src/work/jacint/matching.h
changeset 1365 c280de819a73
parent 1364 ee5959aa4410
child 1366 d00b85f8be45
     1.1 --- a/src/work/jacint/matching.h	Sun Apr 17 18:57:22 2005 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,608 +0,0 @@
     1.4 -// -*- C++ -*-
     1.5 -#ifndef LEMON_MAX_MATCHING_H
     1.6 -#define LEMON_MAX_MATCHING_H
     1.7 -
     1.8 -///\ingroup galgs
     1.9 -///\file
    1.10 -///\brief Maximum matching algorithm.
    1.11 -
    1.12 -#include <queue>
    1.13 -
    1.14 -
    1.15 -#include <iostream>
    1.16 -
    1.17 -
    1.18 -
    1.19 -#include <invalid.h>
    1.20 -#include <unionfind.h>
    1.21 -#include <lemon/graph_utils.h>
    1.22 -
    1.23 -namespace lemon {
    1.24 -
    1.25 -  /// \addtogroup galgs
    1.26 -  /// @{
    1.27 -
    1.28 -  ///Maximum matching algorithms class.
    1.29 -
    1.30 -  ///This class provides Edmonds' alternating forest matching
    1.31 -  ///algorithm. The starting matching (if any) can be passed to the
    1.32 -  ///algorithm using read-in functions \ref readNMapNode, \ref
    1.33 -  ///readNMapEdge or \ref readEMapBool depending on the container. The
    1.34 -  ///resulting maximum matching can be attained by write-out functions
    1.35 -  ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
    1.36 -  ///depending on the preferred container. 
    1.37 -  ///
    1.38 -  ///The dual side of a mathcing is a map of the nodes to
    1.39 -  ///MaxMatching::pos_enum, having values D, A and C showing the
    1.40 -  ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
    1.41 -  ///a graph with factor-critical components, the nodes in A form the
    1.42 -  ///barrier, and the nodes in C induce a graph having a perfect
    1.43 -  ///matching. This decomposition can be attained by calling \ref
    1.44 -  ///writePos after running the algorithm. Before subsequent runs,
    1.45 -  ///the function \ref resetPos() must be called.
    1.46 -  ///
    1.47 -  ///\param Graph The undirected graph type the algorithm runs on.
    1.48 -  ///
    1.49 -  ///\author Jacint Szabo  
    1.50 -  template <typename Graph>
    1.51 -  class MaxMatching {
    1.52 -    typedef typename Graph::Node Node;
    1.53 -    typedef typename Graph::Edge Edge;
    1.54 -    typedef typename Graph::UndirEdgeIt UndirEdgeIt;
    1.55 -    typedef typename Graph::NodeIt NodeIt;
    1.56 -    typedef typename Graph::IncEdgeIt IncEdgeIt;
    1.57 -
    1.58 -    typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
    1.59 -
    1.60 -  public:
    1.61 -    
    1.62 -    ///Indicates the Gallai-Edmonds decomposition of the graph.
    1.63 -
    1.64 -    ///Indicates the Gallai-Edmonds decomposition of the graph, which
    1.65 -    ///shows an upper bound on the size of a maximum matching. The
    1.66 -    ///nodes with pos_enum \c D induce a graph with factor-critical
    1.67 -    ///components, the nodes in \c A form the canonical barrier, and the
    1.68 -    ///nodes in \c C induce a graph having a perfect matching. 
    1.69 -    enum pos_enum {
    1.70 -      D=0,
    1.71 -      A=1,
    1.72 -      C=2
    1.73 -    }; 
    1.74 -
    1.75 -  private:
    1.76 -
    1.77 -    static const int HEUR_density=2;
    1.78 -    const Graph& g;
    1.79 -    typename Graph::template NodeMap<Node> mate;
    1.80 -    typename Graph::template NodeMap<pos_enum> position;
    1.81 -     
    1.82 -  public:
    1.83 -    
    1.84 -    MaxMatching(const Graph& _g) : g(_g), mate(_g,INVALID), position(_g,C) {}
    1.85 -
    1.86 -    ///Runs Edmonds' algorithm.
