src/lemon/maps.h
changeset 1435 8e85e6bbefdf
parent 1434 d8475431bbbb
child 1436 e0beb94d08bf
     1.1 --- a/src/lemon/maps.h	Sat May 21 21:04:57 2005 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,841 +0,0 @@
     1.4 -/* -*- C++ -*-
     1.5 - * src/lemon/maps.h - Part of LEMON, a generic C++ optimization library
     1.6 - *
     1.7 - * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
     1.9 - *
    1.10 - * Permission to use, modify and distribute this software is granted
    1.11 - * provided that this copyright notice appears in all copies. For
    1.12 - * precise terms see the accompanying LICENSE file.
    1.13 - *
    1.14 - * This software is provided "AS IS" with no warranty of any kind,
    1.15 - * express or implied, and with no claim as to its suitability for any
    1.16 - * purpose.
    1.17 - *
    1.18 - */
    1.19 -
    1.20 -#ifndef LEMON_MAPS_H
    1.21 -#define LEMON_MAPS_H
    1.22 -
    1.23 -#include <lemon/graph_utils.h>
    1.24 -#include <lemon/utility.h>
    1.25 -
    1.26 -
    1.27 -///\file
    1.28 -///\ingroup maps
    1.29 -///\brief Miscellaneous property maps
    1.30 -///
    1.31 -///\todo This file has the same name as the concept file in concept/,
    1.32 -/// and this is not easily detectable in docs...
    1.33 -
    1.34 -#include <map>
    1.35 -
    1.36 -namespace lemon {
    1.37 -
    1.38 -  /// \addtogroup maps
    1.39 -  /// @{
    1.40 -
    1.41 -  /// Base class of maps.
    1.42 -
    1.43 -  /// Base class of maps.
    1.44 -  /// It provides the necessary <tt>typedef</tt>s required by the map concept.
    1.45 -  template<typename K, typename T>
    1.46 -  class MapBase
    1.47 -  {
    1.48 -  public:
    1.49 -    ///\e
    1.50 -    typedef K Key;
    1.51 -    ///\e
    1.52 -    typedef T Value;
    1.53 -  };
    1.54 -
    1.55 -  /// Null map. (a.k.a. DoNothingMap)
    1.56 -
    1.57 -  /// If you have to provide a map only for its type definitions,
    1.58 -  /// or if you have to provide a writable map, but
    1.59 -  /// data written to it will sent to <tt>/dev/null</tt>...
    1.60 -  template<typename K, typename T>
    1.61 -  class NullMap : public MapBase<K,T>
    1.62 -  {
    1.63 -  public:
    1.64 -    
    1.65 -    typedef True NeedCopy;
    1.66 -
    1.67 -    /// Gives back a default constructed element.
    1.68 -    T operator[](const K&) const { return T(); }
    1.69 -    /// Absorbs the value.
    1.70 -    void set(const K&, const T&) {}
    1.71 -  };
    1.72 -
    1.73 -  template <typename K, typename V> 
    1.74 -  NullMap<K, V> nullMap() {
    1.75 -    return NullMap<K, V>();
    1.76 -  }
    1.77 -
    1.78 -
    1.79 -  /// Constant map.
    1.80 -
    1.81 -  /// This is a readable map which assigns a specified value to each key.
    1.82 -  /// In other aspects it is equivalent to the \ref NullMap.
    1.83 -  /// \todo set could be used to set the value.
    1.84 -  template<typename K, typename T>
    1.85 -  class ConstMap : public MapBase<K,T>
    1.86 -  {
    1.87 -    T v;
    1.88 -  public:
    1.89 -
    1.90 -    typedef True NeedCopy;
    1.91 -
    1.92 -    /// Default constructor
    1.93 -
    1.94 -    /// The value of the map will be uninitialized. 
    1.95 -    /// (More exactly it will be default constructed.)
    1.96 -    ConstMap() {}
    1.97 -    ///\e
    1.98 -
    1.99 -    /// \param _v The initial value of the map.
   1.100 -    ///
   1.101 -    ConstMap(const T &_v) : v(_v) {}
   1.102 -
   1.103 -    T operator[](const K&) const { return v; }
   1.104 -    void set(const K&, const T&) {}
   1.105 -
   1.106 -    template<typename T1>
   1.107 -    struct rebind {
   1.108 -      typedef ConstMap<K,T1> other;
   1.109 -    };
   1.110 -
   1.111 -    template<typename T1>
   1.112 -    ConstMap(const ConstMap<K,T1> &, const T &_v) : v(_v) {}
   1.113 -  };
   1.114 -
   1.115 -  ///Returns a \ref ConstMap class
   1.116 -
   1.117 -  ///This function just returns a \ref ConstMap class.
