src/lemon/unionfind.h
changeset 1435 8e85e6bbefdf
parent 1434 d8475431bbbb
child 1436 e0beb94d08bf
     1.1 --- a/src/lemon/unionfind.h	Sat May 21 21:04:57 2005 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,724 +0,0 @@
     1.4 -/* -*- C++ -*-
     1.5 - * src/lemon/unionfind.h - Part of LEMON, a generic C++ optimization library
     1.6 - *
     1.7 - * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
     1.9 - *
    1.10 - * Permission to use, modify and distribute this software is granted
    1.11 - * provided that this copyright notice appears in all copies. For
    1.12 - * precise terms see the accompanying LICENSE file.
    1.13 - *
    1.14 - * This software is provided "AS IS" with no warranty of any kind,
    1.15 - * express or implied, and with no claim as to its suitability for any
    1.16 - * purpose.
    1.17 - *
    1.18 - */
    1.19 -
    1.20 -#ifndef LEMON_UNION_FIND_H
    1.21 -#define LEMON_UNION_FIND_H
    1.22 -
    1.23 -//!\ingroup auxdat
    1.24 -//!\file
    1.25 -//!\brief Union-Find data structures.
    1.26 -//!
    1.27 -//!\bug unionfind_test.cc doesn't work with Intel compiler. It compiles but
    1.28 -//!fails to run (Segmentation fault).
    1.29 -
    1.30 -
    1.31 -#include <vector>
    1.32 -#include <list>
    1.33 -#include <utility>
    1.34 -#include <algorithm>
    1.35 -
    1.36 -#include <lemon/invalid.h>
    1.37 -
    1.38 -namespace lemon {
    1.39 -
    1.40 -  //! \addtogroup auxdat
    1.41 -  //! @{
    1.42 -
    1.43 -  /**
    1.44 -   * \brief A \e Union-Find data structure implementation
    1.45 -   *
    1.46 -   * The class implements the \e Union-Find data structure. 
    1.47 -   * The union operation uses rank heuristic, while
    1.48 -   * the find operation uses path compression.
    1.49 -   * This is a very simple but efficient implementation, providing 
    1.50 -   * only four methods: join (union), find, insert and size.
    1.51 -   * For more features see the \ref UnionFindEnum class.
    1.52 -   *
    1.53 -   * It is primarily used in Kruskal algorithm for finding minimal
    1.54 -   * cost spanning tree in a graph.
    1.55 -   * \sa kruskal()
    1.56 -   *
    1.57 -   * \pre The elements are automatically added only if the map 
    1.58 -   * given to the constructor was filled with -1's. Otherwise you
    1.59 -   * need to add all the elements by the \ref insert() method.
    1.60 -   * \bug It is not clear what the constructor parameter is used for.
    1.61 -   */
    1.62 -
    1.63 -  template <typename T, typename TIntMap>
    1.64 -  class UnionFind {
    1.65 -    
    1.66 -  public:
    1.67 -    typedef T ElementType;
    1.68 -    typedef std::pair<int,int> PairType;
    1.69 -
    1.70 -  private:
    1.71 -    std::vector<PairType> data;
    1.72 -    TIntMap& map;
    1.73 -
    1.74 -  public:
    1.75 -    UnionFind(TIntMap& m) : map(m) {}
    1.76 -
    1.77 -    /**
    1.78 -     * \brief Returns the index of the element's component.
    1.79 -     *
    1.80 -     * The method returns the index of the element's component.
    1.81 -     * This is an integer between zero and the number of inserted elements.
    1.82 -     */
    1.83 -
    1.84 -    int find(T a)
    1.85 -    {
    1.86 -      int comp0 = map[a];
    1.87 -      if (comp0 < 0) {
    1.88 -	return insert(a);
    1.89 -      }
    1.90 -      int comp = comp0;
    1.91 -      int next;
    1.92 -      while ( (next = data[comp].first) != comp) {
    1.93 -	comp = next;
    1.94 -      }
    1.95 -      while ( (next = data[comp0].first) != comp) {
    1.96 -	data[comp0].first = comp;
    1.97 -	comp0 = next;
    1.98 -      }
    1.99 -
   1.100 -      return comp;
   1.101 -    }
   1.102 -
   1.103 -    /**
   1.104 -     * \brief Inserts a new element into the structure.
