src/work/jacint/max_flow.h
changeset 615 b6b31b75b522
parent 602 580b329c2a0c
child 631 26819ef1611f
     1.1 --- a/src/work/jacint/max_flow.h	Tue May 11 19:38:00 2004 +0000
     1.2 +++ b/src/work/jacint/max_flow.h	Tue May 11 19:50:21 2004 +0000
     1.3 @@ -1,19 +1,19 @@
     1.4  // -*- C++ -*-
     1.5  
     1.6  /*
     1.7 -  Heuristics: 
     1.8 +  Heuristics:
     1.9    2 phase
    1.10    gap
    1.11    list 'level_list' on the nodes on level i implemented by hand
    1.12    stack 'active' on the active nodes on level i
    1.13    runs heuristic 'highest label' for H1*n relabels
    1.14    runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
    1.15 - 
    1.16 +
    1.17    Parameters H0 and H1 are initialized to 20 and 1.
    1.18  
    1.19    Constructors:
    1.20  
    1.21 -  Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if 
    1.22 +  Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if
    1.23    FlowMap is not constant zero, and should be true if it is
    1.24  
    1.25    Members:
    1.26 @@ -22,13 +22,13 @@
    1.27  
    1.28    Num flowValue() : returns the value of a maximum flow
    1.29  
    1.30 -  void minMinCut(CutMap& M) : sets M to the characteristic vector of the 
    1.31 +  void minMinCut(CutMap& M) : sets M to the characteristic vector of the
    1.32    minimum min cut. M should be a map of bools initialized to false. ??Is it OK?
    1.33  
    1.34 -  void maxMinCut(CutMap& M) : sets M to the characteristic vector of the 
    1.35 +  void maxMinCut(CutMap& M) : sets M to the characteristic vector of the
    1.36    maximum min cut. M should be a map of bools initialized to false.
    1.37  
    1.38 -  void minCut(CutMap& M) : sets M to the characteristic vector of 
    1.39 +  void minCut(CutMap& M) : sets M to the characteristic vector of
    1.40    a min cut. M should be a map of bools initialized to false.
    1.41  
    1.42  */
    1.43 @@ -36,9 +36,6 @@
    1.44  #ifndef HUGO_MAX_FLOW_H
    1.45  #define HUGO_MAX_FLOW_H
    1.46  
    1.47 -#define H0 20
    1.48 -#define H1 1
    1.49 -
    1.50  #include <vector>
    1.51  #include <queue>
    1.52  #include <stack>
    1.53 @@ -50,18 +47,20 @@
    1.54  #include <for_each_macros.h>
    1.55  
    1.56  /// \file
    1.57 -/// \brief Dimacs file format reader.
    1.58 +/// \brief Maximum flows.
    1.59 +/// \ingroup galgs
    1.60  
    1.61  namespace hugo {
    1.62  
    1.63  
    1.64    //  ///\author Marton Makai, Jacint Szabo
    1.65    /// A class for computing max flows and related quantities.
    1.66 -  template <typename Graph, typename Num, 
    1.67 -	    typename CapMap=typename Graph::template EdgeMap<Num>, 
    1.68 +  /// \ingroup galgs
    1.69 +  template <typename Graph, typename Num,
    1.70 +	    typename CapMap=typename Graph::template EdgeMap<Num>,
    1.71              typename FlowMap=typename Graph::template EdgeMap<Num> >
    1.72    class MaxFlow {
    1.73 -    
    1.74 +  protected:
    1.75      typedef typename Graph::Node Node;
    1.76      typedef typename Graph::NodeIt NodeIt;
    1.77      typedef typename Graph::OutEdgeIt OutEdgeIt;
    1.78 @@ -74,7 +73,7 @@
    1.79      const Graph* g;
    1.80      Node s;
    1.81      Node t;
    1.82 -    const CapMap* capacity;  
    1.83 +    const CapMap* capacity;
    1.84      FlowMap* flow;
    1.85      int n;      //the number of nodes of G
    1.86      typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    1.87 @@ -83,98 +82,107 @@
    1.88      //typedef typename ResGW::template NodeMap<bool> ReachedMap;
    1.89      typedef typename Graph::template NodeMap<int> ReachedMap;
    1.90      ReachedMap level;
    1.91 -    //level works as a bool map in augmenting path algorithms 
    1.92 +    //level works as a bool map in augmenting path algorithms
    1.93      //and is used by bfs for storing reached information.
    1.94      //In preflow, it shows levels of nodes.
    1.95 -    //typename Graph::template NodeMap<int> level;    
    1.96 -    typename Graph::template NodeMap<Num> excess; 
    1.97 +    //typename Graph::template NodeMap<int> level;
    1.98 +    typename Graph::template NodeMap<Num> excess;
    1.99      //   protected:
   1.100      //     MaxFlow() { }
   1.101 -    //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 
   1.102 -    // 	     FlowMap& _flow) 
   1.103 +    //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
   1.104 +    // 	     FlowMap& _flow)
   1.105      //       {
   1.106 -    // 	g=&_G; 
   1.107 -    // 	s=_s; 
   1.108 -    // 	t=_t; 
   1.109 +    // 	g=&_G;
   1.110 +    // 	s=_s;
   1.111 +    // 	t=_t;
   1.112      // 	capacity=&_capacity;
   1.113      // 	flow=&_flow;
   1.114      // 	n=_G.nodeNum;
   1.115 -    // 	level.set (_G); //kellene vmi ilyesmi fv 
   1.116 +    // 	level.set (_G); //kellene vmi ilyesmi fv
   1.117      // 	excess(_G,0); //itt is
   1.118      //       }
   1.119  
   1.120 +    // constants used for heuristics
   1.121 +    static const int H0=20;
   1.122 +    static const int H1=1;
   1.123 +
   1.124    public:
   1.125 - 
   1.126 +
   1.127      ///\todo Document this.
   1.128      ///\todo Maybe, it should be PRE_FLOW instead.
   1.129 +    ///- \c NO_FLOW means nothing,
   1.130      ///- \c ZERO_FLOW means something,
   1.131      ///- \c GEN_FLOW means something else,
   1.132 -    ///- \c PREFLOW is something different.
   1.133 +    ///- \c PRE_FLOW is something different.