   1.118 -  ///\relates ConstMap
   1.119 -  template<class V,class K> 
   1.120 -  inline ConstMap<V,K> constMap(const K &k) 
   1.121 -  {
   1.122 -    return ConstMap<V,K>(k);
   1.123 -  }
   1.124 -
   1.125 -
   1.126 -  //to document later
   1.127 -  template<typename T, T v>
   1.128 -  struct Const { };
   1.129 -  //to document later
   1.130 -  template<typename K, typename V, V v>
   1.131 -  class ConstMap<K, Const<V, v> > : public MapBase<K, V>
   1.132 -  {
   1.133 -  public:
   1.134 -    ConstMap() { }
   1.135 -    V operator[](const K&) const { return v; }
   1.136 -    void set(const K&, const V&) { }
   1.137 -  };
   1.138 -
   1.139 -  /// \c std::map wrapper
   1.140 -
   1.141 -  /// This is essentially a wrapper for \c std::map. With addition that
   1.142 -  /// you can specify a default value different from \c Value() .
   1.143 -  ///
   1.144 -  /// \todo Provide allocator parameter...
   1.145 -  template <typename K, typename T, typename Compare = std::less<K> >
   1.146 -  class StdMap : public std::map<K,T,Compare> {
   1.147 -    typedef std::map<K,T,Compare> parent;
   1.148 -    T v;
   1.149 -    typedef typename parent::value_type PairType;
   1.150 -
   1.151 -  public:
   1.152 -    typedef K Key;
   1.153 -    typedef T Value;
   1.154 -    typedef T& Reference;
   1.155 -    typedef const T& ConstReference;
   1.156 -
   1.157 -
   1.158 -    StdMap() : v() {}
   1.159 -    /// Constructor with specified default value
   1.160 -    StdMap(const T& _v) : v(_v) {}
   1.161 -
   1.162 -    /// \brief Constructs the map from an appropriate std::map.
   1.163 -    ///
   1.164 -    /// \warning Inefficient: copies the content of \c m !
   1.165 -    StdMap(const parent &m) : parent(m) {}
   1.166 -    /// \brief Constructs the map from an appropriate std::map, and explicitly
   1.167 -    /// specifies a default value.
   1.168 -    ///
   1.169 -    /// \warning Inefficient: copies the content of \c m !
   1.170 -    StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
   1.171 -    
   1.172 -    template<typename T1, typename Comp1>
   1.173 -    StdMap(const StdMap<Key,T1,Comp1> &m, const T &_v) { 
   1.174 -      //FIXME; 
   1.175 -    }
   1.176 -
   1.177 -    Reference operator[](const Key &k) {
   1.178 -      return insert(PairType(k,v)).first -> second;
   1.179 -    }
   1.180 -    ConstReference operator[](const Key &k) const {
   1.181 -      typename parent::iterator i = lower_bound(k);
   1.182 -      if (i == parent::end() || parent::key_comp()(k, (*i).first))
   1.183 -	return v;
   1.184 -      return (*i).second;
   1.185 -    }
   1.186 -    void set(const Key &k, const T &t) {
   1.187 -      parent::operator[](k) = t;
   1.188 -    }
   1.189 -
   1.190 -    /// Changes the default value of the map.
   1.191 -    /// \return Returns the previous default value.
   1.192 -    ///
   1.193 -    /// \warning The value of some keys (which has already been queried, but
   1.194 -    /// the value has been unchanged from the default) may change!
   1.195 -    T setDefault(const T &_v) { T old=v; v=_v; return old; }
   1.196 -
   1.197 -    template<typename T1>
   1.198 -    struct rebind {
   1.199 -      typedef StdMap<Key,T1,Compare> other;
   1.200 -    };
   1.201 -  };
   1.202 -
   1.203 -  /// @}
   1.204 -
   1.205 -  /// \addtogroup map_adaptors
   1.206 -  /// @{
   1.207 -
   1.208 -
   1.209 -  ///Convert the \c Value of a maps to another type.
   1.210 -
   1.211 -  ///This \ref concept::ReadMap "read only map"
   1.212 -  ///converts the \c Value of a maps to type \c T.