   1.105 -     *
   1.106 -     * This method inserts a new element into the data structure. 
   1.107 -     *
   1.108 -     * It is not required to use this method:
   1.109 -     * if the map given to the constructor was filled 
   1.110 -     * with -1's then it is called automatically
   1.111 -     * on the first \ref find or \ref join.
   1.112 -     *
   1.113 -     * The method returns the index of the new component.
   1.114 -     */
   1.115 -
   1.116 -    int insert(T a)
   1.117 -    {
   1.118 -      int n = data.size();
   1.119 -      data.push_back(std::make_pair(n, 1));
   1.120 -      map.set(a,n);
   1.121 -      return n;
   1.122 -    }
   1.123 -
   1.124 -    /**
   1.125 -     * \brief Joining the components of element \e a and element \e b.
   1.126 -     *
   1.127 -     * This is the \e union operation of the Union-Find structure. 
   1.128 -     * Joins the component of element \e a and component of
   1.129 -     * element \e b. If \e a and \e b are in the same component then
   1.130 -     * it returns false otherwise it returns true.
   1.131 -     */
   1.132 -
   1.133 -    bool join(T a, T b)
   1.134 -    {
   1.135 -      int ca = find(a);
   1.136 -      int cb = find(b);
   1.137 -
   1.138 -      if ( ca == cb ) 
   1.139 -	return false;
   1.140 -
   1.141 -      if ( data[ca].second > data[cb].second ) {
   1.142 -	data[cb].first = ca;
   1.143 -	data[ca].second += data[cb].second;
   1.144 -      }
   1.145 -      else {
   1.146 -	data[ca].first = cb;
   1.147 -	data[cb].second += data[ca].second;
   1.148 -      }
   1.149 -      return true;
   1.150 -    }
   1.151 -
   1.152 -    /**
   1.153 -     * \brief Returns the size of the component of element \e a.
   1.154 -     *
   1.155 -     * Returns the size of the component of element \e a.
   1.156 -     */
   1.157 -
   1.158 -    int size(T a)
   1.159 -    {
   1.160 -      int ca = find(a);
   1.161 -      return data[ca].second;
   1.162 -    }
   1.163 -
   1.164 -  };
   1.165 -
   1.166 -
   1.167 -
   1.168 -
   1.169 -  /*******************************************************/
   1.170 -
   1.171 -
   1.172 -#ifdef DEVELOPMENT_DOCS
   1.173 -
   1.174 -  /**
   1.175 -   * \brief The auxiliary class for the \ref UnionFindEnum class.
   1.176 -   *
   1.177 -   * In the \ref UnionFindEnum class all components are represented as
   1.178 -   * a std::list. 
   1.179 -   * Items of these lists are UnionFindEnumItem structures.
   1.180 -   *
   1.181 -   * The class has four fields:
   1.182 -   *  - T me - the actual element 
   1.183 -   *  - IIter parent - the parent of the element in the union-find structure
   1.184 -   *  - int size - the size of the component of the element. 
   1.185 -   *            Only valid if the element
   1.186 -   *            is the leader of the component.
   1.187 -   *  - CIter my_class - pointer into the list of components 
   1.188 -   *            pointing to the component of the element.
   1.189 -   *            Only valid if the element is the leader of the component.