   1.134      enum flowEnum{
   1.135 -      ZERO_FLOW=0,
   1.136 -      GEN_FLOW=1,
   1.137 -      PREFLOW=2
   1.138 +      ZERO_FLOW,
   1.139 +      GEN_FLOW,
   1.140 +      PRE_FLOW,
   1.141 +      NO_FLOW
   1.142      };
   1.143  
   1.144 -    MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 
   1.145 +    MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
   1.146  	    FlowMap& _flow) :
   1.147 -      g(&_G), s(_s), t(_t), capacity(&_capacity), 
   1.148 +      g(&_G), s(_s), t(_t), capacity(&_capacity),
   1.149        flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {}
   1.150  
   1.151      /// A max flow algorithm is run.
   1.152 -    ///\pre the flow have to be 0 at the beginning.
   1.153 -    void run() {
   1.154 -      preflow(ZERO_FLOW);
   1.155 +    /// \pre The flow have to satisfy the requirements
   1.156 +    /// stated in fe.
   1.157 +    void run(flowEnum fe=ZERO_FLOW) {
   1.158 +      preflow(fe);
   1.159      }
   1.160 -    
   1.161 -    /// A preflow algorithm is run. 
   1.162 -    ///\pre The initial edge-map have to be a 
   1.163 +
   1.164 +    /// A preflow algorithm is run.
   1.165 +    /// \pre The initial edge-map have to be a
   1.166      /// zero flow if \c fe is \c ZERO_FLOW,
   1.167 -    /// a flow if \c fe is \c GEN_FLOW, 
   1.168 -    /// and a pre-flow it is \c PREFLOW.
   1.169 +    /// a flow if \c fe is \c GEN_FLOW,
   1.170 +    /// a pre-flow if fe is \c PRE_FLOW and
   1.171 +    /// anything if fe is NO_FLOW.
   1.172      void preflow(flowEnum fe) {
   1.173        preflowPhase0(fe);
   1.174        preflowPhase1();
   1.175      }
   1.176  
   1.177 -    /// Run the first phase of preflow, starting from a 0 flow, from a flow, 
   1.178 -    /// or from a preflow, according to \c fe.
   1.179 -    void preflowPhase0( flowEnum fe );
   1.180 +    /// Run the first phase of preflow, starting from a 0 flow, from a flow,
   1.181 +    /// or from a preflow, of from undefined value according to \c fe.
   1.182 +    void preflowPhase0(flowEnum fe);
   1.183  
   1.184      /// Second phase of preflow.
   1.185      void preflowPhase1();
   1.186  
   1.187 -    /// Starting from a flow, this method searches for an augmenting path 
   1.188 -    /// according to the Edmonds-Karp algorithm 
   1.189 -    /// and augments the flow on if any. 
   1.190 +    /// Starting from a flow, this method searches for an augmenting path
   1.191 +    /// according to the Edmonds-Karp algorithm
   1.192 +    /// and augments the flow on if any.
   1.193      /// The return value shows if the augmentation was succesful.
   1.194      bool augmentOnShortestPath();
   1.195  
   1.196 -    /// Starting from a flow, this method searches for an augmenting blockin 
   1.197 -    /// flow according to Dinits' algorithm and augments the flow on if any. 
   1.198 -    /// The blocking flow is computed in a physically constructed 
   1.199 +    /// Starting from a flow, this method searches for an augmenting blocking
   1.200 +    /// flow according to Dinits' algorithm and augments the flow on if any.
   1.201 +    /// The blocking flow is computed in a physically constructed
   1.202      /// residual graph of type \c Mutablegraph.
   1.203      /// The return value show sif the augmentation was succesful.
   1.204      template<typename MutableGraph> bool augmentOnBlockingFlow();
   1.205  
   1.206 -    /// The same as \c augmentOnBlockingFlow<MutableGraph> but the 
   1.207 +    /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
   1.208      /// residual graph is not constructed physically.
   1.209      /// The return value shows if the augmentation was succesful.
   1.210      bool augmentOnBlockingFlow2();
   1.211  
   1.212      /// Returns the actual flow value.
   1.213 -    /// More precisely, it returns the negative excess of s, thus 
   1.214 +    /// More precisely, it returns the negative excess of s, thus
   1.215      /// this works also for preflows.
   1.216 -    Num flowValue() { 
   1.217 +    Num flowValue() {
   1.218        Num a=0;
   1.219 -      FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e];
   1.220 -      FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e];
   1.221 +      FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
   1.222 +      FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
   1.223        return a;
   1.224      }
   1.225  
   1.226      /// Should be used between preflowPhase0 and preflowPhase1.
   1.227 -    ///\todo We have to make some status variable which shows the actual state 
   1.228 -    /// of the class. This enables us to determine which methods are valid 
   1.229 +    /// \todo We have to make some status variable which shows the
   1.230 +    /// actual state
   1.231 +    /// of the class. This enables us to determine which methods are valid
   1.232      /// for MinCut computation
   1.233      template<typename _CutMap>
   1.234      void actMinCut(_CutMap& M) {
   1.235 @@ -188,15 +196,15 @@
   1.236        }
   1.237      }
   1.238  
   1.239 -    /// The unique inclusionwise minimum cut is computed by 
   1.240 +    /// The unique inclusionwise minimum cut is computed by
   1.241      /// processing a bfs from s in the residual graph.
   1.242 -    ///\pre flow have to be a max flow otherwise it will the whole node-set.
   1.243 +    /// \pre flow have to be a max flow otherwise it will the whole node-set.
   1.244      template<typename _CutMap>
   1.245      void minMinCut(_CutMap& M) {
   1.246 -    
   1.247 +
   1.248        std::queue<Node> queue;
   1.249 -      
   1.250 -      M.set(s,true);      
   1.251 +
   1.252 +      M.set(s,true);
   1.253        queue.push(s);
   1.254  
   1.255        while (!queue.empty()) {
   1.256 @@ -210,7 +218,7 @@
   1.257  	    queue.push(v);
   1.258  	    M.set(v, true);
   1.259  	  }
   1.260 -	} 
   1.261 +	}
   1.262  
   1.263  	InEdgeIt f;
   1.264  	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   1.265 @@ -219,14 +227,14 @@
   1.266  	    queue.push(v);
   1.267  	    M.set(v, true);
   1.268  	  }
   1.269 -	} 
   1.270 +	}
   1.271        }
   1.272      }
   1.273  
   1.274  
   1.275 -    /// The unique inclusionwise maximum cut is computed by 
   1.276 +    /// The unique inclusionwise maximum cut is computed by
   1.277      /// processing a reverse bfs from t in the residual graph.
