src/lemon/radix_heap.h
changeset 1435 8e85e6bbefdf
parent 1434 d8475431bbbb
child 1436 e0beb94d08bf
     1.1 --- a/src/lemon/radix_heap.h	Sat May 21 21:04:57 2005 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,412 +0,0 @@
     1.4 -/* -*- C++ -*-
     1.5 - * src/lemon/radix_heap.h - Part of LEMON, a generic C++ optimization library
     1.6 - *
     1.7 - * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
     1.9 - *
    1.10 - * Permission to use, modify and distribute this software is granted
    1.11 - * provided that this copyright notice appears in all copies. For
    1.12 - * precise terms see the accompanying LICENSE file.
    1.13 - *
    1.14 - * This software is provided "AS IS" with no warranty of any kind,
    1.15 - * express or implied, and with no claim as to its suitability for any
    1.16 - * purpose.
    1.17 - *
    1.18 - */
    1.19 -
    1.20 -#ifndef LEMON_RADIX_HEAP_H
    1.21 -#define LEMON_RADIX_HEAP_H
    1.22 -
    1.23 -///\ingroup auxdat
    1.24 -///\file
    1.25 -///\brief Radix Heap implementation.
    1.26 -
    1.27 -#include <vector>
    1.28 -#include <lemon/error.h>
    1.29 -
    1.30 -namespace lemon {
    1.31 -
    1.32 -  /// \addtogroup auxdat
    1.33 -  /// @{
    1.34 -
    1.35 -  /// \brief Exception thrown by RadixHeap.
    1.36 -  ///  
    1.37 -  /// This Exception is thrown when a smaller priority
    1.38 -  /// is inserted into the \e RadixHeap then the last time erased.
    1.39 -  /// \see RadixHeap
    1.40 -  /// \author Balazs Dezso
    1.41 -
    1.42 -  class UnderFlowPriorityError : public RuntimeError {
    1.43 -  public:
    1.44 -    virtual const char* exceptionName() const {
    1.45 -      return "lemon::UnderFlowPriorityError";
    1.46 -    }  
    1.47 -  };
    1.48 -
    1.49 -  /// \brief A Radix Heap implementation.
    1.50 -  ///
    1.51 -  /// This class implements the \e radix \e heap data structure. A \e heap
    1.52 -  /// is a data structure for storing items with specified values called \e
    1.53 -  /// priorities in such a way that finding the item with minimum priority is
    1.54 -  /// efficient. This heap type can store only items with \e int priority.
    1.55 -  /// In a heap one can change the priority of an item, add or erase an 
    1.56 -  /// item, but the priority cannot be decreased under the last removed 
    1.57 -  /// item's priority.
    1.58 -  ///
    1.59 -  /// \param _Item Type of the items to be stored.  
    1.60 -  /// \param _ItemIntMap A read and writable Item int map, used internally
    1.61 -  /// to handle the cross references.
    1.62 -  ///
    1.63 -  /// \see BinHeap
    1.64 -  /// \see Dijkstra
    1.65 -  /// \author Balazs Dezso
    1.66 -
    1.67 -  template <typename _Item, typename _ItemIntMap>
    1.68 -  class RadixHeap {
    1.69 -
    1.70 -  public:
    1.71 -    typedef _Item Item;
    1.72 -    typedef int Prio;
    1.73 -    typedef _ItemIntMap ItemIntMap;
    1.74 -
    1.75 -    /// \brief Type to represent the items states.
    1.76 -    ///
    1.77 -    /// Each Item element have a state associated to it. It may be "in heap",
    1.78 -    /// "pre heap" or "post heap". The latter two are indifferent from the
    1.79 -    /// heap's point of view, but may be useful to the user.
    1.80 -    ///
    1.81 -    /// The ItemIntMap \e should be initialized in such way that it maps
    1.82 -    /// PRE_HEAP (-1) to any element to be put in the heap...
    1.83 -    enum state_enum {
    1.84 -      IN_HEAP = 0,
    1.85 -      PRE_HEAP = -1,
    1.86 -      POST_HEAP = -2
    1.87 -    };
    1.88 -
    1.89 -  private:
    1.90 -    
    1.91 -    struct RadixItem {
    1.92 -      int prev, next, box;
    1.93 -      Item item;
    1.94 -      int prio;
    1.95 -      RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
    1.96 -    };
    1.97 -
    1.98 -    struct RadixBox {
    1.99 -      int first;
   1.100 -      int min, size;
   1.101 -      RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
   1.102 -    };
   1.103 -
   1.104 -    std::vector<RadixItem> data;
   1.105 -    std::vector<RadixBox> boxes;
   1.106 -
   1.107 -    ItemIntMap &iim;
   1.108 -
   1.109 -
   1.110 -  public:
   1.111 -    /// \brief The constructor.