   1.190 -   */
   1.191 -
   1.192 -#endif
   1.193 -
   1.194 -  template <typename T>
   1.195 -  struct UnionFindEnumItem {
   1.196 -
   1.197 -    typedef std::list<UnionFindEnumItem> ItemList;
   1.198 -    typedef std::list<ItemList> ClassList;
   1.199 -    typedef typename ItemList::iterator IIter;
   1.200 -    typedef typename ClassList::iterator CIter;
   1.201 -
   1.202 -    T me;
   1.203 -    IIter parent;
   1.204 -    int size;
   1.205 -    CIter my_class;
   1.206 -
   1.207 -    UnionFindEnumItem() {}
   1.208 -    UnionFindEnumItem(const T &_me, CIter _my_class): 
   1.209 -      me(_me), size(1), my_class(_my_class) {}
   1.210 -  };
   1.211 -
   1.212 -
   1.213 -  /**
   1.214 -   * \brief A \e Union-Find data structure implementation which
   1.215 -   * is able to enumerate the components.
   1.216 -   *
   1.217 -   * The class implements a \e Union-Find data structure
   1.218 -   * which is able to enumerate the components and the items in
   1.219 -   * a component. If you don't need this feature then perhaps it's
   1.220 -   * better to use the \ref UnionFind class which is more efficient.
   1.221 -   *
   1.222 -   * The union operation uses rank heuristic, while
   1.223 -   * the find operation uses path compression.
   1.224 -   *
   1.225 -   * \pre You
   1.226 -   * need to add all the elements by the \ref insert() method.
   1.227 -   */
   1.228 -
   1.229 -
   1.230 -  template <typename T, template <typename Item> class Map>
   1.231 -  class UnionFindEnum {
   1.232 -
   1.233 -    typedef std::list<UnionFindEnumItem<T> > ItemList;
   1.234 -    typedef std::list<ItemList> ClassList;
   1.235 -    typedef typename ItemList::iterator IIter;
   1.236 -    typedef typename ItemList::const_iterator IcIter;
   1.237 -    typedef typename ClassList::iterator CIter;
   1.238 -    typedef typename ClassList::const_iterator CcIter;
   1.239 -
   1.240 -  public:
   1.241 -    typedef T ElementType;
   1.242 -    typedef UnionFindEnumItem<T> ItemType;
   1.243 -    typedef Map< IIter > MapType;
   1.244 -
   1.245 -  private:
   1.246 -    MapType& m;
   1.247 -    ClassList classes;
   1.248 -
   1.249 -    IIter _find(IIter a) const {
   1.250 -      IIter comp = a;
   1.251 -      IIter next;
   1.252 -      while( (next = comp->parent) != comp ) {
   1.253 -	comp = next;
   1.254 -      }
   1.255 -
   1.256 -      IIter comp1 = a;
   1.257 -      while( (next = comp1->parent) != comp ) {
   1.258 -	comp1->parent = comp->parent;
   1.259 -	comp1 = next;
   1.260 -      }
   1.261 -      return comp;
   1.262 -    }
   1.263 -
   1.264 -  public:
   1.265 -    UnionFindEnum(MapType& _m) : m(_m) {}
   1.266 -
   1.267 -
   1.268 -    /**
   1.269 -     * \brief Inserts the given element into a new component.
   1.270 -     *
   1.271 -     * This method creates a new component consisting only of the
   1.272 -     * given element.
   1.273 -     */
   1.274 -
   1.275 -    void insert(const T &a)
   1.276 -    {
   1.277 -
   1.278 -
   1.279 -      classes.push_back(ItemList());
   1.280 -      CIter aclass = classes.end();
   1.281 -      --aclass;
   1.282 -
   1.283 -      ItemList &alist = *aclass;
   1.284 -      alist.push_back(ItemType(a, aclass));
   1.285 -      IIter ai = alist.begin();
   1.286 -
   1.287 -      ai->parent = ai;
   1.288 -      m.set(a, ai);
   1.289 -
   1.290 -    }
   1.291 -
   1.292 -    /**
   1.293 -     * \brief Inserts the given element into the component of the others.
   1.294 -     *
   1.295 -     * This methods inserts the element \e a into the component of the
   1.296 -     * element \e comp. 