   1.278 -    ///\pre flow have to be a max flow otherwise it will be empty.
   1.279 +    /// \pre flow have to be a max flow otherwise it will be empty.
   1.280      template<typename _CutMap>
   1.281      void maxMinCut(_CutMap& M) {
   1.282  
   1.283 @@ -236,15 +244,14 @@
   1.284        }
   1.285  
   1.286        std::queue<Node> queue;
   1.287 -      
   1.288 -      M.set(t,false);        
   1.289 +
   1.290 +      M.set(t,false);
   1.291        queue.push(t);
   1.292  
   1.293        while (!queue.empty()) {
   1.294          Node w=queue.front();
   1.295  	queue.pop();
   1.296  
   1.297 -
   1.298  	InEdgeIt e;
   1.299  	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   1.300  	  Node v=g->tail(e);
   1.301 @@ -253,7 +260,7 @@
   1.302  	    M.set(v, false);
   1.303  	  }
   1.304  	}
   1.305 -	
   1.306 +
   1.307  	OutEdgeIt f;
   1.308  	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   1.309  	  Node v=g->head(f);
   1.310 @@ -274,112 +281,111 @@
   1.311      void resetSource(Node _s) { s=_s; }
   1.312      ///
   1.313      void resetTarget(Node _t) { t=_t; }
   1.314 -   
   1.315 +
   1.316      /// capacity-map is changed.
   1.317      void resetCap(const CapMap& _cap) { capacity=&_cap; }
   1.318 -    
   1.319 -    /// flow-map is changed. 
   1.320 +
   1.321 +    /// flow-map is changed.
   1.322      void resetFlow(FlowMap& _flow) { flow=&_flow; }
   1.323  
   1.324  
   1.325    private:
   1.326  
   1.327      int push(Node w, VecStack& active) {
   1.328 -      
   1.329 +
   1.330        int lev=level[w];
   1.331        Num exc=excess[w];
   1.332        int newlevel=n;       //bound on the next level of w
   1.333 -	  
   1.334 +
   1.335        OutEdgeIt e;
   1.336        for(g->first(e,w); g->valid(e); g->next(e)) {
   1.337 -	    
   1.338 -	if ( (*flow)[e] >= (*capacity)[e] ) continue; 
   1.339 -	Node v=g->head(e);            
   1.340 -	    
   1.341 +
   1.342 +	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   1.343 +	Node v=g->head(e);
   1.344 +
   1.345  	if( lev > level[v] ) { //Push is allowed now
   1.346 -	  
   1.347 +
   1.348  	  if ( excess[v]<=0 && v!=t && v!=s ) {
   1.349  	    int lev_v=level[v];
   1.350  	    active[lev_v].push(v);
   1.351  	  }
   1.352 -	  
   1.353 +
   1.354  	  Num cap=(*capacity)[e];
   1.355  	  Num flo=(*flow)[e];
   1.356  	  Num remcap=cap-flo;
   1.357 -	  
   1.358 +
   1.359  	  if ( remcap >= exc ) { //A nonsaturating push.
   1.360 -	    
   1.361 +
   1.362  	    flow->set(e, flo+exc);
   1.363  	    excess.set(v, excess[v]+exc);
   1.364  	    exc=0;
   1.365 -	    break; 
   1.366 -	    
   1.367 +	    break;
   1.368 +
   1.369  	  } else { //A saturating push.
   1.370  	    flow->set(e, cap);
   1.371  	    excess.set(v, excess[v]+remcap);
   1.372  	    exc-=remcap;
   1.373  	  }
   1.374  	} else if ( newlevel > level[v] ) newlevel = level[v];
   1.375 -      } //for out edges wv 
   1.376 -      
   1.377 -      if ( exc > 0 ) {	
   1.378 +      } //for out edges wv
   1.379 +
   1.380 +      if ( exc > 0 ) {
   1.381  	InEdgeIt e;
   1.382  	for(g->first(e,w); g->valid(e); g->next(e)) {
   1.383 -	  
   1.384 -	  if( (*flow)[e] <= 0 ) continue; 
   1.385 -	  Node v=g->tail(e); 
   1.386 -	  
   1.387 +
   1.388 +	  if( (*flow)[e] <= 0 ) continue;
   1.389 +	  Node v=g->tail(e);
   1.390 +
   1.391  	  if( lev > level[v] ) { //Push is allowed now
   1.392 -	    
   1.393 +
   1.394  	    if ( excess[v]<=0 && v!=t && v!=s ) {
   1.395  	      int lev_v=level[v];
   1.396  	      active[lev_v].push(v);
   1.397  	    }
   1.398 -	    
   1.399 +
   1.400  	    Num flo=(*flow)[e];
   1.401 -	    
   1.402 +
   1.403  	    if ( flo >= exc ) { //A nonsaturating push.
   1.404 -	      
   1.405 +
   1.406  	      flow->set(e, flo-exc);
   1.407  	      excess.set(v, excess[v]+exc);
   1.408  	      exc=0;
   1.409 -	      break; 
   1.410 +	      break;
   1.411  	    } else {  //A saturating push.
   1.412 -	      
   1.413 +
   1.414  	      excess.set(v, excess[v]+flo);
   1.415  	      exc-=flo;
   1.416  	      flow->set(e,0);
   1.417 -	    }  
   1.418 +	    }
   1.419  	  } else if ( newlevel > level[v] ) newlevel = level[v];
   1.420  	} //for in edges vw
   1.421 -	
   1.422 +
   1.423        } // if w still has excess after the out edge for cycle
   1.424 -      
   1.425 +
   1.426        excess.set(w, exc);
   1.427 -      
   1.428 +
   1.429        return newlevel;
   1.430      }
   1.431  
   1.432  
   1.433 -    void preflowPreproc ( flowEnum fe, VecStack& active, 
   1.434 -			  VecNode& level_list, NNMap& left, NNMap& right ) 
   1.435 +    void preflowPreproc(flowEnum fe, VecStack& active,
   1.436 +			VecNode& level_list, NNMap& left, NNMap& right)
   1.437      {
   1.438 +      std::queue<Node> bfs_queue;
   1.439  
   1.440 -      std::queue<Node> bfs_queue;
   1.441 -      
   1.442 -      switch ( fe ) {
   1.443 -      case ZERO_FLOW: 
   1.444 +      switch (fe) {
   1.445 +      case ZERO_FLOW:
   1.446  	{
   1.447  	  //Reverse_bfs from t, to find the starting level.