    1.87 -
    1.88 -    ///Runs Edmonds' algorithm for sparse graphs (countEdges <=
    1.89 -    ///2*countNodes), and a heuristical Edmonds' algorithm with a
    1.90 -    ///heuristic of postponing shrinks for dense graphs. \pre Before
    1.91 -    ///the subsequent calls \ref resetPos must be called.
    1.92 -    inline void run();
    1.93 -
    1.94 -    ///Runs Edmonds' algorithm.
    1.95 -    
    1.96 -    ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
    1.97 -    ///Edmonds' algorithm with a heuristic of postponing shrinks,
    1.98 -    ///giving a faster algorithm for dense graphs.  \pre Before the
    1.99 -    ///subsequent calls \ref resetPos must be called.
   1.100 -    void runEdmonds( int heur );
   1.101 -
   1.102 -    ///Finds a greedy matching starting from the actual matching.
   1.103 -    
   1.104 -    ///Starting form the actual matching stored, it finds a maximal
   1.105 -    ///greedy matching.
   1.106 -    void greedyMatching();
   1.107 -
   1.108 -    ///Returns the size of the actual matching stored.
   1.109 -
   1.110 -    ///Returns the size of the actual matching stored. After \ref
   1.111 -    ///run() it returns the size of a maximum matching in the graph.
   1.112 -    int size () const;
   1.113 -
   1.114 -    ///Resets the map storing the Gallai-Edmonds decomposition.
   1.115 -    
   1.116 -    ///Resets the map storing the Gallai-Edmonds decomposition of the
   1.117 -    ///graph, making it possible to run the algorithm. Must be called
   1.118 -    ///before all runs of the Edmonds algorithm, except for the first
   1.119 -    ///run.
   1.120 -    void resetPos();
   1.121 -
   1.122 -    ///Resets the actual matching to the empty matching.
   1.123 -
   1.124 -    ///Resets the actual matching to the empty matching.  
   1.125 -    ///
   1.126 -    void resetMatching();
   1.127 -
   1.128 -    ///Reads a matching from a \c Node map of \c Nodes.
   1.129 -
   1.130 -    ///Reads a matching from a \c Node map of \c Nodes. This map must be \e
   1.131 -    ///symmetric, i.e. if \c map[u]=v then \c map[v]=u must hold, and
   1.132 -    ///\c uv will be an edge of the matching.
   1.133 -    template<typename NMapN>
   1.134 -    void readNMapNode(NMapN& map) {
   1.135 -      for(NodeIt v(g); v!=INVALID; ++v) {
   1.136 -	mate.set(v,map[v]);   
   1.137 -      } 
   1.138 -    } 
   1.139 -    
   1.140 -    ///Writes the stored matching to a \c Node map of \c Nodes.
   1.141 -
   1.142 -    ///Writes the stored matching to a \c Node map of \c Nodes. The
   1.143 -    ///resulting map will be \e symmetric, i.e. if \c map[u]=v then \c
   1.144 -    ///map[v]=u will hold, and now \c uv is an edge of the matching.
   1.145 -    template<typename NMapN>
   1.146 -    void writeNMapNode (NMapN& map) const {
   1.147 -      for(NodeIt v(g); v!=INVALID; ++v) {
   1.148 -	map.set(v,mate[v]);   
   1.149 -      } 
   1.150 -    } 
   1.151 -
   1.152 -    ///Reads a matching from a \c Node map of \c Edges.
   1.153 -
   1.154 -    ///Reads a matching from a \c Node map of incident \c Edges. This
   1.155 -    ///map must have the property that if \c G.target(map[u])=v then \c
   1.156 -    ///G.target(map[v])=u must hold, and now this edge is an edge of
   1.157 -    ///the matching.