   1.112 -    ///
   1.113 -    /// The constructor.
   1.114 -    /// \param _iim should be given to the constructor, since it is used
   1.115 -    /// internally to handle the cross references. The value of the map
   1.116 -    /// should be PRE_HEAP (-1) for each element.
   1.117 -    explicit RadixHeap(ItemIntMap &_iim) : iim(_iim) {
   1.118 -      boxes.push_back(RadixBox(0, 1));
   1.119 -      boxes.push_back(RadixBox(1, 1));
   1.120 -    }
   1.121 -
   1.122 -    /// \brief The constructor.
   1.123 -    ///
   1.124 -    /// The constructor.
   1.125 -    ///
   1.126 -    /// \param _iim It should be given to the constructor, since it is used
   1.127 -    /// internally to handle the cross references. The value of the map
   1.128 -    /// should be PRE_HEAP (-1) for each element.
   1.129 -    ///
   1.130 -    /// \param capacity It determines the initial capacity of the heap. 
   1.131 -    RadixHeap(ItemIntMap &_iim, int capacity) : iim(_iim) {
   1.132 -      boxes.push_back(RadixBox(0, 1));
   1.133 -      boxes.push_back(RadixBox(1, 1));
   1.134 -      while (upper(boxes.back(), capacity)) {
   1.135 -	extend();
   1.136 -      }
   1.137 -    }
   1.138 -
   1.139 -    /// The number of items stored in the heap.
   1.140 -    ///
   1.141 -    /// \brief Returns the number of items stored in the heap.
   1.142 -    int size() const { return data.size(); }
   1.143 -    /// \brief Checks if the heap stores no items.
   1.144 -    ///
   1.145 -    /// Returns \c true if and only if the heap stores no items.
   1.146 -    bool empty() const { return data.empty(); }
   1.147 -
   1.148 -  private:
   1.149 -
   1.150 -    bool upper(int box, Prio prio) {
   1.151 -      return prio < boxes[box].min;
   1.152 -    }
   1.153 -
   1.154 -    bool lower(int box, Prio prio) {
   1.155 -      return prio >= boxes[box].min + boxes[box].size;
   1.156 -    }
   1.157 -
   1.158 -    /// \brief Remove item from the box list.
   1.159 -    void remove(int index) {
   1.160 -      if (data[index].prev >= 0) {
   1.161 -	data[data[index].prev].next = data[index].next;
   1.162 -      } else {
   1.163 -	boxes[data[index].box].first = data[index].next;
   1.164 -      }
   1.165 -      if (data[index].next >= 0) {
   1.166 -	data[data[index].next].prev = data[index].prev;
   1.167 -      }
   1.168 -    }
   1.169 -
   1.170 -    /// \brief Insert item into the box list.
   1.171 -    void insert(int box, int index) {
   1.172 -      if (boxes[box].first == -1) {
   1.173 -	boxes[box].first = index;
   1.174 -	data[index].next = data[index].prev = -1;
   1.175 -      } else {
   1.176 -	data[index].next = boxes[box].first;
   1.177 -	data[boxes[box].first].prev = index;
   1.178 -	data[index].prev = -1;
   1.179 -	boxes[box].first = index;
   1.180 -      }
   1.181 -      data[index].box = box;
   1.182 -    }
   1.183 -
   1.184 -    /// \brief Add a new box to the box list.
   1.185 -    void extend() {
   1.186 -      int min = boxes.back().min + boxes.back().size;
   1.187 -      int size = 2 * boxes.back().size;
   1.188 -      boxes.push_back(RadixBox(min, size));
   1.189 -    }
   1.190 -
   1.191 -    /// \brief Move an item up into the proper box.
   1.192 -    void bubble_up(int index) {
   1.193 -      if (!lower(data[index].box, data[index].prio)) return;
   1.194 -      remove(index);
   1.195 -      int box = findUp(data[index].box, data[index].prio);
   1.196 -      insert(box, index);      
   1.197 -    }
   1.198 -
   1.199 -    /// \brief Find up the proper box for the item with the given prio.
   1.200 -    int findUp(int start, int prio) {
   1.201 -      while (lower(start, prio)) {
   1.202 -	if (++start == (int)boxes.size()) {
   1.203 -	  extend();
   1.204 -	}
   1.205 -      }
   1.206 -      return start;
   1.207 -    }
   1.208 -
   1.209 -    /// \brief Move an item down into the proper box.
