lemon/graph_utils.h
changeset 2539 c25f62a6452d
parent 2534 edad4c3e926d
child 2540 8ab1d3d7dea7
     1.1 --- a/lemon/graph_utils.h	Mon Dec 10 16:34:31 2007 +0000
     1.2 +++ b/lemon/graph_utils.h	Tue Dec 11 17:37:08 2007 +0000
     1.3 @@ -382,6 +382,7 @@
     1.4    ///
     1.5    ///\sa EdgeLookUp
     1.6    ///\sa AllEdgeLookUp
     1.7 +  ///\sa DynEdgeLookUp
     1.8    ///\sa ConEdgeIt
     1.9    template <typename Graph>
    1.10    inline typename Graph::Edge 
    1.11 @@ -404,6 +405,7 @@
    1.12    ///\sa findEdge()
    1.13    ///\sa EdgeLookUp
    1.14    ///\sa AllEdgeLookUp
    1.15 +  ///\sa DynEdgeLookUp
    1.16    ///
    1.17    /// \author Balazs Dezso 
    1.18    template <typename _Graph>
    1.19 @@ -2296,6 +2298,15 @@
    1.20  	  Parent::set(keys[i], 0);
    1.21  	}
    1.22        }
    1.23 +
    1.24 +      virtual void build() {
    1.25 +	Parent::build();
    1.26 +	Key it;
    1.27 +	typename Parent::Notifier* nf = Parent::notifier();
    1.28 +	for (nf->first(it); it != INVALID; nf->next(it)) {
    1.29 +	  Parent::set(it, 0);
    1.30 +	}
    1.31 +      }
    1.32      };
    1.33  
    1.34    public:
    1.35 @@ -2408,6 +2419,14 @@
    1.36  	  Parent::set(keys[i], 0);
    1.37  	}
    1.38        }
    1.39 +      virtual void build() {
    1.40 +	Parent::build();
    1.41 +	Key it;
    1.42 +	typename Parent::Notifier* nf = Parent::notifier();
    1.43 +	for (nf->first(it); it != INVALID; nf->next(it)) {
    1.44 +	  Parent::set(it, 0);
    1.45 +	}
    1.46 +      }
    1.47      };
    1.48  
    1.49    public:
    1.50 @@ -2470,6 +2489,451 @@
    1.51    };
    1.52  
    1.53  
    1.54 +  ///Dynamic edge look up between given endpoints.
    1.55 +  
    1.56 +  ///\ingroup gutils
    1.57 +  ///Using this class, you can find an edge in a graph from a given
    1.58 +  ///source to a given target in amortized time <em>O(log d)</em>,
    1.59 +  ///where <em>d</em> is the out-degree of the source node.
    1.60 +  ///
    1.61 +  ///It is possible to find \e all parallel edges between two nodes with
    1.62 +  ///the \c findFirst() and \c findNext() members.
    1.63 +  ///
    1.64 +  ///See the \ref EdgeLookUp and \ref AllEdgeLookUp classes if your
    1.65 +  ///graph do not changed so frequently.
    1.66 +  ///
    1.67 +  ///This class uses a self-adjusting binary search tree, Sleator's
    1.68 +  ///and Tarjan's Splay tree for guarantee the logarithmic amortized
    1.69 +  ///time bound for edge lookups. This class also guarantees the
    1.70 +  ///optimal time bound in a constant factor for any distribution of
    1.71 +  ///queries.
    1.72 +  ///
    1.73 +  ///\param G The type of the underlying graph.  