   1.213 -  ///Its \c Value is inherited from \c M.
   1.214 -  ///
   1.215 -  ///Actually,
   1.216 -  ///\code
   1.217 -  ///  ConvertMap<X> sh(x,v);
   1.218 -  ///\endcode
   1.219 -  ///it is equivalent with
   1.220 -  ///\code
   1.221 -  ///  ConstMap<X::Key, X::Value> c_tmp(v);
   1.222 -  ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   1.223 -  ///\endcode
   1.224 -  ///\bug wrong documentation
   1.225 -  template<class M, class T> 
   1.226 -  class ConvertMap {
   1.227 -    typename SmartConstReference<M>::Type m;
   1.228 -  public:
   1.229 -
   1.230 -    typedef True NeedCopy;
   1.231 -
   1.232 -    typedef typename M::Key Key;
   1.233 -    typedef T Value;
   1.234 -
   1.235 -    ///Constructor
   1.236 -
   1.237 -    ///Constructor
   1.238 -    ///\param _m is the undelying map
   1.239 -    ///\param _v is the convert value
   1.240 -    ConvertMap(const M &_m) : m(_m) {};
   1.241 -
   1.242 -    /// \brief The subscript operator.
   1.243 -    ///
   1.244 -    /// The subscript operator.
   1.245 -    /// \param edge The edge 
   1.246 -    /// \return The target of the edge 
   1.247 -    Value operator[](Key k) const {return m[k];}
   1.248 -  };
   1.249 -  
   1.250 -  ///Returns an \ref ConvertMap class
   1.251 -
   1.252 -  ///This function just returns an \ref ConvertMap class.
   1.253 -  ///\relates ConvertMap
   1.254 -  ///\todo The order of the template parameters are changed.
   1.255 -  template<class T, class M>
   1.256 -  inline ConvertMap<M,T> convertMap(const M &m) 
   1.257 -  {
   1.258 -    return ConvertMap<M,T>(m);
   1.259 -  }
   1.260 -
   1.261 -  ///Sum of two maps
   1.262 -
   1.263 -  ///This \ref concept::ReadMap "read only map" returns the sum of the two
   1.264 -  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   1.265 -  ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
   1.266 -
   1.267 -  template<class M1,class M2> 
   1.268 -  class AddMap
   1.269 -  {
   1.270 -    typename SmartConstReference<M1>::Type m1;
   1.271 -    typename SmartConstReference<M2>::Type m2;
   1.272 -
   1.273 -  public:
   1.274 -
   1.275 -    typedef True NeedCopy;
   1.276 -
   1.277 -    typedef typename M1::Key Key;
   1.278 -    typedef typename M1::Value Value;
   1.279 -
   1.280 -    ///Constructor
   1.281 -
   1.282 -    ///\e
   1.283 -    ///
   1.284 -    AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   1.285 -    Value operator[](Key k) const {return m1[k]+m2[k];}
   1.286 -  };
   1.287 -  
   1.288 -  ///Returns an \ref AddMap class
   1.289 -
   1.290 -  ///This function just returns an \ref AddMap class.
   1.291 -  ///\todo How to call these type of functions?
   1.292 -  ///
   1.293 -  ///\relates AddMap
   1.294 -  ///\todo Wrong scope in Doxygen when \c \\relates is used
   1.295 -  template<class M1,class M2> 
   1.296 -  inline AddMap<M1,M2> addMap(const M1 &m1,const M2 &m2) 
   1.297 -  {
   1.298 -    return AddMap<M1,M2>(m1,m2);
   1.299 -  }
   1.300 -
   1.301 -  ///Shift a maps with a constant.
   1.302 -
   1.303 -  ///This \ref concept::ReadMap "read only map" returns the sum of the
   1.304 -  ///given map and a constant value.
   1.305 -  ///Its \c Key and \c Value is inherited from \c M.