   1.158 -    template<typename NMapE>
   1.159 -    void readNMapEdge(NMapE& map) {
   1.160 -     for(NodeIt v(g); v!=INVALID; ++v) {
   1.161 -	Edge e=map[v];
   1.162 -	if ( g.valid(e) )
   1.163 -	  g.source(e) == v ? mate.set(v,g.target(e)) : mate.set(v,g.source(e)); 
   1.164 -      } 
   1.165 -    } 
   1.166 -    
   1.167 -    ///Writes the matching stored to a \c Node map of \c Edges.
   1.168 -
   1.169 -    ///Writes the stored matching to a \c Node map of incident \c
   1.170 -    ///Edges. This map will have the property that if \c
   1.171 -    ///g.target(map[u])=v then \c g.target(map[v])=u holds, and now this
   1.172 -    ///edge is an edge of the matching.
   1.173 -    template<typename NMapE>
   1.174 -    void writeNMapEdge (NMapE& map)  const {
   1.175 -      typename Graph::template NodeMap<bool> todo(g,true); 
   1.176 -      for(NodeIt v(g); v!=INVALID; ++v) {
   1.177 -	if ( todo[v] && mate[v]!=INVALID ) {
   1.178 -	  Node u=mate[v];
   1.179 -	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   1.180 -	    if ( g.target(e) == u ) {
   1.181 -	      map.set(u,e);
   1.182 -	      map.set(v,e);
   1.183 -	      todo.set(u,false);
   1.184 -	      todo.set(v,false);
   1.185 -	      break;
   1.186 -	    }
   1.187 -	  }
   1.188 -	}
   1.189 -      } 
   1.190 -    }
   1.191 -
   1.192 -
   1.193 -    ///Reads a matching from an \c Edge map of \c bools.
   1.194 -    
   1.195 -    ///Reads a matching from an \c Edge map of \c bools. This map must
   1.196 -    ///have the property that there are no two adjacent edges \c e, \c
   1.197 -    ///f with \c map[e]=map[f]=true. The edges \c e with \c
   1.198 -    ///map[e]=true form the matching.
   1.199 -    template<typename EMapB>
   1.200 -    void readEMapBool(EMapB& map) {
   1.201 -      for(UndirEdgeIt e(g); e!=INVALID; ++e) {
   1.202 -	if ( map[e] ) {
   1.203 -	  Node u=g.source(e);	  
   1.204 -	  Node v=g.target(e);
   1.205 -	  mate.set(u,v);
   1.206 -	  mate.set(v,u);
   1.207 -	} 
   1.208 -      } 
   1.209 -    }
   1.210 -    //iterable boolmap?
   1.211 -
   1.212 -
   1.213 -    ///Writes the matching stored to an \c Edge map of \c bools.
   1.214 -
   1.215 -    ///Writes the matching stored to an \c Edge map of \c bools. This
   1.216 -    ///map will have the property that there are no two adjacent edges
   1.217 -    ///\c e, \c f with \c map[e]=map[f]=true. The edges \c e with \c
   1.218 -    ///map[e]=true form the matching.
   1.219 -    template<typename EMapB>
   1.220 -    void writeEMapBool (EMapB& map) const {
   1.221 -      for(UndirEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
   1.222 -
   1.223 -      typename Graph::template NodeMap<bool> todo(g,true); 
   1.224 -      for(NodeIt v(g); v!=INVALID; ++v) {
   1.225 -	if ( todo[v] && mate[v]!=INVALID ) {
   1.226 -	  Node u=mate[v];
   1.227 -	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   1.228 -	    if ( g.target(e) == u ) {
   1.229 -	      map.set(e,true);
   1.230 -	      todo.set(u,false);
   1.231 -	      todo.set(v,false);
   1.232 -	      break;
   1.233 -	    }
   1.234 -	  }
   1.235 -	}
   1.236 -      } 
   1.237 -    }
   1.238 -
   1.239 -
   1.240 -    ///Writes the canonical decomposition of the graph after running
   1.241 -    ///the algorithm.