    1.74 +  ///
    1.75 +  ///\sa EdgeLookUp  
    1.76 +  ///\sa AllEdgeLookUp  
    1.77 +  template<class G>
    1.78 +  class DynEdgeLookUp 
    1.79 +    : protected ItemSetTraits<G, typename G::Edge>::ItemNotifier::ObserverBase
    1.80 +  {
    1.81 +  public:
    1.82 +    typedef typename ItemSetTraits<G, typename G::Edge>
    1.83 +    ::ItemNotifier::ObserverBase Parent;
    1.84 +
    1.85 +    GRAPH_TYPEDEFS(typename G);
    1.86 +    typedef G Graph;
    1.87 +
    1.88 +  protected:
    1.89 +
    1.90 +    class AutoNodeMap : public DefaultMap<Graph, Node, Edge> {
    1.91 +    public:
    1.92 +
    1.93 +      typedef DefaultMap<Graph, Node, Edge> Parent;
    1.94 +
    1.95 +      AutoNodeMap(const Graph& graph) : Parent(graph, INVALID) {}
    1.96 +      
    1.97 +      virtual void add(const Node& node) {
    1.98 +	Parent::add(node);
    1.99 +	Parent::set(node, INVALID);
   1.100 +      }
   1.101 +
   1.102 +      virtual void add(const std::vector<Node>& nodes) {
   1.103 +	Parent::add(nodes);
   1.104 +	for (int i = 0; i < int(nodes.size()); ++i) {
   1.105 +	  Parent::set(nodes[i], INVALID);
   1.106 +	}
   1.107 +      }
   1.108 +
   1.109 +      virtual void build() {
   1.110 +	Parent::build();
   1.111 +	Node it;
   1.112 +	typename Parent::Notifier* nf = Parent::notifier();
   1.113 +	for (nf->first(it); it != INVALID; nf->next(it)) {
   1.114 +	  Parent::set(it, INVALID);
   1.115 +	}
   1.116 +      }
   1.117 +    };
   1.118 +
   1.119 +    const Graph &_g;
   1.120 +    AutoNodeMap _head;
   1.121 +    typename Graph::template EdgeMap<Edge> _parent;
   1.122 +    typename Graph::template EdgeMap<Edge> _left;
   1.123 +    typename Graph::template EdgeMap<Edge> _right;
   1.124 +    
   1.125 +    class EdgeLess {
   1.126 +      const Graph &g;
   1.127 +    public:
   1.128 +      EdgeLess(const Graph &_g) : g(_g) {}
   1.129 +      bool operator()(Edge a,Edge b) const 
   1.130 +      {
   1.131 +	return g.target(a)<g.target(b);
   1.132 +      }
   1.133 +    };
   1.134 +    
   1.135 +  public:
   1.136 +    
   1.137 +    ///Constructor
   1.138 +
   1.139 +    ///Constructor.
   1.140 +    ///
   1.141 +    ///It builds up the search database.
   1.142 +    DynEdgeLookUp(const Graph &g) 
   1.143 +      : _g(g),_head(g),_parent(g),_left(g),_right(g) 
   1.144 +    { 
   1.145 +      Parent::attach(_g.notifier(typename Graph::Edge()));
   1.146 +      refresh(); 
   1.147 +    }
   1.148 +    
   1.149 +  protected:
   1.150 +
   1.151 +    virtual void add(const Edge& edge) {
   1.152 +      insert(edge);
   1.153 +    }
   1.154 +
   1.155 +    virtual void add(const std::vector<Edge>& edges) {
   1.156 +      for (int i = 0; i < int(edges.size()); ++i) {
   1.157 +	insert(edges[i]);
   1.158 +      }
   1.159 +    }
   1.160 +
   1.161 +    virtual void erase(const Edge& edge) {
   1.162 +      remove(edge);
   1.163 +    }
   1.164 +
   1.165 +    virtual void erase(const std::vector<Edge>& edges) {
   1.166 +      for (int i = 0; i < int(edges.size()); ++i) {
   1.167 +	remove(edges[i]);
   1.168 +      }     
   1.169 +    }
   1.170 +
   1.171 +    virtual void build() {
   1.172 +      refresh();
   1.173 +    }
   1.174 +
   1.175 +    virtual void clear() {
   1.176 +      for(NodeIt n(_g);n!=INVALID;++n) {