   1.306 -  ///
   1.307 -  ///Actually,
   1.308 -  ///\code
   1.309 -  ///  ShiftMap<X> sh(x,v);
   1.310 -  ///\endcode
   1.311 -  ///it is equivalent with
   1.312 -  ///\code
   1.313 -  ///  ConstMap<X::Key, X::Value> c_tmp(v);
   1.314 -  ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   1.315 -  ///\endcode
   1.316 -  template<class M> 
   1.317 -  class ShiftMap
   1.318 -  {
   1.319 -    typename SmartConstReference<M>::Type m;
   1.320 -    typename M::Value v;
   1.321 -  public:
   1.322 -
   1.323 -    typedef True NeedCopy;
   1.324 -    typedef typename M::Key Key;
   1.325 -    typedef typename M::Value Value;
   1.326 -
   1.327 -    ///Constructor
   1.328 -
   1.329 -    ///Constructor
   1.330 -    ///\param _m is the undelying map
   1.331 -    ///\param _v is the shift value
   1.332 -    ShiftMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
   1.333 -    Value operator[](Key k) const {return m[k]+v;}
   1.334 -  };
   1.335 -  
   1.336 -  ///Returns an \ref ShiftMap class
   1.337 -
   1.338 -  ///This function just returns an \ref ShiftMap class.
   1.339 -  ///\relates ShiftMap
   1.340 -  ///\todo A better name is required.
   1.341 -  template<class M> 
   1.342 -  inline ShiftMap<M> shiftMap(const M &m,const typename M::Value &v) 
   1.343 -  {
   1.344 -    return ShiftMap<M>(m,v);
   1.345 -  }
   1.346 -
   1.347 -  ///Difference of two maps
   1.348 -
   1.349 -  ///This \ref concept::ReadMap "read only map" returns the difference
   1.350 -  ///of the values returned by the two
   1.351 -  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   1.352 -  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   1.353 -
   1.354 -  template<class M1,class M2> 
   1.355 -  class SubMap
   1.356 -  {
   1.357 -    typename SmartConstReference<M1>::Type m1;
   1.358 -    typename SmartConstReference<M2>::Type m2;
   1.359 -  public:
   1.360 -
   1.361 -    typedef True NeedCopy;
   1.362 -    typedef typename M1::Key Key;
   1.363 -    typedef typename M1::Value Value;
   1.364 -
   1.365 -    ///Constructor
   1.366 -
   1.367 -    ///\e
   1.368 -    ///
   1.369 -    SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   1.370 -    Value operator[](Key k) const {return m1[k]-m2[k];}
   1.371 -  };
   1.372 -  
   1.373 -  ///Returns a \ref SubMap class
   1.374 -
   1.375 -  ///This function just returns a \ref SubMap class.
   1.376 -  ///
   1.377 -  ///\relates SubMap
   1.378 -  template<class M1,class M2> 
   1.379 -  inline SubMap<M1,M2> subMap(const M1 &m1,const M2 &m2) 
   1.380 -  {
   1.381 -    return SubMap<M1,M2>(m1,m2);
   1.382 -  }
   1.383 -
   1.384 -  ///Product of two maps
   1.385 -
   1.386 -  ///This \ref concept::ReadMap "read only map" returns the product of the
   1.387 -  ///values returned by the two
   1.388 -  ///given
   1.389 -  ///maps. Its \c Key and \c Value will be inherited from \c M1.
   1.390 -  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   1.391 -
   1.392 -  template<class M1,class M2> 
   1.393 -  class MulMap
   1.394 -  {
   1.395 -    typename SmartConstReference<M1>::Type m1;
   1.396 -    typename SmartConstReference<M2>::Type m2;
   1.397 -  public:
   1.398 -
   1.399 -    typedef True NeedCopy;
   1.400 -    typedef typename M1::Key Key;
   1.401 -    typedef typename M1::Value Value;
   1.402 -
   1.403 -    ///Constructor
   1.404 -
   1.405 -    ///\e
   1.406 -    ///
   1.407 -    MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   1.408 -    Value operator[](Key k) const {return m1[k]*m2[k];}
   1.409 -  };
   1.410 -  
   1.411 -  ///Returns a \ref MulMap class
   1.412 -
   1.413 -  ///This function just returns a \ref MulMap class.
   1.414 -  ///\relates MulMap
   1.415 -  template<class M1,class M2> 
   1.416 -  inline MulMap<M1,M2> mulMap(const M1 &m1,const M2 &m2) 
   1.417 -  {
   1.418 -    return MulMap<M1,M2>(m1,m2);
   1.419 -  }
   1.420 - 
   1.421 -  ///Scale a maps with a constant.
   1.422 -
   1.423 -  ///This \ref concept::ReadMap "read only map" returns the value of the
   1.424 -  ///given map multipied with a constant value.
   1.425 -  ///Its \c Key and \c Value is inherited from \c M.