   1.297 -     */
   1.298 -
   1.299 -    void insert(const T &a, const T &comp) {
   1.300 -      
   1.301 -      IIter clit = _find(m[comp]);
   1.302 -      ItemList &c = *clit->my_class;
   1.303 -      c.push_back(ItemType(a,0));
   1.304 -      IIter ai = c.end();
   1.305 -      --ai;
   1.306 -      ai->parent = clit;
   1.307 -      m.set(a, ai);
   1.308 -      ++clit->size;
   1.309 -    }
   1.310 -
   1.311 -
   1.312 -    /**
   1.313 -     * \brief Finds the leader of the component of the given element.
   1.314 -     *
   1.315 -     * The method returns the leader of the component of the given element.
   1.316 -     */
   1.317 -
   1.318 -    T find(const T &a) const {
   1.319 -      return _find(m[a])->me;
   1.320 -    }
   1.321 -
   1.322 -
   1.323 -    /**
   1.324 -     * \brief Joining the component of element \e a and element \e b.
   1.325 -     *
   1.326 -     * This is the \e union operation of the Union-Find structure. 
   1.327 -     * Joins the component of element \e a and component of
   1.328 -     * element \e b. If \e a and \e b are in the same component then
   1.329 -     * returns false else returns true.
   1.330 -     */
   1.331 -
   1.332 -    bool join(T a, T b) {
   1.333 -
   1.334 -      IIter ca = _find(m[a]);
   1.335 -      IIter cb = _find(m[b]);
   1.336 -
   1.337 -      if ( ca == cb ) {
   1.338 -	return false;
   1.339 -      }
   1.340 -
   1.341 -      if ( ca->size > cb->size ) {
   1.342 -
   1.343 -	cb->parent = ca->parent;
   1.344 -	ca->size += cb->size;
   1.345 -	
   1.346 -	ItemList &alist = *ca->my_class;
   1.347 -	alist.splice(alist.end(),*cb->my_class);
   1.348 -
   1.349 -	classes.erase(cb->my_class);
   1.350 -	cb->my_class = 0;
   1.351 -      }
   1.352 -      else {
   1.353 -
   1.354 -	ca->parent = cb->parent;
   1.355 -	cb->size += ca->size;
   1.356 -	
   1.357 -	ItemList &blist = *cb->my_class;
   1.358 -	blist.splice(blist.end(),*ca->my_class);
   1.359 -
   1.360 -	classes.erase(ca->my_class);
   1.361 -	ca->my_class = 0;
   1.362 -      }
   1.363 -
   1.364 -      return true;
   1.365 -    }
   1.366 -
   1.367 -
   1.368 -    /**
   1.369 -     * \brief Returns the size of the component of element \e a.
   1.370 -     *
   1.371 -     * Returns the size of the component of element \e a.
   1.372 -     */
   1.373 -
   1.374 -    int size(const T &a) const {
   1.375 -      return _find(m[a])->size;
   1.376 -    }
   1.377 -
   1.378 -
   1.379 -    /**
   1.380 -     * \brief Splits up the component of the element. 
   1.381 -     *
   1.382 -     * Splitting the component of the element into sigleton
   1.383 -     * components (component of size one).
   1.384 -     */
   1.385 -
   1.386 -    void split(const T &a) {
   1.387 -
   1.388 -      IIter ca = _find(m[a]);
   1.389 - 
   1.390 -      if ( ca->size == 1 )
   1.391 -	return;
   1.392 -      
   1.393 -      CIter aclass = ca->my_class;
   1.394 -
   1.395 -      for(IIter curr = ca; ++curr != aclass->end(); curr=ca) {
   1.396 -	classes.push_back(ItemList());
   1.397 -	CIter nl = --classes.end();
   1.398 -	nl->splice(nl->end(), *aclass, curr);
   1.399 -
   1.400 -	curr->size=1;
   1.401 -	curr->parent=curr;
   1.402 -	curr->my_class = nl;
   1.403 -      }
   1.404 -
   1.405 -      ca->size=1;
   1.406 -      return;
   1.407 -    }
   1.408 -
   1.409 -
   1.410 -    /**
   1.411 -     * \brief Sets the given element to the leader element of its component.
   1.412 -     *
   1.413 -     * Sets the given element to the leader element of its component.