   1.177 +	_head.set(n, INVALID);
   1.178 +      }
   1.179 +    }
   1.180 +
   1.181 +    void insert(Edge edge) {
   1.182 +      Node s = _g.source(edge);
   1.183 +      Node t = _g.target(edge);
   1.184 +      _left.set(edge, INVALID);
   1.185 +      _right.set(edge, INVALID);
   1.186 +      
   1.187 +      Edge e = _head[s];
   1.188 +      if (e == INVALID) {
   1.189 +	_head.set(s, edge);
   1.190 +	_parent.set(edge, INVALID);
   1.191 +	return;
   1.192 +      }
   1.193 +      while (true) {
   1.194 +	if (t < _g.target(e)) {
   1.195 +	  if (_left[e] == INVALID) {
   1.196 +	    _left.set(e, edge);
   1.197 +	    _parent.set(edge, e);
   1.198 +	    splay(edge);
   1.199 +	    return;
   1.200 +	  } else {
   1.201 +	    e = _left[e];
   1.202 +	  }
   1.203 +	} else {
   1.204 +	  if (_right[e] == INVALID) {
   1.205 +	    _right.set(e, edge);
   1.206 +	    _parent.set(edge, e);
   1.207 +	    splay(edge);
   1.208 +	    return;
   1.209 +	  } else {
   1.210 +	    e = _right[e];
   1.211 +	  }
   1.212 +	}
   1.213 +      }
   1.214 +    }
   1.215 +
   1.216 +    void remove(Edge edge) {
   1.217 +      if (_left[edge] == INVALID) {
   1.218 +	if (_right[edge] != INVALID) {
   1.219 +	  _parent.set(_right[edge], _parent[edge]);
   1.220 +	}
   1.221 +	if (_parent[edge] != INVALID) {
   1.222 +	  if (_left[_parent[edge]] == edge) {
   1.223 +	    _left.set(_parent[edge], _right[edge]);
   1.224 +	  } else {
   1.225 +	    _right.set(_parent[edge], _right[edge]);
   1.226 +	  }
   1.227 +	} else {
   1.228 +	  _head.set(_g.source(edge), _right[edge]);
   1.229 +	}
   1.230 +      } else if (_right[edge] == INVALID) {
   1.231 +	_parent.set(_left[edge], _parent[edge]);
   1.232 +	if (_parent[edge] != INVALID) {
   1.233 +	  if (_left[_parent[edge]] == edge) {
   1.234 +	    _left.set(_parent[edge], _left[edge]);
   1.235 +	  } else {
   1.236 +	    _right.set(_parent[edge], _left[edge]);
   1.237 +	  }
   1.238 +	} else {
   1.239 +	  _head.set(_g.source(edge), _left[edge]);
   1.240 +	}
   1.241 +      } else {
   1.242 +	Edge e = _left[edge];
   1.243 +	if (_right[e] != INVALID) {
   1.244 +	  e = _right[e];	  
   1.245 +	  while (_right[e] != INVALID) {
   1.246 +	    e = _right[e];
   1.247 +	  }
   1.248 +	  Edge s = _parent[e];
   1.249 +	  _right.set(_parent[e], _left[e]);
   1.250 +	  if (_left[e] != INVALID) {
   1.251 +	    _parent.set(_left[e], _parent[e]);
   1.252 +	  }
   1.253 +	  
   1.254 +	  _left.set(e, _left[edge]);
   1.255 +	  _parent.set(_left[edge], e);
   1.256 +	  _right.set(e, _right[edge]);
   1.257 +	  _parent.set(_right[edge], e);
   1.258 +
   1.259 +	  _parent.set(e, _parent[edge]);
   1.260 +	  if (_parent[edge] != INVALID) {
   1.261 +	    if (_left[_parent[edge]] == edge) {
   1.262 +	      _left.set(_parent[edge], e);
   1.263 +	    } else {
   1.264 +	      _right.set(_parent[edge], e);
   1.265 +	    }
   1.266 +	  }
   1.267 +	  splay(s);
   1.268 +	} else {
   1.269 +	  _right.set(e, _right[edge]);
   1.270 +	  _parent.set(_right[edge], e);
   1.271 +
   1.272 +	  if (_parent[edge] != INVALID) {
   1.273 +	    if (_left[_parent[edge]] == edge) {
   1.274 +	      _left.set(_parent[edge], e);
   1.275 +	    } else {
   1.276 +	      _right.set(_parent[edge], e);
   1.277 +	    }
   1.278 +	  } else {
   1.279 +	    _head.set(_g.source(edge), e);