   1.426 -  ///
   1.427 -  ///Actually,
   1.428 -  ///\code
   1.429 -  ///  ScaleMap<X> sc(x,v);
   1.430 -  ///\endcode
   1.431 -  ///it is equivalent with
   1.432 -  ///\code
   1.433 -  ///  ConstMap<X::Key, X::Value> c_tmp(v);
   1.434 -  ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
   1.435 -  ///\endcode
   1.436 -  template<class M> 
   1.437 -  class ScaleMap
   1.438 -  {
   1.439 -    typename SmartConstReference<M>::Type m;
   1.440 -    typename M::Value v;
   1.441 -  public:
   1.442 -
   1.443 -    typedef True NeedCopy;
   1.444 -    typedef typename M::Key Key;
   1.445 -    typedef typename M::Value Value;
   1.446 -
   1.447 -    ///Constructor
   1.448 -
   1.449 -    ///Constructor
   1.450 -    ///\param _m is the undelying map
   1.451 -    ///\param _v is the scaling value
   1.452 -    ScaleMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
   1.453 -    Value operator[](Key k) const {return m[k]*v;}
   1.454 -  };
   1.455 -  
   1.456 -  ///Returns an \ref ScaleMap class
   1.457 -
   1.458 -  ///This function just returns an \ref ScaleMap class.
   1.459 -  ///\relates ScaleMap
   1.460 -  ///\todo A better name is required.
   1.461 -  template<class M> 
   1.462 -  inline ScaleMap<M> scaleMap(const M &m,const typename M::Value &v) 
   1.463 -  {
   1.464 -    return ScaleMap<M>(m,v);
   1.465 -  }
   1.466 -
   1.467 -  ///Quotient of two maps
   1.468 -
   1.469 -  ///This \ref concept::ReadMap "read only map" returns the quotient of the
   1.470 -  ///values returned by the two
   1.471 -  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   1.472 -  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   1.473 -
   1.474 -  template<class M1,class M2> 
   1.475 -  class DivMap
   1.476 -  {
   1.477 -    typename SmartConstReference<M1>::Type m1;
   1.478 -    typename SmartConstReference<M2>::Type m2;
   1.479 -  public:
   1.480 -
   1.481 -    typedef True NeedCopy;
   1.482 -    typedef typename M1::Key Key;
   1.483 -    typedef typename M1::Value Value;
   1.484 -
   1.485 -    ///Constructor
   1.486 -
   1.487 -    ///\e
   1.488 -    ///
   1.489 -    DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   1.490 -    Value operator[](Key k) const {return m1[k]/m2[k];}
   1.491 -  };
   1.492 -  
   1.493 -  ///Returns a \ref DivMap class
   1.494 -
   1.495 -  ///This function just returns a \ref DivMap class.
   1.496 -  ///\relates DivMap
   1.497 -  template<class M1,class M2> 
   1.498 -  inline DivMap<M1,M2> divMap(const M1 &m1,const M2 &m2) 
   1.499 -  {
   1.500 -    return DivMap<M1,M2>(m1,m2);
   1.501 -  }
   1.502 -  
   1.503 -  ///Composition of two maps
   1.504 -
   1.505 -  ///This \ref concept::ReadMap "read only map" returns the composition of
   1.506 -  ///two
   1.507 -  ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
   1.508 -  ///of \c M2,
   1.509 -  ///then for
   1.510 -  ///\code
   1.511 -  ///  ComposeMap<M1,M2> cm(m1,m2);
   1.512 -  ///\endcode
   1.513 -  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
   1.514 -  ///
   1.515 -  ///Its \c Key is inherited from \c M2 and its \c Value is from
   1.516 -  ///\c M1.
   1.517 -  ///The \c M2::Value must be convertible to \c M1::Key.
   1.518 -  ///\todo Check the requirements.
   1.519 -
   1.520 -  template<class M1,class M2> 
   1.521 -  class ComposeMap
   1.522 -  {
   1.523 -    typename SmartConstReference<M1>::Type m1;
   1.524 -    typename SmartConstReference<M2>::Type m2;
   1.525 -  public:
   1.526 -
   1.527 -    typedef True NeedCopy;
   1.528 -    typedef typename M2::Key Key;
   1.529 -    typedef typename M1::Value Value;
   1.530 -
   1.531 -    typedef True NeedCopy;
   1.532 -
   1.533 -    ///Constructor
   1.534 -
   1.535 -    ///\e
   1.536 -    ///
   1.537 -    ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   1.538 -    Value operator[](Key k) const {return m1[m2[k]];}
   1.539 -  };
   1.540 -  ///Returns a \ref ComposeMap class
   1.541 -
   1.542 -  ///This function just returns a \ref ComposeMap class.