   1.242 -
   1.243 -    ///After calling any run methods of the class, and before calling
   1.244 -    ///\ref resetPos(), it writes the Gallai-Edmonds canonical
   1.245 -    ///decomposition of the graph. \c map must be a node map
   1.246 -    ///of \ref pos_enum 's.
   1.247 -    template<typename NMapEnum>
   1.248 -    void writePos (NMapEnum& map) const {
   1.249 -      for(NodeIt v(g); v!=INVALID; ++v)  map.set(v,position[v]);
   1.250 -    }
   1.251 -
   1.252 -  private: 
   1.253 -
   1.254 -    void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   1.255 -		    UFE& blossom, UFE& tree);
   1.256 -
   1.257 -    void normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
   1.258 -		    UFE& blossom, UFE& tree);
   1.259 -
   1.260 -    bool noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
   1.261 -		      UFE& blossom, UFE& tree, std::queue<Node>& Q);
   1.262 -
   1.263 -    void shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
   1.264 -		    UFE& blossom, UFE& tree, std::queue<Node>& Q);
   1.265 -
   1.266 -    void augment(Node x, typename Graph::NodeMap<Node>& ear,  
   1.267 -		 UFE& blossom, UFE& tree);
   1.268 -  };
   1.269 -
   1.270 -
   1.271 -  // **********************************************************************
   1.272 -  //  IMPLEMENTATIONS
   1.273 -  // **********************************************************************
   1.274 -
   1.275 -
   1.276 -  template <typename Graph>
   1.277 -  void MaxMatching<Graph>::run() {
   1.278 -    if ( countUndirEdges(g) < HEUR_density*countNodes(g) ) {
   1.279 -      greedyMatching();
   1.280 -      runEdmonds(1);
   1.281 -    } else runEdmonds(0);
   1.282 -  }
   1.283 -
   1.284 -
   1.285 -  template <typename Graph>
   1.286 -  void MaxMatching<Graph>::runEdmonds( int heur=1 ) {
   1.287 -      
   1.288 -    std::cout<<"Entering runEdmonds"<<std::endl;
   1.289 -
   1.290 -    typename Graph::template NodeMap<Node> ear(g,INVALID); 
   1.291 -    //undefined for the base nodes of the blossoms (i.e. for the
   1.292 -    //representative elements of UFE blossom) and for the nodes in C
   1.293 - 
   1.294 -    typename UFE::MapType blossom_base(g);
   1.295 -    UFE blossom(blossom_base);
   1.296 -    typename UFE::MapType tree_base(g);
   1.297 -    UFE tree(tree_base);
   1.298 -
   1.299 -    for(NodeIt v(g); v!=INVALID; ++v) {
   1.300 -      if ( position[v]==C && mate[v]==INVALID ) {
   1.301 -	blossom.insert(v);
   1.302 -	tree.insert(v); 
   1.303 -	position.set(v,D);
   1.304 -	if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
   1.305 -	else normShrink( v, ear, blossom, tree );
   1.306 -      }
   1.307 -    }
   1.308 -
   1.309 -
   1.310 -    std::cout<<" runEdmonds end"<<std::endl;
   1.311 -
   1.312 -
   1.313 -  }
   1.314 -    
   1.315 -  template <typename Graph>
   1.316 -  void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   1.317 -				      UFE& blossom, UFE& tree) {
   1.318 -     
   1.319 -
   1.320 -    std::cout<<"Entering lateShrink"<<std::endl;
   1.321 -
   1.322 -
   1.323 -    std::queue<Node> Q;   //queue of the totally unscanned nodes
   1.324 -    Q.push(v);  
   1.325 -    std::queue<Node> R;   
   1.326 -    //queue of the nodes which must be scanned for a possible shrink
   1.327 -      
   1.328 -    while ( !Q.empty() ) {
   1.329 -      Node x=Q.front();
   1.330 -      Q.pop();
   1.331 -      if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return;
   1.332 -      else R.push(x);
   1.333 -    }
   1.334 -      
   1.335 -    while ( !R.empty() ) {
   1.336 -      Node x=R.front();
   1.337 -      R.pop();
   1.338 -	
   1.339 -      for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
   1.340 -	Node y=g.target(e);
   1.341 -
   1.342 -	if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { 
   1.343 -	  //x and y must be in the same tree//biztos? az oddbol d-belive lettek is?