   1.280 +	  }
   1.281 +	}
   1.282 +      }
   1.283 +    }
   1.284 +
   1.285 +    Edge refreshRec(std::vector<Edge> &v,int a,int b) 
   1.286 +    {
   1.287 +      int m=(a+b)/2;
   1.288 +      Edge me=v[m];
   1.289 +      if (a < m) {
   1.290 +	Edge left = refreshRec(v,a,m-1);
   1.291 +	_left.set(me, left);
   1.292 +	_parent.set(left, me);
   1.293 +      } else {
   1.294 +	_left.set(me, INVALID);
   1.295 +      }
   1.296 +      if (m < b) {
   1.297 +	Edge right = refreshRec(v,m+1,b);
   1.298 +	_right.set(me, right);
   1.299 +	_parent.set(right, me);
   1.300 +      } else {
   1.301 +	_right.set(me, INVALID);
   1.302 +      }
   1.303 +      return me;
   1.304 +    }
   1.305 +
   1.306 +    void refresh() {
   1.307 +      for(NodeIt n(_g);n!=INVALID;++n) {
   1.308 +	std::vector<Edge> v;
   1.309 +	for(OutEdgeIt e(_g,n);e!=INVALID;++e) v.push_back(e);
   1.310 +	if(v.size()) {
   1.311 +	  std::sort(v.begin(),v.end(),EdgeLess(_g));
   1.312 +	  Edge head = refreshRec(v,0,v.size()-1);
   1.313 +	  _head.set(n, head);
   1.314 +	  _parent.set(head, INVALID);
   1.315 +	}
   1.316 +	else _head.set(n, INVALID);
   1.317 +      }
   1.318 +    }
   1.319 +
   1.320 +    void zig(Edge v) {        
   1.321 +      Edge w = _parent[v];
   1.322 +      _parent.set(v, _parent[w]);
   1.323 +      _parent.set(w, v);
   1.324 +      _left.set(w, _right[v]);
   1.325 +      _right.set(v, w);
   1.326 +      if (_parent[v] != INVALID) {
   1.327 +	if (_right[_parent[v]] == w) {
   1.328 +	  _right.set(_parent[v], v);
   1.329 +	} else {
   1.330 +	  _left.set(_parent[v], v);
   1.331 +	}
   1.332 +      }
   1.333 +      if (_left[w] != INVALID){
   1.334 +	_parent.set(_left[w], w);
   1.335 +      }
   1.336 +    }
   1.337 +
   1.338 +    void zag(Edge v) {        
   1.339 +      Edge w = _parent[v];
   1.340 +      _parent.set(v, _parent[w]);
   1.341 +      _parent.set(w, v);
   1.342 +      _right.set(w, _left[v]);
   1.343 +      _left.set(v, w);
   1.344 +      if (_parent[v] != INVALID){
   1.345 +	if (_left[_parent[v]] == w) {
   1.346 +	  _left.set(_parent[v], v);
   1.347 +	} else {
   1.348 +	  _right.set(_parent[v], v);
   1.349 +	}
   1.350 +      }
   1.351 +      if (_right[w] != INVALID){
   1.352 +	_parent.set(_right[w], w);
   1.353 +      }
   1.354 +    }
   1.355 +
   1.356 +    void splay(Edge v) {
   1.357 +      while (_parent[v] != INVALID) {
   1.358 +	if (v == _left[_parent[v]]) {
   1.359 +	  if (_parent[_parent[v]] == INVALID) {
   1.360 +	    zig(v);
   1.361 +	  } else {
   1.362 +	    if (_parent[v] == _left[_parent[_parent[v]]]) {
   1.363 +	      zig(_parent[v]);
   1.364 +	      zig(v);
   1.365 +	    } else {
   1.366 +	      zig(v);
   1.367 +	      zag(v);
   1.368 +	    }
   1.369 +	  }
   1.370 +	} else {
   1.371 +	  if (_parent[_parent[v]] == INVALID) {
   1.372 +	    zag(v);
   1.373 +	  } else {
   1.374 +	    if (_parent[v] == _left[_parent[_parent[v]]]) {
   1.375 +	      zag(v);
   1.376 +	      zig(v);
   1.377 +	    } else {
   1.378 +	      zag(_parent[v]);
   1.379 +	      zag(v);
   1.380 +	    }
   1.381 +	  }
   1.382 +	}
   1.383 +      }
   1.384 +      _head[_g.source(v)] = v;
   1.385 +    }
   1.386 +
   1.387 +
   1.388 +  public:
   1.389 +    
   1.390 +    ///Find an edge between two nodes.