   1.448  	  level.set(t,0);
   1.449  	  bfs_queue.push(t);
   1.450 -	
   1.451 +
   1.452  	  while (!bfs_queue.empty()) {
   1.453 -	    
   1.454 -	    Node v=bfs_queue.front();	
   1.455 +
   1.456 +	    Node v=bfs_queue.front();
   1.457  	    bfs_queue.pop();
   1.458  	    int l=level[v]+1;
   1.459 -	    
   1.460 +
   1.461  	    InEdgeIt e;
   1.462  	    for(g->first(e,v); g->valid(e); g->next(e)) {
   1.463  	      Node w=g->tail(e);
   1.464 @@ -393,37 +399,37 @@
   1.465  	      }
   1.466  	    }
   1.467  	  }
   1.468 -	  
   1.469 +
   1.470  	  //the starting flow
   1.471  	  OutEdgeIt e;
   1.472 -	  for(g->first(e,s); g->valid(e); g->next(e)) 
   1.473 +	  for(g->first(e,s); g->valid(e); g->next(e))
   1.474  	    {
   1.475  	      Num c=(*capacity)[e];
   1.476  	      if ( c <= 0 ) continue;
   1.477  	      Node w=g->head(e);
   1.478 -	      if ( level[w] < n ) {	  
   1.479 +	      if ( level[w] < n ) {
   1.480  		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   1.481 -		flow->set(e, c); 
   1.482 +		flow->set(e, c);
   1.483  		excess.set(w, excess[w]+c);
   1.484  	      }
   1.485  	    }
   1.486  	  break;
   1.487  	}
   1.488 -	
   1.489 +
   1.490        case GEN_FLOW:
   1.491 -      case PREFLOW:
   1.492 +      case PRE_FLOW:
   1.493  	{
   1.494 -	  //Reverse_bfs from t in the residual graph, 
   1.495 +	  //Reverse_bfs from t in the residual graph,
   1.496  	  //to find the starting level.
   1.497  	  level.set(t,0);
   1.498  	  bfs_queue.push(t);
   1.499 -	  
   1.500 +
   1.501  	  while (!bfs_queue.empty()) {
   1.502 -	    
   1.503 -	    Node v=bfs_queue.front();	
   1.504 +
   1.505 +	    Node v=bfs_queue.front();
   1.506  	    bfs_queue.pop();
   1.507  	    int l=level[v]+1;
   1.508 -	    
   1.509 +
   1.510  	    InEdgeIt e;
   1.511  	    for(g->first(e,v); g->valid(e); g->next(e)) {
   1.512  	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   1.513 @@ -437,7 +443,7 @@
   1.514  		level.set(w, l);
   1.515  	      }
   1.516  	    }
   1.517 -	    
   1.518 +
   1.519  	    OutEdgeIt f;
   1.520  	    for(g->first(f,v); g->valid(f); g->next(f)) {
   1.521  	      if ( 0 >= (*flow)[f] ) continue;
   1.522 @@ -452,70 +458,70 @@
   1.523  	      }
   1.524  	    }
   1.525  	  }
   1.526 -	  
   1.527 -	  
   1.528 +
   1.529 +
   1.530  	  //the starting flow
   1.531  	  OutEdgeIt e;
   1.532 -	  for(g->first(e,s); g->valid(e); g->next(e)) 
   1.533 +	  for(g->first(e,s); g->valid(e); g->next(e))
   1.534  	    {
   1.535  	      Num rem=(*capacity)[e]-(*flow)[e];
   1.536  	      if ( rem <= 0 ) continue;
   1.537  	      Node w=g->head(e);
   1.538 -	      if ( level[w] < n ) {	  
   1.539 +	      if ( level[w] < n ) {
   1.540  		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   1.541 -		flow->set(e, (*capacity)[e]); 
   1.542 +		flow->set(e, (*capacity)[e]);
   1.543  		excess.set(w, excess[w]+rem);
   1.544  	      }
   1.545  	    }
   1.546 -	  
   1.547 +
   1.548  	  InEdgeIt f;
   1.549 -	  for(g->first(f,s); g->valid(f); g->next(f)) 
   1.550 +	  for(g->first(f,s); g->valid(f); g->next(f))
   1.551  	    {
   1.552  	      if ( (*flow)[f] <= 0 ) continue;
   1.553  	      Node w=g->tail(f);
   1.554 -	      if ( level[w] < n ) {	  
   1.555 +	      if ( level[w] < n ) {
   1.556  		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   1.557  		excess.set(w, excess[w]+(*flow)[f]);
   1.558 -		flow->set(f, 0); 
   1.559 +		flow->set(f, 0);
   1.560  	      }
   1.561 -	    }  
   1.562 +	    }
   1.563  	  break;
   1.564 -	} //case PREFLOW
   1.565 +	} //case PRE_FLOW
   1.566        }
   1.567      } //preflowPreproc
   1.568  
   1.569  
   1.570  
   1.571 -    void relabel(Node w, int newlevel, VecStack& active,  
   1.572 -		 VecNode& level_list, NNMap& left, 
   1.573 -		 NNMap& right, int& b, int& k, bool what_heur ) 
   1.574 +    void relabel(Node w, int newlevel, VecStack& active,
   1.575 +		 VecNode& level_list, NNMap& left,
   1.576 +		 NNMap& right, int& b, int& k, bool what_heur )
   1.577      {
   1.578  
   1.579 -      Num lev=level[w];	
   1.580 -      
   1.581 +      Num lev=level[w];
   1.582 +
   1.583        Node right_n=right[w];
   1.584        Node left_n=left[w];
   1.585 -      
   1.586 +
   1.587        //unlacing starts
   1.588        if ( g->valid(right_n) ) {
   1.589  	if ( g->valid(left_n) ) {
   1.590  	  right.set(left_n, right_n);
   1.591  	  left.set(right_n, left_n);
   1.592  	} else {
   1.593 -	  level_list[lev]=right_n;   
   1.594 +	  level_list[lev]=right_n;
   1.595  	  left.set(right_n, INVALID);
   1.596 -	} 
   1.597 +	}
   1.598        } else {
   1.599  	if ( g->valid(left_n) ) {
   1.600  	  right.set(left_n, INVALID);
   1.601 -	} else { 
   1.602 -	  level_list[lev]=INVALID;   
   1.603 -	} 
   1.604 -      } 
   1.605 +	} else {
   1.606 +	  level_list[lev]=INVALID;
   1.607 +	}
   1.608 +      }
   1.609        //unlacing ends
   1.610 -		
   1.611 +
   1.612        if ( !g->valid(level_list[lev]) ) {
   1.613 -	      
   1.614 +
   1.615  	//gapping starts
   1.616  	for (int i=lev; i!=k ; ) {
   1.617  	  Node v=level_list[++i];
   1.618 @@ -528,17 +534,17 @@
   1.619  	    while ( !active[i].empty() ) {
   1.620  	      active[i].pop();    //FIXME: ezt szebben kene
   1.621  	    }
   1.622 -	  }	     
   1.623 +	  }
   1.624  	}
   1.625 -	
   1.626 +
   1.627  	level.set(w,n);
   1.628  	b=lev-1;
   1.629  	k=b;
   1.630  	//gapping ends
   1.631 -	