   1.210 -    void bubble_down(int index) {
   1.211 -      if (!upper(data[index].box, data[index].prio)) return;
   1.212 -      remove(index);
   1.213 -      int box = findDown(data[index].box, data[index].prio);
   1.214 -      insert(box, index);
   1.215 -    }
   1.216 -
   1.217 -    /// \brief Find up the proper box for the item with the given prio.
   1.218 -    int findDown(int start, int prio) {
   1.219 -      while (upper(start, prio)) {
   1.220 -	if (--start < 0) throw UnderFlowPriorityError();
   1.221 -      }
   1.222 -      return start;
   1.223 -    }
   1.224 -
   1.225 -    /// \brief Find the first not empty box.
   1.226 -    int findFirst() {
   1.227 -      int first = 0;
   1.228 -      while (boxes[first].first == -1) ++first;
   1.229 -      return first;
   1.230 -    }
   1.231 -
   1.232 -    /// \brief Gives back the minimal prio of the box.
   1.233 -    int minValue(int box) {
   1.234 -      int min = data[boxes[box].first].prio;
   1.235 -      for (int k = boxes[box].first; k != -1; k = data[k].next) {
   1.236 -	if (data[k].prio < min) min = data[k].prio;
   1.237 -      }
   1.238 -      return min;
   1.239 -    }
   1.240 -
   1.241 -    /// \brief Rearrange the items of the heap and makes the 
   1.242 -    /// first box not empty.
   1.243 -    void moveDown() {
   1.244 -      int box = findFirst();
   1.245 -      if (box == 0) return;
   1.246 -      int min = minValue(box);
   1.247 -      for (int i = 0; i <= box; ++i) {
   1.248 -	boxes[i].min = min;
   1.249 -	min += boxes[i].size;
   1.250 -      }
   1.251 -      int curr = boxes[box].first, next;
   1.252 -      while (curr != -1) {
   1.253 -	next = data[curr].next;
   1.254 -	bubble_down(curr);
   1.255 -	curr = next;
   1.256 -      }      
   1.257 -    }
   1.258 -
   1.259 -    void relocate_last(int index) {
   1.260 -      if (index != (int)data.size() - 1) {
   1.261 -	data[index] = data.back();
   1.262 -	if (data[index].prev != -1) {
   1.263 -	  data[data[index].prev].next = index;
   1.264 -	} else {
   1.265 -	  boxes[data[index].box].first = index;
   1.266 -	}
   1.267 -	if (data[index].next != -1) {
   1.268 -	  data[data[index].next].prev = index;
   1.269 -	}
   1.270 -	iim[data[index].item] = index;
   1.271 -      }
   1.272 -      data.pop_back();
   1.273 -    }
   1.274 -
   1.275 -  public:
   1.276 -
   1.277 -    /// \brief Insert an item into the heap with the given heap.
   1.278 -    ///    
   1.279 -    /// Adds \c i to the heap with priority \c p. 
   1.280 -    /// \param i The item to insert.
   1.281 -    /// \param p The priority of the item.
   1.282 -    void push(const Item &i, const Prio &p) {
   1.283 -      int n = data.size();
   1.284 -      iim.set(i, n);
   1.285 -      data.push_back(RadixItem(i, p));
   1.286 -      while (lower(boxes.size() - 1, p)) {
   1.287 -	extend();
   1.288 -      }
   1.289 -      int box = findDown(boxes.size() - 1, p);
   1.290 -      insert(box, n);
   1.291 -    }
   1.292 -
   1.293 -    /// \brief Returns the item with minimum priority.
   1.294 -    ///
   1.295 -    /// This method returns the item with minimum priority.  
   1.296 -    /// \pre The heap must be nonempty.  
   1.297 -    Item top() const {
   1.298 -      const_cast<RadixHeap<Item, ItemIntMap>*>(this)->moveDown();
   1.299 -      return data[boxes[0].first].item;
   1.300 -    }
   1.301 -
   1.302 -    /// \brief Returns the minimum priority.
   1.303 -    ///
   1.304 -    /// It returns the minimum priority.
   1.305 -    /// \pre The heap must be nonempty.
   1.306 -    Prio prio() const {
   1.307 -      const_cast<RadixHeap<Item, ItemIntMap>*>(this)->moveDown();
   1.308 -      return data[boxes[0].first].prio;
   1.309 -     }
   1.310 -
   1.311 -    /// \brief Deletes the item with minimum priority.