   1.391 +    
   1.392 +    ///Find an edge between two nodes in time <em>O(</em>log<em>d)</em>, where
   1.393 +    /// <em>d</em> is the number of outgoing edges of \c s.
   1.394 +    ///\param s The source node
   1.395 +    ///\param t The target node
   1.396 +    ///\return An edge from \c s to \c t if there exists,
   1.397 +    ///\ref INVALID otherwise.
   1.398 +    Edge operator()(Node s, Node t) const
   1.399 +    {
   1.400 +      Edge e = _head[s];
   1.401 +      while (true) {
   1.402 +	if (_g.target(e) == t) {
   1.403 +	  const_cast<DynEdgeLookUp&>(*this).splay(e);
   1.404 +	  return e;
   1.405 +	} else if (t < _g.target(e)) {
   1.406 +	  if (_left[e] == INVALID) {
   1.407 +	    const_cast<DynEdgeLookUp&>(*this).splay(e);
   1.408 +	    return INVALID;
   1.409 +	  } else {
   1.410 +	    e = _left[e];
   1.411 +	  }
   1.412 +	} else  {
   1.413 +	  if (_right[e] == INVALID) {
   1.414 +	    const_cast<DynEdgeLookUp&>(*this).splay(e);
   1.415 +	    return INVALID;
   1.416 +	  } else {
   1.417 +	    e = _right[e];
   1.418 +	  }
   1.419 +	}
   1.420 +      }
   1.421 +    }
   1.422 +
   1.423 +    ///Find the first edge between two nodes.
   1.424 +    
   1.425 +    ///Find the first edge between two nodes in time
   1.426 +    /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
   1.427 +    /// outgoing edges of \c s.  
   1.428 +    ///\param s The source node 
   1.429 +    ///\param t The target node
   1.430 +    ///\return An edge from \c s to \c t if there exists, \ref INVALID
   1.431 +    /// otherwise.
   1.432 +    Edge findFirst(Node s, Node t) const
   1.433 +    {
   1.434 +      Edge e = _head[s];
   1.435 +      Edge r = INVALID;
   1.436 +      while (true) {
   1.437 +	if (_g.target(e) < t) {
   1.438 +	  if (_right[e] == INVALID) {
   1.439 +	    const_cast<DynEdgeLookUp&>(*this).splay(e);
   1.440 +	    return r;
   1.441 +	  } else {
   1.442 +	    e = _right[e];
   1.443 +	  }
   1.444 +	} else {
   1.445 +	  if (_g.target(e) == t) {
   1.446 +	    r = e;
   1.447 +	  }
   1.448 +	  if (_left[e] == INVALID) {
   1.449 +	    const_cast<DynEdgeLookUp&>(*this).splay(e);
   1.450 +	    return r;
   1.451 +	  } else {
   1.452 +	    e = _left[e];
   1.453 +	  }
   1.454 +	}
   1.455 +      }
   1.456 +    }
   1.457 +
   1.458 +    ///Find the next edge between two nodes.