   1.632 +
   1.633        } else {
   1.634 -	
   1.635 -	if ( newlevel == n ) level.set(w,n); 
   1.636 +
   1.637 +	if ( newlevel == n ) level.set(w,n);
   1.638  	else {
   1.639  	  level.set(w,++newlevel);
   1.640  	  active[newlevel].push(w);
   1.641 @@ -551,54 +557,55 @@
   1.642  	  level_list[newlevel]=w;
   1.643  	}
   1.644        }
   1.645 -      
   1.646 +
   1.647      } //relabel
   1.648  
   1.649  
   1.650 -    template<typename MapGraphWrapper> 
   1.651 +    template<typename MapGraphWrapper>
   1.652      class DistanceMap {
   1.653      protected:
   1.654        const MapGraphWrapper* g;
   1.655 -      typename MapGraphWrapper::template NodeMap<int> dist; 
   1.656 +      typename MapGraphWrapper::template NodeMap<int> dist;
   1.657      public:
   1.658        DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
   1.659 -      void set(const typename MapGraphWrapper::Node& n, int a) { 
   1.660 -	dist.set(n, a); 
   1.661 +      void set(const typename MapGraphWrapper::Node& n, int a) {
   1.662 +	dist.set(n, a);
   1.663        }
   1.664 -      int operator[](const typename MapGraphWrapper::Node& n) 
   1.665 +      int operator[](const typename MapGraphWrapper::Node& n)
   1.666        { return dist[n]; }
   1.667 -      //       int get(const typename MapGraphWrapper::Node& n) const { 
   1.668 +      //       int get(const typename MapGraphWrapper::Node& n) const {
   1.669        // 	return dist[n]; }
   1.670 -      //       bool get(const typename MapGraphWrapper::Edge& e) const { 
   1.671 +      //       bool get(const typename MapGraphWrapper::Edge& e) const {
   1.672        // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
   1.673 -      bool operator[](const typename MapGraphWrapper::Edge& e) const { 
   1.674 -	return (dist[g->tail(e)]<dist[g->head(e)]); 
   1.675 +      bool operator[](const typename MapGraphWrapper::Edge& e) const {
   1.676 +	return (dist[g->tail(e)]<dist[g->head(e)]);
   1.677        }
   1.678      };
   1.679 -    
   1.680 +
   1.681    };
   1.682  
   1.683  
   1.684    template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   1.685 -  void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase0( flowEnum fe ) 
   1.686 +  void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase0( flowEnum fe )
   1.687    {
   1.688 -      
   1.689 -    int heur0=(int)(H0*n);  //time while running 'bound decrease' 
   1.690 +
   1.691 +    int heur0=(int)(H0*n);  //time while running 'bound decrease'
   1.692      int heur1=(int)(H1*n);  //time while running 'highest label'
   1.693      int heur=heur1;         //starting time interval (#of relabels)
   1.694      int numrelabel=0;
   1.695 -     
   1.696 -    bool what_heur=1;       
   1.697 +
   1.698 +    bool what_heur=1;
   1.699      //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   1.700  
   1.701 -    bool end=false;     
   1.702 -    //Needed for 'bound decrease', true means no active nodes are above bound b.
   1.703 +    bool end=false;
   1.704 +    //Needed for 'bound decrease', true means no active nodes are above bound
   1.705 +    //b.
   1.706  
   1.707      int k=n-2;  //bound on the highest level under n containing a node
   1.708      int b=k;    //bound on the highest level under n of an active node
   1.709 -      
   1.710 +
   1.711      VecStack active(n);
   1.712 -      
   1.713 +
   1.714      NNMap left(*g, INVALID);
   1.715      NNMap right(*g, INVALID);
   1.716      VecNode level_list(n,INVALID);
   1.717 @@ -607,22 +614,22 @@
   1.718      NodeIt v;
   1.719      for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   1.720      //setting each node to level n
   1.721 -      
   1.722 -    switch ( fe ) {
   1.723 -    case PREFLOW:
   1.724 +
   1.725 +    switch (fe) {
   1.726 +    case PRE_FLOW:
   1.727        {
   1.728 -	//counting the excess
   1.729 +	//computing the excess
   1.730  	NodeIt v;
   1.731  	for(g->first(v); g->valid(v); g->next(v)) {
   1.732  	  Num exc=0;
   1.733 -	  
   1.734 +
   1.735  	  InEdgeIt e;
   1.736  	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
   1.737  	  OutEdgeIt f;
   1.738  	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
   1.739 -	    
   1.740 -	  excess.set(v,exc);	  
   1.741 -	    
   1.742 +
   1.743 +	  excess.set(v,exc);
   1.744 +
   1.745  	  //putting the active nodes into the stack
   1.746  	  int lev=level[v];
   1.747  	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
   1.748 @@ -631,26 +638,25 @@
   1.749        }
   1.750      case GEN_FLOW:
   1.751        {
   1.752 -	//Counting the excess of t
   1.753 +	//computing the excess of t
   1.754  	Num exc=0;
   1.755 -	  
   1.756 +
   1.757  	InEdgeIt e;
   1.758  	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   1.759  	OutEdgeIt f;
   1.760  	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   1.761 -	  
   1.762 -	excess.set(t,exc);	
   1.763 -	  
   1.764 +
   1.765 +	excess.set(t,exc);
   1.766 +
   1.767  	break;
   1.768        }
   1.769 -    default:
   1.770 -      break;
   1.771 +    default:;
   1.772      }
   1.773 -      
   1.774 -    preflowPreproc( fe, active, level_list, left, right );
   1.775 -    //End of preprocessing 
   1.776 -      
   1.777 -      
   1.778 +
   1.779 +    preflowPreproc(fe, active, level_list, left, right);
   1.780 +    //End of preprocessing
   1.781 +
   1.782 +
   1.783      //Push/relabel on the highest level active nodes.