   1.414 -     */
   1.415 -
   1.416 -    void makeRep(const T &a) {
   1.417 -
   1.418 -      IIter ia = m[a];
   1.419 -      IIter la = _find(ia);
   1.420 -      if (la == ia) return;
   1.421 -
   1.422 -      ia->my_class = la->my_class;
   1.423 -      la->my_class = 0;
   1.424 -
   1.425 -      ia->size = la->size;
   1.426 -
   1.427 -      CIter l = ia->my_class;
   1.428 -      l->splice(l->begin(),*l,ia);
   1.429 -
   1.430 -      ia->parent = ia;
   1.431 -      la->parent = ia;
   1.432 -    }
   1.433 -
   1.434 -    /**
   1.435 -     * \brief Moves the given element to an other component.
   1.436 -     *
   1.437 -     * This method moves the element \e a from its component
   1.438 -     * to the component of \e comp.
   1.439 -     * If \e a and \e comp are in the same component then
   1.440 -     * it returns false otherwise it returns true.
   1.441 -     */
   1.442 -
   1.443 -    bool move(const T &a, const T &comp) {
   1.444 -
   1.445 -      IIter ai = m[a];
   1.446 -      IIter lai = _find(ai);
   1.447 -      IIter clit = _find(m[comp]);
   1.448 -
   1.449 -      if (lai == clit)
   1.450 -	return false;
   1.451 -
   1.452 -      ItemList &cl = *clit->my_class,
   1.453 -	&al = *lai->my_class;
   1.454 -
   1.455 -      bool is_leader = (lai == ai);
   1.456 -      bool singleton = false;
   1.457 -
   1.458 -      if (is_leader) {
   1.459 -	++lai;
   1.460 -      }
   1.461 -
   1.462 -      cl.splice(cl.end(), al, ai);
   1.463 -
   1.464 -      if (is_leader) {
   1.465 -	if (ai->size == 1) {
   1.466 -	  classes.erase(ai->my_class);
   1.467 -	  singleton = true;
   1.468 -	}
   1.469 -	else {
   1.470 -	  lai->size = ai->size; 
   1.471 -	  lai->my_class = ai->my_class;	
   1.472 -	}
   1.473 -      }
   1.474 -      if (!singleton) {
   1.475 -	for (IIter i = lai; i != al.end(); ++i)
   1.476 -	  i->parent = lai;
   1.477 -	--lai->size;
   1.478 -      }
   1.479 -
   1.480 -      ai->parent = clit;
   1.481 -      ai->my_class = 0;
   1.482 -      ++clit->size;
   1.483 -
   1.484 -      return true;
   1.485 -    }
   1.486 -
   1.487 -
   1.488 -    /**
   1.489 -     * \brief Removes the given element from the structure.
   1.490 -     *
   1.491 -     * Removes the given element from the structure.
   1.492 -     *
   1.493 -     * Removes the element from its component and if the component becomes
   1.494 -     * empty then removes that component from the component list.
   1.495 -     */
   1.496 -    void erase(const T &a) {
   1.497 -
   1.498 -      IIter ma = m[a];
   1.499 -      if (ma == 0) return;
   1.500 -
   1.501 -      IIter la = _find(ma);
   1.502 -      if (la == ma) {
   1.503 -	if (ma -> size == 1){
   1.504 -	  classes.erase(ma->my_class);
   1.505 -	  m.set(a,0);
   1.506 -	  return;
   1.507 -	}
   1.508 -	++la;
   1.509 -	la->size = ma->size; 
   1.510 -	la->my_class = ma->my_class;	
   1.511 -      }
   1.512 -
   1.513 -      for (IIter i = la; i != la->my_class->end(); ++i) {
   1.514 -	i->parent = la;
   1.515 -      }
   1.516 -
   1.517 -      la->size--;
   1.518 -      la->my_class->erase(ma);
   1.519 -      m.set(a,0);
   1.520 -    }
   1.521 -
   1.522 -    /**
   1.523 -     * \brief Removes the component of the given element from the structure.
   1.524 -     *
   1.525 -     * Removes the component of the given element from the structure.