   1.344 -	
   1.345 -	  typename Graph::template NodeMap<bool> path(g,false);
   1.346 -
   1.347 -	  Node b=blossom.find(x);
   1.348 -	  path.set(b,true);
   1.349 -	  b=mate[b];
   1.350 -	  while ( b!=INVALID ) { 
   1.351 -	    b=blossom.find(ear[b]);
   1.352 -	    path.set(b,true);
   1.353 -	    b=mate[b];
   1.354 -	  } //going till the root
   1.355 -	
   1.356 -	  Node top=y;
   1.357 -	  Node middle=blossom.find(top);
   1.358 -	  Node bottom=x;
   1.359 -	  while ( !path[middle] )
   1.360 -	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   1.361 -		  
   1.362 -	  Node base=middle;
   1.363 -	  top=x;
   1.364 -	  middle=blossom.find(top);
   1.365 -	  bottom=y;
   1.366 -	  Node blossom_base=blossom.find(base);
   1.367 -	  while ( middle!=blossom_base )
   1.368 -	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   1.369 -		  
   1.370 -	  blossom.makeRep(base);
   1.371 -	} // if shrink is needed
   1.372 -
   1.373 -	//most nehany odd node is d-beli lett, es rajuk az is megnezendo hogy mely d-beliekkel szonszedosak mas faban
   1.374 -
   1.375 -	while ( !Q.empty() ) {
   1.376 -	  Node x=Q.front();
   1.377 -	  Q.pop();
   1.378 -	  if ( noShrinkStep(x, ear, blossom, tree, Q) ) return;
   1.379 -	  else R.push(x);
   1.380 -	}
   1.381 -      } //for e
   1.382 -    } // while ( !R.empty() )
   1.383 -  }
   1.384 -
   1.385 -
   1.386 -  template <typename Graph>
   1.387 -  void MaxMatching<Graph>::normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
   1.388 -				      UFE& blossom, UFE& tree) {
   1.389 -
   1.390 -
   1.391 -    std::cout<<"Entering normShrink with node "<<g.id(v)<<std::endl;
   1.392 -
   1.393 -
   1.394 -    std::queue<Node> Q;   //queue of the unscanned nodes
   1.395 -    Q.push(v);  
   1.396 -    while ( !Q.empty() ) {
   1.397 -
   1.398 -      std::cout<<"beginning of norm while"<<std::endl;
   1.399 -
   1.400 -      Node x=Q.front();
   1.401 -      Q.pop();
   1.402 -	
   1.403 -      for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
   1.404 -
   1.405 -
   1.406 -	for( IncEdgeIt f(g,x); f!=INVALID; ++f ) {
   1.407 -	  std::cout<<"Starting for." <<std::endl;
   1.408 -	  std::cout<<"edges " << g.id(f)<< " : " << g.id(g.target(f))<<std::endl;
   1.409 -	  std::cout<<"Ending for." <<std::endl;
   1.410 -	}
   1.411 -
   1.412 -	std::cout<<"Ending the whole for." <<std::endl;
   1.413 -	std::cout<<"for (In normShrink) with edge " << g.id(e)<< " : " << g.id(x);
   1.414 -
   1.415 -	Node y=g.target(e);
   1.416 -	
   1.417 -	std::cout<<" "<<g.id(y)<<std::endl;
   1.418 -	      
   1.419 -	switch ( position[y] ) {
   1.420 -	case D:          //x and y must be in the same tree //asszem nem!!!