   1.784      while ( true ) {
   1.785        if ( b == 0 ) {
   1.786 @@ -659,17 +665,17 @@
   1.787  	  end=true;
   1.788  	} else break;
   1.789        }
   1.790 -	
   1.791 -      if ( active[b].empty() ) --b; 
   1.792 +
   1.793 +      if ( active[b].empty() ) --b;
   1.794        else {
   1.795 -	end=false;  
   1.796 +	end=false;
   1.797  	Node w=active[b].top();
   1.798  	active[b].pop();
   1.799  	int newlevel=push(w,active);
   1.800 -	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, 
   1.801 +	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list,
   1.802  				     left, right, b, k, what_heur);
   1.803 -	  
   1.804 -	++numrelabel; 
   1.805 +
   1.806 +	++numrelabel;
   1.807  	if ( numrelabel >= heur ) {
   1.808  	  numrelabel=0;
   1.809  	  if ( what_heur ) {
   1.810 @@ -679,49 +685,49 @@
   1.811  	  } else {
   1.812  	    what_heur=1;
   1.813  	    heur=heur1;
   1.814 -	    b=k; 
   1.815 +	    b=k;
   1.816  	  }
   1.817  	}
   1.818 -      } 
   1.819 -    } 
   1.820 +      }
   1.821 +    }
   1.822    }
   1.823  
   1.824  
   1.825  
   1.826    template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   1.827 -  void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1() 
   1.828 +  void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1()
   1.829    {
   1.830 -      
   1.831 +
   1.832      int k=n-2;  //bound on the highest level under n containing a node
   1.833      int b=k;    //bound on the highest level under n of an active node
   1.834 -      
   1.835 +
   1.836      VecStack active(n);
   1.837      level.set(s,0);
   1.838      std::queue<Node> bfs_queue;
   1.839      bfs_queue.push(s);
   1.840 -	    
   1.841 +
   1.842      while (!bfs_queue.empty()) {
   1.843 -	
   1.844 -      Node v=bfs_queue.front();	
   1.845 +
   1.846 +      Node v=bfs_queue.front();
   1.847        bfs_queue.pop();
   1.848        int l=level[v]+1;
   1.849 -	      
   1.850 +
   1.851        InEdgeIt e;
   1.852        for(g->first(e,v); g->valid(e); g->next(e)) {
   1.853  	if ( (*capacity)[e] <= (*flow)[e] ) continue;
   1.854  	Node u=g->tail(e);
   1.855 -	if ( level[u] >= n ) { 
   1.856 +	if ( level[u] >= n ) {
   1.857  	  bfs_queue.push(u);
   1.858  	  level.set(u, l);
   1.859  	  if ( excess[u] > 0 ) active[l].push(u);
   1.860  	}
   1.861        }
   1.862 -	
   1.863 +
   1.864        OutEdgeIt f;
   1.865        for(g->first(f,v); g->valid(f); g->next(f)) {
   1.866  	if ( 0 >= (*flow)[f] ) continue;
   1.867  	Node u=g->head(f);
   1.868 -	if ( level[u] >= n ) { 
   1.869 +	if ( level[u] >= n ) {
   1.870  	  bfs_queue.push(u);
   1.871  	  level.set(u, l);
   1.872  	  if ( excess[u] > 0 ) active[l].push(u);
   1.873 @@ -731,14 +737,14 @@
   1.874      b=n-2;
   1.875  
   1.876      while ( true ) {
   1.877 -	
   1.878 +
   1.879        if ( b == 0 ) break;
   1.880  
   1.881 -      if ( active[b].empty() ) --b; 
   1.882 +      if ( active[b].empty() ) --b;
   1.883        else {
   1.884  	Node w=active[b].top();
   1.885  	active[b].pop();
   1.886 -	int newlevel=push(w,active);	  
   1.887 +	int newlevel=push(w,active);
   1.888  
   1.889  	//relabel
   1.890  	if ( excess[w] > 0 ) {
   1.891 @@ -753,23 +759,23 @@
   1.892  
   1.893  
   1.894    template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   1.895 -  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath() 
   1.896 +  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
   1.897    {
   1.898      ResGW res_graph(*g, *capacity, *flow);
   1.899      bool _augment=false;
   1.900 -      
   1.901 +
   1.902      //ReachedMap level(res_graph);
   1.903      FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   1.904      BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   1.905      bfs.pushAndSetReached(s);
   1.906 -	
   1.907 -    typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); 
   1.908 +
   1.909 +    typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
   1.910      pred.set(s, INVALID);
   1.911 -      
   1.912 +
   1.913      typename ResGW::template NodeMap<Num> free(res_graph);
   1.914 -	
   1.915 +
   1.916      //searching for augmenting path
   1.917 -    while ( !bfs.finished() ) { 
   1.918 +    while ( !bfs.finished() ) {
   1.919        ResGWOutEdgeIt e=bfs;
   1.920        if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   1.921  	Node v=res_graph.tail(e);
   1.922 @@ -778,20 +784,20 @@
   1.923  	if (res_graph.valid(pred[v])) {
   1.924  	  free.set(w, std::min(free[v], res_graph.resCap(e)));
   1.925  	} else {
   1.926 -	  free.set(w, res_graph.resCap(e)); 
   1.927 +	  free.set(w, res_graph.resCap(e));
   1.928  	}
   1.929  	if (res_graph.head(e)==t) { _augment=true; break; }
   1.930        }
   1.931 -	
   1.932 +
   1.933        ++bfs;
   1.934      } //end of searching augmenting path
   1.935  
   1.936      if (_augment) {
   1.937        Node n=t;
   1.938        Num augment_value=free[t];
   1.939 -      while (res_graph.valid(pred[n])) { 
   1.940 +      while (res_graph.valid(pred[n])) {
   1.941  	ResGWEdge e=pred[n];
   1.942 -	res_graph.augment(e, augment_value); 
   1.943 +	res_graph.augment(e, augment_value);
   1.944  	n=res_graph.tail(e);
   1.945        }
