   1.896 -  ///
   1.897 -  inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
   1.898 -					 const LpSolverBase::Value &n)
   1.899 -  {
   1.900 -    LpSolverBase::Constr tmp(c);
   1.901 -    ///\todo Create an own exception type.
   1.902 -    if(!isnan(tmp.lowerBound())) throw LogicError();
   1.903 -    else tmp.lowerBound()=n;
   1.904 -    return tmp;
   1.905 -  }
   1.906 -
   1.907 -
   1.908 -} //namespace lemon
   1.909 -
   1.910 -#endif //LEMON_LP_BASE_H