   1.526 -     */
   1.527 -
   1.528 -    void eraseClass(const T &a) {
   1.529 -      IIter ma = m[a];
   1.530 -      if (ma == 0) return;
   1.531 -#     ifdef DEBUG
   1.532 -      CIter c = _find(ma)->my_class;
   1.533 -      for (IIter i=c->begin(); i!=c->end(); ++i)
   1.534 -	m.set(i->me, 0);
   1.535 -#     endif
   1.536 -      classes.erase(_find(ma)->my_class);
   1.537 -    }
   1.538 -
   1.539 -
   1.540 -    class ClassIt {
   1.541 -      friend class UnionFindEnum;
   1.542 -
   1.543 -      CcIter i;
   1.544 -    public:
   1.545 -      ClassIt(Invalid): i(0) {}
   1.546 -      ClassIt() {}
   1.547 -      
   1.548 -      operator const T& () const { 
   1.549 -	ItemList const &ll = *i;
   1.550 -	return (ll.begin())->me; }
   1.551 -      bool operator == (ClassIt it) const {
   1.552 -	return (i == it.i);
   1.553 -      }
   1.554 -      bool operator != (ClassIt it) const {
   1.555 -	return (i != it.i);
   1.556 -      }
   1.557 -      bool operator < (ClassIt it) const {
   1.558 -	return (i < it.i);
   1.559 -      }
   1.560 -
   1.561 -      bool valid() const { return i != 0; }
   1.562 -    private:
   1.563 -      void first(const ClassList &l) { i = l.begin(); validate(l); }
   1.564 -      void next(const ClassList &l) {
   1.565 -	++i; 
   1.566 -	validate(l);
   1.567 -      }
   1.568 -      void validate(const ClassList &l) {
   1.569 -	if ( i == l.end() ) 
   1.570 -	  i = 0;
   1.571 -      }
   1.572 -    };
   1.573 -
   1.574 -    /**
   1.575 -     * \brief Sets the iterator to point to the first component.
   1.576 -     * 
   1.577 -     * Sets the iterator to point to the first component.
   1.578 -     *
   1.579 -     * With the \ref first, \ref valid and \ref next methods you can
   1.580 -     * iterate through the components. For example:
   1.581 -     * \code
   1.582 -     * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
   1.583 -     * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
   1.584 -     * UnionFindEnum<Graph::Node, Graph::NodeMap>::ClassIt iter;
   1.585 -     *  for (U.first(iter); U.valid(iter); U.next(iter)) {
   1.586 -     *    // iter is convertible to Graph::Node
   1.587 -     *    cout << iter << endl;
   1.588 -     *  }
   1.589 -     * \endcode
   1.590 -     */
   1.591 -
   1.592 -    ClassIt& first(ClassIt& it) const {
   1.593 -      it.first(classes);
   1.594 -      return it;
   1.595 -    }
   1.596 -
   1.597 -    /**
   1.598 -     * \brief Returns whether the iterator is valid.
   1.599 -     *
   1.600 -     * Returns whether the iterator is valid.
   1.601 -     *
   1.602 -     * With the \ref first, \ref valid and \ref next methods you can
   1.603 -     * iterate through the components. See the example here: \ref first.
   1.604 -     */
   1.605 -
   1.606 -    bool valid(ClassIt const &it) const {
   1.607 -      return it.valid(); 
   1.608 -    }
   1.609 -
   1.610 -    /**
   1.611 -     * \brief Steps the iterator to the next component. 
   1.612 -     *
   1.613 -     * Steps the iterator to the next component.
   1.614 -     *
   1.615 -     * With the \ref first, \ref valid and \ref next methods you can
   1.616 -     * iterate through the components. See the example here: \ref first.