   1.946      }
   1.947 @@ -805,12 +811,10 @@
   1.948  
   1.949  
   1.950  
   1.951 -
   1.952 -
   1.953    template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   1.954 -  template<typename MutableGraph> 
   1.955 -  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow() 
   1.956 -  {      
   1.957 +  template<typename MutableGraph>
   1.958 +  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
   1.959 +  {
   1.960      typedef MutableGraph MG;
   1.961      bool _augment=false;
   1.962  
   1.963 @@ -821,13 +825,13 @@
   1.964      FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   1.965      BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   1.966      bfs.pushAndSetReached(s);
   1.967 -    typename ResGW::template NodeMap<int> 
   1.968 +    typename ResGW::template NodeMap<int>
   1.969        dist(res_graph); //filled up with 0's
   1.970  
   1.971      //F will contain the physical copy of the residual graph
   1.972      //with the set of edges which are on shortest paths
   1.973      MG F;
   1.974 -    typename ResGW::template NodeMap<typename MG::Node> 
   1.975 +    typename ResGW::template NodeMap<typename MG::Node>
   1.976        res_graph_to_F(res_graph);
   1.977      {
   1.978        typename ResGW::NodeIt n;
   1.979 @@ -841,19 +845,21 @@
   1.980      typename MG::template EdgeMap<ResGWEdge> original_edge(F);
   1.981      typename MG::template EdgeMap<Num> residual_capacity(F);
   1.982  
   1.983 -    while ( !bfs.finished() ) { 
   1.984 +    while ( !bfs.finished() ) {
   1.985        ResGWOutEdgeIt e=bfs;
   1.986        if (res_graph.valid(e)) {
   1.987  	if (bfs.isBNodeNewlyReached()) {
   1.988  	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
   1.989 -	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);
   1.990 +	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
   1.991 +					res_graph_to_F[res_graph.head(e)]);
   1.992  	  original_edge.update();
   1.993  	  original_edge.set(f, e);
   1.994  	  residual_capacity.update();
   1.995  	  residual_capacity.set(f, res_graph.resCap(e));
   1.996  	} else {
   1.997  	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
   1.998 -	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);
   1.999 +	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
  1.1000 +					  res_graph_to_F[res_graph.head(e)]);
  1.1001  	    original_edge.update();
  1.1002  	    original_edge.set(f, e);
  1.1003  	    residual_capacity.update();
  1.1004 @@ -876,7 +882,7 @@
  1.1005  
  1.1006        typename MG::template NodeMap<Num> free(F);
  1.1007  
  1.1008 -      dfs.pushAndSetReached(sF);      
  1.1009 +      dfs.pushAndSetReached(sF);
  1.1010        while (!dfs.finished()) {
  1.1011  	++dfs;
  1.1012  	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
  1.1013 @@ -887,58 +893,56 @@
  1.1014  	    if (F.valid(pred[v])) {
  1.1015  	      free.set(w, std::min(free[v], residual_capacity[dfs]));
  1.1016  	    } else {
  1.1017 -	      free.set(w, residual_capacity[dfs]); 
  1.1018 +	      free.set(w, residual_capacity[dfs]);
  1.1019  	    }
  1.1020 -	    if (w==tF) { 
  1.1021 -	      __augment=true; 
  1.1022 +	    if (w==tF) {
  1.1023 +	      __augment=true;
  1.1024  	      _augment=true;
  1.1025 -	      break; 
  1.1026 +	      break;
  1.1027  	    }
  1.1028 -	      
  1.1029 +
  1.1030  	  } else {
  1.1031  	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
  1.1032  	  }
  1.1033 -	} 
  1.1034 +	}
  1.1035        }
  1.1036  
  1.1037        if (__augment) {
  1.1038  	typename MG::Node n=tF;
  1.1039  	Num augment_value=free[tF];
  1.1040 -	while (F.valid(pred[n])) { 
  1.1041 +	while (F.valid(pred[n])) {
  1.1042  	  typename MG::Edge e=pred[n];
  1.1043 -	  res_graph.augment(original_edge[e], augment_value); 
  1.1044 +	  res_graph.augment(original_edge[e], augment_value);
  1.1045  	  n=F.tail(e);
  1.1046 -	  if (residual_capacity[e]==augment_value) 
  1.1047 -	    F.erase(e); 
  1.1048 -	  else 
  1.1049 +	  if (residual_capacity[e]==augment_value)
  1.1050 +	    F.erase(e);
  1.1051 +	  else
  1.1052  	    residual_capacity.set(e, residual_capacity[e]-augment_value);
  1.1053  	}
  1.1054        }
  1.1055 -	
  1.1056 +
  1.1057      }
  1.1058 -            
  1.1059 +
  1.1060      return _augment;
  1.1061    }
  1.1062  
  1.1063  
  1.1064  
  1.1065  
  1.1066 -
  1.1067 -
  1.1068    template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  1.1069 -  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2() 
  1.1070 +  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
  1.1071    {
  1.1072      bool _augment=false;
  1.1073  
  1.1074      ResGW res_graph(*g, *capacity, *flow);
  1.1075 -      
  1.1076 +
  1.1077      //ReachedMap level(res_graph);
  1.1078      FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  1.1079      BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  1.1080  
  1.1081      bfs.pushAndSetReached(s);
  1.1082      DistanceMap<ResGW> dist(res_graph);
  1.1083 -    while ( !bfs.finished() ) { 
  1.1084 +    while ( !bfs.finished() ) {
  1.1085        ResGWOutEdgeIt e=bfs;
  1.1086        if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