   1.459 +    
   1.460 +    ///Find the next edge between two nodes in time
   1.461 +    /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
   1.462 +    /// outgoing edges of \c s.  
   1.463 +    ///\param s The source node 
   1.464 +    ///\param t The target node
   1.465 +    ///\return An edge from \c s to \c t if there exists, \ref INVALID
   1.466 +    /// otherwise.
   1.467 +
   1.468 +    ///\note If \c e is not the result of the previous \c findFirst()
   1.469 +    ///operation then the amorized time bound can not be guaranteed.
   1.470 +#ifdef DOXYGEN
   1.471 +    Edge findNext(Node s, Node t, Edge e) const
   1.472 +#else
   1.473 +    Edge findNext(Node, Node t, Edge e) const
   1.474 +#endif
   1.475 +    {
   1.476 +      if (_right[e] != INVALID) {
   1.477 +	e = _right[e];
   1.478 +	while (_left[e] != INVALID) {
   1.479 +	  e = _left[e];
   1.480 +	}
   1.481 +	const_cast<DynEdgeLookUp&>(*this).splay(e);
   1.482 +      } else {
   1.483 +	while (_parent[e] != INVALID && _right[_parent[e]] ==  e) {
   1.484 +	  e = _parent[e];
   1.485 +	}
   1.486 +	if (_parent[e] == INVALID) {
   1.487 +	  return INVALID;
   1.488 +	} else {
   1.489 +	  e = _parent[e];
   1.490 +	  const_cast<DynEdgeLookUp&>(*this).splay(e);
   1.491 +	}
   1.492 +      }
   1.493 +      if (_g.target(e) == t) return e;
   1.494 +      else return INVALID;    
   1.495 +    }
   1.496 +
   1.497 +  };
   1.498 +
   1.499    ///Fast edge look up between given endpoints.
   1.500    
   1.501    ///\ingroup gutils
   1.502 @@ -2487,6 +2951,7 @@
   1.503    ///
   1.504    ///\param G The type of the underlying graph.
   1.505    ///
   1.506 +  ///\sa DynEdgeLookUp
   1.507    ///\sa AllEdgeLookUp  
   1.508    template<class G>
   1.509    class EdgeLookUp 
   1.510 @@ -2522,12 +2987,12 @@
   1.511      EdgeLookUp(const Graph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
   1.512      
   1.513    private:
   1.514 -    Edge refresh_rec(std::vector<Edge> &v,int a,int b) 
   1.515 +    Edge refreshRec(std::vector<Edge> &v,int a,int b) 
   1.516      {
   1.517        int m=(a+b)/2;
   1.518        Edge me=v[m];
   1.519 -      _left[me] = a<m?refresh_rec(v,a,m-1):INVALID;
   1.520 -      _right[me] = m<b?refresh_rec(v,m+1,b):INVALID;
   1.521 +      _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
   1.522 +      _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
   1.523        return me;
   1.524      }
   1.525    public:
   1.526 @@ -2543,7 +3008,7 @@
   1.527        for(OutEdgeIt e(_g,n);e!=INVALID;++e) v.push_back(e);
   1.528        if(v.size()) {
   1.529  	std::sort(v.begin(),v.end(),EdgeLess(_g));
   1.530 -	_head[n]=refresh_rec(v,0,v.size()-1);
   1.531 +	_head[n]=refreshRec(v,0,v.size()-1);
   1.532        }
   1.533        else _head[n]=INVALID;
   1.534      }
   1.535 @@ -2599,6 +3064,7 @@
   1.536    ///
   1.537    ///\param G The type of the underlying graph.
   1.538    ///
   1.539 +  ///\sa DynEdgeLookUp
   1.540    ///\sa EdgeLookUp  
   1.541    template<class G>
   1.542    class AllEdgeLookUp : public EdgeLookUp<G>