   1.312 -    ///
   1.313 -    /// This method deletes the item with minimum priority.
   1.314 -    /// \pre The heap must be non-empty.  
   1.315 -    void pop() {
   1.316 -      moveDown();
   1.317 -      int index = boxes[0].first;
   1.318 -      iim[data[index].item] = POST_HEAP;
   1.319 -      remove(index);
   1.320 -      relocate_last(index);
   1.321 -    }
   1.322 -
   1.323 -    /// \brief Deletes \c i from the heap.
   1.324 -    ///
   1.325 -    /// This method deletes item \c i from the heap, if \c i was
   1.326 -    /// already stored in the heap.
   1.327 -    /// \param i The item to erase. 
   1.328 -    void erase(const Item &i) {
   1.329 -      int index = iim[i];
   1.330 -      iim[i] = POST_HEAP;
   1.331 -      remove(index);
   1.332 -      relocate_last(index);
   1.333 -   }
   1.334 -
   1.335 -    /// \brief Returns the priority of \c i.
   1.336 -    ///
   1.337 -    /// This function returns the priority of item \c i.  
   1.338 -    /// \pre \c i must be in the heap.
   1.339 -    /// \param i The item.
   1.340 -    Prio operator[](const Item &i) const {
   1.341 -      int idx = iim[i];
   1.342 -      return data[idx].prio;
   1.343 -    }
   1.344 -
   1.345 -    /// \brief \c i gets to the heap with priority \c p independently 
   1.346 -    /// if \c i was already there.
   1.347 -    ///
   1.348 -    /// This method calls \ref push(\c i, \c p) if \c i is not stored
   1.349 -    /// in the heap and sets the priority of \c i to \c p otherwise.
   1.350 -    /// It may throw an \e UnderFlowPriorityException. 
   1.351 -    /// \param i The item.
   1.352 -    /// \param p The priority.
   1.353 -    void set(const Item &i, const Prio &p) {
   1.354 -      int idx = iim[i];
   1.355 -      if( idx < 0 ) {
   1.356 -	push(i, p);
   1.357 -      }
   1.358 -      else if( p >= data[idx].prio ) {
   1.359 -	data[idx].prio = p;
   1.360 -	bubble_up(idx);
   1.361 -      } else {
   1.362 -	data[idx].prio = p;
   1.363 -	bubble_down(idx);
   1.364 -      }
   1.365 -    }
   1.366 -
   1.367 -
   1.368 -    /// \brief Decreases the priority of \c i to \c p.
   1.369 -    ///
   1.370 -    /// This method decreases the priority of item \c i to \c p.
   1.371 -    /// \pre \c i must be stored in the heap with priority at least \c p, and
   1.372 -    /// \c should be greater then the last removed item's priority.
   1.373 -    /// \param i The item.
   1.374 -    /// \param p The priority.
   1.375 -    void decrease(const Item &i, const Prio &p) {
   1.376 -      int idx = iim[i];
   1.377 -      data[idx].prio = p;
   1.378 -      bubble_down(idx);
   1.379 -    }
   1.380 -
   1.381 -    /// \brief Increases the priority of \c i to \c p.
   1.382 -    ///
   1.383 -    /// This method sets the priority of item \c i to \c p. 
   1.384 -    /// \pre \c i must be stored in the heap with priority at most \c
   1.385 -    /// p relative to \c Compare.
   1.386 -    /// \param i The item.
   1.387 -    /// \param p The priority.
   1.388 -    void increase(const Item &i, const Prio &p) {
   1.389 -      int idx = iim[i];
   1.390 -      data[idx].prio = p;
   1.391 -      bubble_up(idx);
   1.392 -    }
   1.393 -
   1.394 -    /// \brief Returns if \c item is in, has already been in, or has 
   1.395 -    /// never been in the heap.
   1.396 -    ///
   1.397 -    /// This method returns PRE_HEAP if \c item has never been in the
   1.398 -    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   1.399 -    /// otherwise. In the latter case it is possible that \c item will
   1.400 -    /// get back to the heap again.
   1.401 -    /// \param i The item.
   1.402 -    state_enum state(const Item &i) const {
   1.403 -      int s = iim[i];
   1.404 -      if( s >= 0 ) s = 0;
   1.405 -      return state_enum(s);
   1.406 -    }
   1.407 -
   1.408 -  }; // class RadixHeap
   1.409 -
   1.410 -
   1.411 -  ///@}
   1.412 -
   1.413 -} // namespace lemon
   1.414 -
   1.415 -#endif // LEMON_RADIX_HEAP_H