   1.543 -  ///
   1.544 -  ///\relates ComposeMap
   1.545 -  template<class M1,class M2> 
   1.546 -  inline ComposeMap<M1,M2> composeMap(const M1 &m1,const M2 &m2) 
   1.547 -  {
   1.548 -    return ComposeMap<M1,M2>(m1,m2);
   1.549 -  }
   1.550 -  
   1.551 -  ///Combine of two maps using an STL (binary) functor.
   1.552 -
   1.553 -  ///Combine of two maps using an STL (binary) functor.
   1.554 -  ///
   1.555 -  ///
   1.556 -  ///This \ref concept::ReadMap "read only map" takes to maps and a
   1.557 -  ///binary functor and returns the composition of
   1.558 -  ///two
   1.559 -  ///given maps unsing the functor. 
   1.560 -  ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
   1.561 -  ///and \c f is of \c F,
   1.562 -  ///then for
   1.563 -  ///\code
   1.564 -  ///  CombineMap<M1,M2,F,V> cm(m1,m2,f);
   1.565 -  ///\endcode
   1.566 -  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
   1.567 -  ///
   1.568 -  ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
   1.569 -  ///The \c M2::Value and \c M1::Value must be convertible to the corresponding
   1.570 -  ///input parameter of \c F and the return type of \c F must be convertible
   1.571 -  ///to \c V.
   1.572 -  ///\todo Check the requirements.
   1.573 -
   1.574 -  template<class M1,class M2,class F,class V = typename F::result_type> 
   1.575 -  class CombineMap
   1.576 -  {
   1.577 -    typename SmartConstReference<M1>::Type m1;
   1.578 -    typename SmartConstReference<M2>::Type m2;
   1.579 -    F f;
   1.580 -  public:
   1.581 -
   1.582 -    typedef True NeedCopy;
   1.583 -    typedef typename M1::Key Key;
   1.584 -    typedef V Value;
   1.585 -
   1.586 -    ///Constructor
   1.587 -
   1.588 -    ///\e
   1.589 -    ///
   1.590 -    CombineMap(const M1 &_m1,const M2 &_m2,const F &_f)
   1.591 -      : m1(_m1), m2(_m2), f(_f) {};
   1.592 -    Value operator[](Key k) const {return f(m1[k],m2[k]);}
   1.593 -  };
   1.594 -  
   1.595 -  ///Returns a \ref CombineMap class
   1.596 -
   1.597 -  ///This function just returns a \ref CombineMap class.
   1.598 -  ///
   1.599 -  ///Only the first template parameter (the value type) must be given.
   1.600 -  ///
   1.601 -  ///For example if \c m1 and \c m2 are both \c double valued maps, then 
   1.602 -  ///\code
   1.603 -  ///combineMap<double>(m1,m2,std::plus<double>)
   1.604 -  ///\endcode
   1.605 -  ///is equivalent with
   1.606 -  ///\code
   1.607 -  ///addMap(m1,m2)
   1.608 -  ///\endcode
   1.609 -  ///
   1.610 -  ///\relates CombineMap
   1.611 -  template<class M1,class M2,class F> 
   1.612 -  inline CombineMap<M1,M2,F> combineMap(const M1 &m1,const M2 &m2,const F &f) 
   1.613 -  {
   1.614 -    return CombineMap<M1,M2,F>(m1,m2,f);
   1.615 -  }
   1.616 -
   1.617 -  ///Negative value of a map
   1.618 -
   1.619 -  ///This \ref concept::ReadMap "read only map" returns the negative
   1.620 -  ///value of the
   1.621 -  ///value returned by the
   1.622 -  ///given map. Its \c Key and \c Value will be inherited from \c M.
   1.623 -  ///The unary \c - operator must be defined for \c Value, of course.
   1.624 -
   1.625 -  template<class M> 
   1.626 -  class NegMap
   1.627 -  {
   1.628 -    typename SmartConstReference<M>::Type m;
   1.629 -  public:
   1.630 -
   1.631 -    typedef True NeedCopy;
   1.632 -    typedef typename M::Key Key;
   1.633 -    typedef typename M::Value Value;
   1.634 -
   1.635 -    ///Constructor
   1.636 -
   1.637 -    ///\e
   1.638 -    ///
   1.639 -    NegMap(const M &_m) : m(_m) {};
   1.640 -    Value operator[](Key k) const {return -m[k];}
   1.641 -  };
   1.642 -  
   1.643 -  ///Returns a \ref NegMap class
   1.644 -
   1.645 -  ///This function just returns a \ref NegMap class.