  1.1087  	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
  1.1088 @@ -948,17 +952,17 @@
  1.1089  
  1.1090        //Subgraph containing the edges on some shortest paths
  1.1091      ConstMap<typename ResGW::Node, bool> true_map(true);
  1.1092 -    typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, 
  1.1093 +    typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
  1.1094        DistanceMap<ResGW> > FilterResGW;
  1.1095      FilterResGW filter_res_graph(res_graph, true_map, dist);
  1.1096  
  1.1097 -    //Subgraph, which is able to delete edges which are already 
  1.1098 +    //Subgraph, which is able to delete edges which are already
  1.1099      //met by the dfs
  1.1100 -    typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt> 
  1.1101 +    typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>
  1.1102        first_out_edges(filter_res_graph);
  1.1103      typename FilterResGW::NodeIt v;
  1.1104 -    for(filter_res_graph.first(v); filter_res_graph.valid(v); 
  1.1105 -	filter_res_graph.next(v)) 
  1.1106 +    for(filter_res_graph.first(v); filter_res_graph.valid(v);
  1.1107 +	filter_res_graph.next(v))
  1.1108        {
  1.1109   	typename FilterResGW::OutEdgeIt e;
  1.1110   	filter_res_graph.first(e, v);
  1.1111 @@ -974,57 +978,60 @@
  1.1112  
  1.1113        __augment=false;
  1.1114        //computing blocking flow with dfs
  1.1115 -      DfsIterator< ErasingResGW, 
  1.1116 -	typename ErasingResGW::template NodeMap<bool> > 
  1.1117 +      DfsIterator< ErasingResGW,
  1.1118 +	typename ErasingResGW::template NodeMap<bool> >
  1.1119  	dfs(erasing_res_graph);
  1.1120        typename ErasingResGW::
  1.1121 -	template NodeMap<typename ErasingResGW::OutEdgeIt> 
  1.1122 -	pred(erasing_res_graph); 
  1.1123 +	template NodeMap<typename ErasingResGW::OutEdgeIt>
  1.1124 +	pred(erasing_res_graph);
  1.1125        pred.set(s, INVALID);
  1.1126        //invalid iterators for sources
  1.1127  
  1.1128 -      typename ErasingResGW::template NodeMap<Num> 
  1.1129 +      typename ErasingResGW::template NodeMap<Num>
  1.1130  	free1(erasing_res_graph);
  1.1131  
  1.1132 -      dfs.pushAndSetReached(
  1.1133 -			    typename ErasingResGW::Node(
  1.1134 -							typename FilterResGW::Node(
  1.1135 -										   typename ResGW::Node(s)
  1.1136 -										   )
  1.1137 -							)
  1.1138 -			    );
  1.1139 +      dfs.pushAndSetReached
  1.1140 +	///\bug hugo 0.2
  1.1141 +	(typename ErasingResGW::Node
  1.1142 +	 (typename FilterResGW::Node
  1.1143 +	  (typename ResGW::Node(s)
  1.1144 +	   )
  1.1145 +	  )
  1.1146 +	 );
  1.1147        while (!dfs.finished()) {
  1.1148  	++dfs;
  1.1149 -	if (erasing_res_graph.valid(
  1.1150 -				    typename ErasingResGW::OutEdgeIt(dfs))) 
  1.1151 - 	  { 
  1.1152 +	if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs)))
  1.1153 + 	  {
  1.1154    	    if (dfs.isBNodeNewlyReached()) {
  1.1155 -	  
  1.1156 +
  1.1157   	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
  1.1158   	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
  1.1159  
  1.1160   	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
  1.1161   	      if (erasing_res_graph.valid(pred[v])) {
  1.1162 - 		free1.set(w, std::min(free1[v], res_graph.resCap(
  1.1163 -								 typename ErasingResGW::OutEdgeIt(dfs))));
  1.1164 + 		free1.set
  1.1165 +		  (w, std::min(free1[v], res_graph.resCap
  1.1166 +			       (typename ErasingResGW::OutEdgeIt(dfs))));
  1.1167   	      } else {
  1.1168 - 		free1.set(w, res_graph.resCap(
  1.1169 -					      typename ErasingResGW::OutEdgeIt(dfs))); 
  1.1170 + 		free1.set
  1.1171 +		  (w, res_graph.resCap
  1.1172 +		   (typename ErasingResGW::OutEdgeIt(dfs)));
  1.1173   	      }
  1.1174 -	      
  1.1175 - 	      if (w==t) { 
  1.1176 - 		__augment=true; 
  1.1177 +
  1.1178 + 	      if (w==t) {
  1.1179 + 		__augment=true;
  1.1180   		_augment=true;
  1.1181 - 		break; 
  1.1182 + 		break;
  1.1183   	      }
  1.1184   	    } else {
  1.1185   	      erasing_res_graph.erase(dfs);
  1.1186  	    }
  1.1187  	  }
  1.1188 -      }	
  1.1189 +      }
  1.1190  
  1.1191        if (__augment) {
  1.1192 -	typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t));
  1.1193 +	typename ErasingResGW::Node
  1.1194 +	  n=typename FilterResGW::Node(typename ResGW::Node(t));
  1.1195  	// 	  typename ResGW::NodeMap<Num> a(res_graph);
  1.1196  	// 	  typename ResGW::Node b;
  1.1197  	// 	  Num j=a[b];
  1.1198 @@ -1035,7 +1042,7 @@
  1.1199  	// 	  typename ErasingResGW::Node b2;
  1.1200  	// 	  Num j2=a2[b2];
  1.1201  	Num augment_value=free1[n];
  1.1202 -	while (erasing_res_graph.valid(pred[n])) { 
  1.1203 +	while (erasing_res_graph.valid(pred[n])) {
  1.1204  	  typename ErasingResGW::OutEdgeIt e=pred[n];
  1.1205  	  res_graph.augment(e, augment_value);
  1.1206  	  n=erasing_res_graph.tail(e);
  1.1207 @@ -1043,15 +1050,13 @@
  1.1208  	    erasing_res_graph.erase(e);
  1.1209  	}
  1.1210        }
  1.1211 -      
  1.1212 -    } //while (__augment) 
  1.1213 -            
  1.1214 +
  1.1215 +    } //while (__augment)
  1.1216 +
  1.1217      return _augment;
  1.1218    }
  1.1219  
  1.1220  
  1.1221 -
  1.1222 -
  1.1223  } //namespace hugo
  1.1224  
  1.1225  #endif //HUGO_MAX_FLOW_H