   1.421 -
   1.422 -	  std::cout<<" pos[y] " << position[y]<<std::endl;
   1.423 -	  std::cout<<" blossom.find(x) ="<< g.id(blossom.find(x))<<std::endl;
   1.424 -	  std::cout<<" blossom.find(y) ="<< g.id(blossom.find(y))<<std::endl;
   1.425 -
   1.426 -
   1.427 -	  if ( blossom.find(x) != blossom.find(y) ) { //shrink
   1.428 -	    typename Graph::template NodeMap<bool> path(g,false);
   1.429 -	      
   1.430 -	    Node b=blossom.find(x);
   1.431 -	    path.set(b,true);
   1.432 -	    b=mate[b];
   1.433 -	    while ( b!=INVALID ) { 
   1.434 -	      b=blossom.find(ear[b]);
   1.435 -	      path.set(b,true);
   1.436 -	      b=mate[b];
   1.437 -	    } //going till the root
   1.438 -	
   1.439 -	    Node top=y;
   1.440 -	    Node middle=blossom.find(top);
   1.441 -	    Node bottom=x;
   1.442 -	    while ( !path[middle] )
   1.443 -	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   1.444 -		
   1.445 -	    Node base=middle;
   1.446 -	    top=x;
   1.447 -	    middle=blossom.find(top);
   1.448 -	    bottom=y;
   1.449 -	    Node blossom_base=blossom.find(base);
   1.450 -	    while ( middle!=blossom_base )
   1.451 -	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   1.452 -		
   1.453 -	    blossom.makeRep(base);
   1.454 -	  }
   1.455 -	  break;
   1.456 -	case C:
   1.457 -	  if ( mate[y]!=INVALID ) {   //grow
   1.458 -	    
   1.459 -	    std::cout<<"grow"<<std::endl;
   1.460 -
   1.461 -	    ear.set(y,x);
   1.462 -	    Node w=mate[y];
   1.463 -	    blossom.insert(w);
   1.464 -	    position.set(y,A); 
   1.465 -	    position.set(w,D); 
   1.466 -	    tree.insert(y);
   1.467 -	    tree.insert(w);
   1.468 -	    tree.join(y,blossom.find(x));  
   1.469 -	    tree.join(w,y);  
   1.470 -	    Q.push(w);
   1.471 -
   1.472 -	  } else {                 //augment  
   1.473 -
   1.474 -	    std::cout<<"augment"<<std::endl;
   1.475 -
   1.476 -	    augment(x, ear, blossom, tree);
   1.477 -	    mate.set(x,y);
   1.478 -	    mate.set(y,x);
   1.479 -	    return;
   1.480 -	  } //if 
   1.481 -
   1.482 -	  std::cout<<"end c eset"<<std::endl;
   1.483 -	  break;
   1.484 -	default: break;
   1.485 -	}
   1.486 -	std::cout<<"end switch"<<std::endl;
   1.487 -      }
   1.488 -    }
   1.489 -  }
   1.490 -
   1.491 -  template <typename Graph>
   1.492 -  void MaxMatching<Graph>::greedyMatching() {
   1.493 -    for(NodeIt v(g); v!=INVALID; ++v)
   1.494 -      if ( mate[v]==INVALID ) {
   1.495 -	for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
   1.496 -	  Node y=g.target(e);
   1.497 -	  if ( mate[y]==INVALID && y!=v ) {
   1.498 -	    mate.set(v,y);
   1.499 -	    mate.set(y,v);
   1.500 -	    break;
   1.501 -	  }
   1.502 -	}
   1.503 -      } 
   1.504 -  }
   1.505 -   
   1.506 -  template <typename Graph>
   1.507 -  int MaxMatching<Graph>::size() const {
   1.508 -    int s=0;
   1.509 -    for(NodeIt v(g); v!=INVALID; ++v) {
   1.510 -      if ( mate[v]!=INVALID ) {
   1.511 -	++s;
   1.512 -      }
   1.513 -    }
   1.514 -    return (int)s/2;
   1.515 -  }
   1.516 -
   1.517 -  template <typename Graph>
   1.518 -  void MaxMatching<Graph>::resetPos() {