   1.646 -  ///\relates NegMap
   1.647 -  template<class M> 
   1.648 -  inline NegMap<M> negMap(const M &m) 
   1.649 -  {
   1.650 -    return NegMap<M>(m);
   1.651 -  }
   1.652 -
   1.653 -
   1.654 -  ///Absolute value of a map
   1.655 -
   1.656 -  ///This \ref concept::ReadMap "read only map" returns the absolute value
   1.657 -  ///of the
   1.658 -  ///value returned by the
   1.659 -  ///given map. Its \c Key and \c Value will be inherited
   1.660 -  ///from <tt>M</tt>. <tt>Value</tt>
   1.661 -  ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
   1.662 -  ///operator must be defined for it, of course.
   1.663 -  ///
   1.664 -  ///\bug We need a unified way to handle the situation below:
   1.665 -  ///\code
   1.666 -  ///  struct _UnConvertible {};
   1.667 -  ///  template<class A> inline A t_abs(A a) {return _UnConvertible();}
   1.668 -  ///  template<> inline int t_abs<>(int n) {return abs(n);}
   1.669 -  ///  template<> inline long int t_abs<>(long int n) {return labs(n);}
   1.670 -  ///  template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
   1.671 -  ///  template<> inline float t_abs<>(float n) {return fabsf(n);}
   1.672 -  ///  template<> inline double t_abs<>(double n) {return fabs(n);}
   1.673 -  ///  template<> inline long double t_abs<>(long double n) {return fabsl(n);}
   1.674 -  ///\endcode
   1.675 -  
   1.676 -
   1.677 -  template<class M> 
   1.678 -  class AbsMap
   1.679 -  {
   1.680 -    typename SmartConstReference<M>::Type m;
   1.681 -  public:
   1.682 -
   1.683 -    typedef True NeedCopy;
   1.684 -    typedef typename M::Key Key;
   1.685 -    typedef typename M::Value Value;
   1.686 -
   1.687 -    ///Constructor
   1.688 -
   1.689 -    ///\e
   1.690 -    ///
   1.691 -    AbsMap(const M &_m) : m(_m) {};
   1.692 -    Value operator[](Key k) const {Value tmp=m[k]; return tmp>=0?tmp:-tmp;}
   1.693 -  };
   1.694 -  
   1.695 -  ///Returns a \ref AbsMap class
   1.696 -
   1.697 -  ///This function just returns a \ref AbsMap class.
   1.698 -  ///\relates AbsMap
   1.699 -  template<class M> 
   1.700 -  inline AbsMap<M> absMap(const M &m) 
   1.701 -  {
   1.702 -    return AbsMap<M>(m);
   1.703 -  }
   1.704 -
   1.705 -  ///Converts an STL style functor to a map
   1.706 -
   1.707 -  ///This \ref concept::ReadMap "read only map" returns the value
   1.708 -  ///of a
   1.709 -  ///given map.
   1.710 -  ///
   1.711 -  ///Template parameters \c K and \c V will become its
   1.712 -  ///\c Key and \c Value. They must be given explicitely
   1.713 -  ///because a functor does not provide such typedefs.
   1.714 -  ///
   1.715 -  ///Parameter \c F is the type of the used functor.
   1.716 -  
   1.717 -
   1.718 -  template<class K,class V,class F> 
   1.719 -  class FunctorMap
   1.720 -  {
   1.721 -    const F &f;
   1.722 -  public:
   1.723 -
   1.724 -    typedef True NeedCopy;
   1.725 -    typedef K Key;
   1.726 -    typedef V Value;
   1.727 -
   1.728 -    ///Constructor
   1.729 -
   1.730 -    ///\e
   1.731 -    ///
   1.732 -    FunctorMap(const F &_f) : f(_f) {};
   1.733 -    Value operator[](Key k) const {return f(k);}
   1.734 -  };
   1.735 -  
   1.736 -  ///Returns a \ref FunctorMap class
   1.737 -
   1.738 -  ///This function just returns a \ref FunctorMap class.