   1.617 -     */
   1.618 -
   1.619 -    ClassIt& next(ClassIt& it) const {
   1.620 -      it.next(classes);
   1.621 -      return it;
   1.622 -    }
   1.623 -
   1.624 -
   1.625 -    class ItemIt {
   1.626 -      friend class UnionFindEnum;
   1.627 -
   1.628 -      IcIter i;
   1.629 -      const ItemList *l;
   1.630 -    public:
   1.631 -      ItemIt(Invalid): i(0) {}
   1.632 -      ItemIt() {}
   1.633 -      
   1.634 -      operator const T& () const { return i->me; }
   1.635 -      bool operator == (ItemIt it) const {
   1.636 -	return (i == it.i);
   1.637 -      }
   1.638 -      bool operator != (ItemIt it) const {
   1.639 -	return (i != it.i);
   1.640 -      }
   1.641 -      bool operator < (ItemIt it) const {
   1.642 -	return (i < it.i);
   1.643 -      }
   1.644 -
   1.645 -      bool valid() const { return i != 0; }
   1.646 -    private:
   1.647 -      void first(const ItemList &il) { l=&il; i = l->begin(); validate(); }
   1.648 -      void next() {
   1.649 -	++i; 
   1.650 -	validate();
   1.651 -      }
   1.652 -      void validate() {
   1.653 -	if ( i == l->end() ) 
   1.654 -	  i = 0;
   1.655 -      }
   1.656 -    };
   1.657 -
   1.658 -
   1.659 -
   1.660 -    /**
   1.661 -     * \brief Sets the iterator to point to the first element of the component.
   1.662 -     * 
   1.663 -     * \anchor first2 
   1.664 -     * Sets the iterator to point to the first element of the component.
   1.665 -     *
   1.666 -     * With the \ref first2 "first", \ref valid2 "valid" 
   1.667 -     * and \ref next2 "next" methods you can
   1.668 -     * iterate through the elements of a component. For example
   1.669 -     * (iterating through the component of the node \e node):
   1.670 -     * \code
   1.671 -     * Graph::Node node = ...;
   1.672 -     * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
   1.673 -     * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
   1.674 -     * UnionFindEnum<Graph::Node, Graph::NodeMap>::ItemIt iiter;
   1.675 -     *   for (U.first(iiter, node); U.valid(iiter); U.next(iiter)) {
   1.676 -     *     // iiter is convertible to Graph::Node
   1.677 -     *     cout << iiter << endl;
   1.678 -     *   }
   1.679 -     * \endcode
   1.680 -     */
   1.681 -    
   1.682 -    ItemIt& first(ItemIt& it, const T& a) const {
   1.683 -      it.first( * _find(m[a])->my_class );
   1.684 -      return it;
   1.685 -    }
   1.686 -
   1.687 -    /**
   1.688 -     * \brief Returns whether the iterator is valid.
   1.689 -     *
   1.690 -     * \anchor valid2
   1.691 -     * Returns whether the iterator is valid.
   1.692 -     *
   1.693 -     * With the \ref first2 "first", \ref valid2 "valid" 
   1.694 -     * and \ref next2 "next" methods you can
   1.695 -     * iterate through the elements of a component.
   1.696 -     * See the example here: \ref first2 "first".
   1.697 -     */
   1.698 -
   1.699 -    bool valid(ItemIt const &it) const {
   1.700 -      return it.valid(); 
   1.701 -    }
   1.702 -
   1.703 -    /**
   1.704 -     * \brief Steps the iterator to the next component. 
   1.705 -     *
   1.706 -     * \anchor next2
   1.707 -     * Steps the iterator to the next component.
   1.708 -     *
   1.709 -     * With the \ref first2 "first", \ref valid2 "valid" 
   1.710 -     * and \ref next2 "next" methods you can
   1.711 -     * iterate through the elements of a component.
   1.712 -     * See the example here: \ref first2 "first".
   1.713 -     */
   1.714 -
   1.715 -    ItemIt& next(ItemIt& it) const {
   1.716 -      it.next();
   1.717 -      return it;
   1.718 -    }
   1.719 -    
   1.720 -  };
   1.721 -
   1.722 -
   1.723 -  //! @}
   1.724 -
   1.725 -} //namespace lemon
   1.726 -
   1.727 -#endif //LEMON_UNION_FIND_H