   1.519 -    for(NodeIt v(g); v!=INVALID; ++v)
   1.520 -      position.set(v,C);      
   1.521 -  }
   1.522 -
   1.523 -  template <typename Graph>
   1.524 -  void MaxMatching<Graph>::resetMatching() {
   1.525 -    for(NodeIt v(g); v!=INVALID; ++v)
   1.526 -      mate.set(v,INVALID);      
   1.527 -  }
   1.528 -
   1.529 -  template <typename Graph>
   1.530 -  bool MaxMatching<Graph>::noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
   1.531 -					UFE& blossom, UFE& tree, std::queue<Node>& Q) {
   1.532 -    for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
   1.533 -      Node y=g.target(e);
   1.534 -	
   1.535 -      if ( position[y]==C ) {
   1.536 -	if ( mate[y]!=INVALID ) {       //grow
   1.537 -	  ear.set(y,x);
   1.538 -	  Node w=mate[y];
   1.539 -	  blossom.insert(w);
   1.540 -	  position.set(y,A);
   1.541 -	  position.set(w,D);
   1.542 -	  tree.insert(y);
   1.543 -	  tree.insert(w);
   1.544 -	  tree.join(y,blossom.find(x));  
   1.545 -	  tree.join(w,y);  
   1.546 -	  Q.push(w);
   1.547 -	} else {                      //augment 
   1.548 -	  augment(x, ear, blossom, tree);
   1.549 -	  mate.set(x,y);
   1.550 -	  mate.set(y,x);
   1.551 -	  return true;
   1.552 -	}
   1.553 -      }
   1.554 -    }
   1.555 -    return false;
   1.556 -  }
   1.557 -
   1.558 -  template <typename Graph>
   1.559 -  void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
   1.560 -				      UFE& blossom, UFE& tree, std::queue<Node>& Q) {
   1.561 -    ear.set(top,bottom);
   1.562 -    Node t=top;
   1.563 -    while ( t!=middle ) {
   1.564 -      Node u=mate[t];
   1.565 -      t=ear[u];
   1.566 -      ear.set(t,u);
   1.567 -    } 
   1.568 -    bottom=mate[middle];
   1.569 -    position.set(bottom,D);
   1.570 -    Q.push(bottom);
   1.571 -    top=ear[bottom];		
   1.572 -    Node oldmiddle=middle;
   1.573 -    middle=blossom.find(top);
   1.574 -    tree.erase(bottom);
   1.575 -    tree.erase(oldmiddle);
   1.576 -    blossom.insert(bottom);
   1.577 -    blossom.join(bottom, oldmiddle);
   1.578 -    blossom.join(top, oldmiddle);
   1.579 -  }
   1.580 -
   1.581 -  template <typename Graph>
   1.582 -  void MaxMatching<Graph>::augment(Node x, typename Graph::NodeMap<Node>& ear,  
   1.583 -				   UFE& blossom, UFE& tree) { 
   1.584 -    Node v=mate[x];
   1.585 -    while ( v!=INVALID ) {
   1.586 -	
   1.587 -      Node u=ear[v];
   1.588 -      mate.set(v,u);
   1.589 -      Node tmp=v;
   1.590 -      v=mate[u];
   1.591 -      mate.set(u,tmp);
   1.592 -    }
   1.593 -    typename UFE::ItemIt it;
   1.594 -    for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) {   
   1.595 -      if ( position[it] == D ) {
   1.596 -	typename UFE::ItemIt b_it;
   1.597 -	for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) {  
   1.598 -	  position.set( b_it ,C);
   1.599 -	}
   1.600 -	blossom.eraseClass(it);
   1.601 -      } else position.set( it ,C);
   1.602 -    }
   1.603 -    tree.eraseClass(x);
   1.604 -
   1.605 -  }
   1.606 -
   1.607 -  /// @}
   1.608 -  
   1.609 -} //END OF NAMESPACE LEMON
   1.610 -
   1.611 -#endif //EDMONDS_H