   1.739 -  ///
   1.740 -  ///The third template parameter isn't necessary to be given.
   1.741 -  ///\relates FunctorMap
   1.742 -  template<class K,class V, class F>
   1.743 -  inline FunctorMap<K,V,F> functorMap(const F &f) 
   1.744 -  {
   1.745 -    return FunctorMap<K,V,F>(f);
   1.746 -  }
   1.747 -
   1.748 -  ///Converts a map to an STL style (unary) functor
   1.749 -
   1.750 -  ///This class Converts a map to an STL style (unary) functor.
   1.751 -  ///that is it provides an <tt>operator()</tt> to read its values.
   1.752 -  ///
   1.753 -  ///For the sake of convenience it also works as
   1.754 -  ///a ususal \ref concept::ReadMap "readable map", i.e
   1.755 -  ///<tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
   1.756 -
   1.757 -  template<class M> 
   1.758 -  class MapFunctor
   1.759 -  {
   1.760 -    typename SmartConstReference<M>::Type m;
   1.761 -  public:
   1.762 -
   1.763 -    typedef True NeedCopy;
   1.764 -    typedef typename M::Key argument_type;
   1.765 -    typedef typename M::Value result_type;
   1.766 -    typedef typename M::Key Key;
   1.767 -    typedef typename M::Value Value;
   1.768 -
   1.769 -    ///Constructor
   1.770 -
   1.771 -    ///\e
   1.772 -    ///
   1.773 -    MapFunctor(const M &_m) : m(_m) {};
   1.774 -    ///Returns a value of the map
   1.775 -    
   1.776 -    ///\e
   1.777 -    ///
   1.778 -    Value operator()(Key k) const {return m[k];}
   1.779 -    ///\e
   1.780 -    ///
   1.781 -    Value operator[](Key k) const {return m[k];}
   1.782 -  };
   1.783 -  
   1.784 -  ///Returns a \ref MapFunctor class
   1.785 -
   1.786 -  ///This function just returns a \ref MapFunctor class.
   1.787 -  ///\relates MapFunctor
   1.788 -  template<class M> 
   1.789 -  inline MapFunctor<M> mapFunctor(const M &m) 
   1.790 -  {
   1.791 -    return MapFunctor<M>(m);
   1.792 -  }
   1.793 -
   1.794 -
   1.795 -  ///Apply all map setting operations to two maps
   1.796 -
   1.797 -  ///This map has two \ref concept::WriteMap "writable map"
   1.798 -  ///parameters and each write request will be passed to both of them.
   1.799 -  ///If \c M1 is also \ref concept::ReadMap "readable",
   1.800 -  ///then the read operations will return the
   1.801 -  ///corresponding values of \c M1.
   1.802 -  ///
   1.803 -  ///The \c Key and \c Value will be inherited from \c M1.
   1.804 -  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
   1.805 -
   1.806 -  template<class M1,class M2> 
   1.807 -  class ForkMap
   1.808 -  {
   1.809 -    typename SmartConstReference<M1>::Type m1;
   1.810 -    typename SmartConstReference<M2>::Type m2;
   1.811 -  public:
   1.812 -
   1.813 -    typedef True NeedCopy;
   1.814 -    typedef typename M1::Key Key;
   1.815 -    typedef typename M1::Value Value;
   1.816 -
   1.817 -    ///Constructor
   1.818 -
   1.819 -    ///\e
   1.820 -    ///
   1.821 -    ForkMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   1.822 -    Value operator[](Key k) const {return m1[k];}
   1.823 -    void set(Key k,const Value &v) {m1.set(k,v); m2.set(k,v);}
   1.824 -  };
   1.825 -  
   1.826 -  ///Returns an \ref ForkMap class
   1.827 -
   1.828 -  ///This function just returns an \ref ForkMap class.
   1.829 -  ///\todo How to call these type of functions?
   1.830 -  ///
   1.831 -  ///\relates ForkMap
   1.832 -  ///\todo Wrong scope in Doxygen when \c \\relates is used
   1.833 -  template<class M1,class M2> 
   1.834 -  inline ForkMap<M1,M2> forkMap(const M1 &m1,const M2 &m2) 
   1.835 -  {
   1.836 -    return ForkMap<M1,M2>(m1,m2);
   1.837 -  }
   1.838 -
   1.839 -  /// @}
   1.840 -  
   1.841 -}
   1.842 -
   1.843 -
   1.844 -#endif // LEMON_MAPS_H