src/work/jacint/preflow_excess.h
changeset 1365 c280de819a73
parent 1364 ee5959aa4410
child 1366 d00b85f8be45
     1.1 --- a/src/work/jacint/preflow_excess.h	Sun Apr 17 18:57:22 2005 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,664 +0,0 @@
     1.4 -// -*- C++ -*-
     1.5 -
     1.6 -//run gyorsan tudna adni a minmincutot a 2 fazis elejen , ne vegyuk be konstruktorba egy cutmapet?
     1.7 -//constzero jo igy?
     1.8 -
     1.9 -//majd marci megmondja betegyem-e bfs-t meg resgraphot
    1.10 -
    1.11 -//constzero helyett az kell hogy flow-e vagy csak preflow, ha flow akor csak
    1.12 -//excess[t]-t kell szmaolni
    1.13 -
    1.14 -/*
    1.15 -Heuristics: 
    1.16 - 2 phase
    1.17 - gap
    1.18 - list 'level_list' on the nodes on level i implemented by hand
    1.19 - stack 'active' on the active nodes on level i implemented by hand
    1.20 - runs heuristic 'highest label' for H1*n relabels
    1.21 - runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
    1.22 - 
    1.23 -Parameters H0 and H1 are initialized to 20 and 10.
    1.24 -
    1.25 -Constructors:
    1.26 -
    1.27 -Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if 
    1.28 -     FlowMap is not constant zero, and should be true if it is
    1.29 -
    1.30 -Members:
    1.31 -
    1.32 -void run()
    1.33 -
    1.34 -T flowValue() : returns the value of a maximum flow
    1.35 -
    1.36 -void minMinCut(CutMap& M) : sets M to the characteristic vector of the 
    1.37 -     minimum min cut. M should be a map of bools initialized to false.
    1.38 -
    1.39 -void maxMinCut(CutMap& M) : sets M to the characteristic vector of the 
    1.40 -     maximum min cut. M should be a map of bools initialized to false.
    1.41 -
    1.42 -void minCut(CutMap& M) : sets M to the characteristic vector of 
    1.43 -     a min cut. M should be a map of bools initialized to false.
    1.44 -
    1.45 -FIXME reset
    1.46 -
    1.47 -*/
    1.48 -
    1.49 -#ifndef LEMON_PREFLOW_H
    1.50 -#define LEMON_PREFLOW_H
    1.51 -
    1.52 -#define H0 20
    1.53 -#define H1 1
    1.54 -
    1.55 -#include <vector>
    1.56 -#include <queue>
    1.57 -#include <stack>
    1.58 -
    1.59 -namespace lemon {
    1.60 -
    1.61 -  template <typename Graph, typename T, 
    1.62 -	    typename CapMap=typename Graph::template EdgeMap<T>, 
    1.63 -            typename FlowMap=typename Graph::template EdgeMap<T> >
    1.64 -  class Preflow {
    1.65 -    
    1.66 -    typedef typename Graph::Node Node;
    1.67 -    typedef typename Graph::Edge Edge;
    1.68 -    typedef typename Graph::NodeIt NodeIt;
    1.69 -    typedef typename Graph::OutEdgeIt OutEdgeIt;
    1.70 -    typedef typename Graph::InEdgeIt InEdgeIt;
    1.71 -    
    1.72 -    const Graph& G;
    1.73 -    Node s;
    1.74 -    Node t;
    1.75 -    const CapMap& capacity;  
    1.76 -    FlowMap& flow;
    1.77 -    T value;
    1.78 -    bool constzero;
    1.79 -    bool isflow;
    1.80 -
    1.81 -  public:
    1.82 -    Preflow(Graph& _G, Node _s, Node _t, CapMap& _capacity, 
    1.83 -	    FlowMap& _flow, bool _constzero, bool _isflow ) :
    1.84 -      G(_G), s(_s), t(_t), capacity(_capacity), flow(_flow), constzero(_constzero), isflow(_isflow) {}
    1.85 -    
    1.86 -    
    1.87 -    void run() {
    1.88 -      
    1.89 -      value=0;                //for the subsequent runs
    1.90 -
    1.91 -      bool phase=0;        //phase 0 is the 1st phase, phase 1 is the 2nd
    1.92 -      int n=G.nodeNum(); 
    1.93 -      int heur0=(int)(H0*n);  //time while running 'bound decrease' 
    1.94 -      int heur1=(int)(H1*n);  //time while running 'highest label'
    1.95 -      int heur=heur1;         //starting time interval (#of relabels)
    1.96 -      bool what_heur=1;       
    1.97 -      /*
    1.98 -	what_heur is 0 in case 'bound decrease' 
    1.99 -	and 1 in case 'highest label'
   1.100 -      */
   1.101 -      bool end=false;     
   1.102 -      /*
   1.103 -	Needed for 'bound decrease', 'true'
   1.104 -	means no active nodes are above bound b.
   1.105 -      */
   1.106 -      int relabel=0;
   1.107 -      int k=n-2;  //bound on the highest level under n containing a node
   1.108 -      int b=k;    //bound on the highest level under n of an active node
   1.109 -      
   1.110 -      typename Graph::template NodeMap<int> level(G,n);      
   1.111 -      typename Graph::template NodeMap<T> excess(G); 
   1.112 -
   1.113 -      std::vector<std::stack<Node> > active(n);
   1.114 -      /*      std::vector<Node> active(n-1,INVALID);
   1.115 -      typename Graph::template NodeMap<Node> next(G,INVALID);
   1.116 -      //Stack of the active nodes in level i < n.
   1.117 -      //We use it in both phases.*/
   1.118 -
   1.119 -      typename Graph::template NodeMap<Node> left(G,INVALID);
   1.120 -      typename Graph::template NodeMap<Node> right(G,INVALID);
   1.121 -      std::vector<Node> level_list(n,INVALID);
   1.122 -      /*
   1.123 -	List of the nodes in level i<n.
   1.124 -      */
   1.125 -
   1.126 -
   1.127 -      if ( constzero ) {
   1.128 -     
   1.129 -	/*Reverse_bfs from t, to find the starting level.*/
   1.130 -	level.set(t,0);
   1.131 -	std::queue<Node> bfs_queue;
   1.132 -	bfs_queue.push(t);
   1.133 -	
   1.134 -	while (!bfs_queue.empty()) {
   1.135 -	  
   1.136 -	  Node v=bfs_queue.front();	
   1.137 -	  bfs_queue.pop();
   1.138 -	  int l=level[v]+1;
   1.139 -	  
   1.140 -	  InEdgeIt e;
   1.141 -	  for(G.first(e,v); G.valid(e); G.next(e)) {
   1.142 -	    Node w=G.source(e);
   1.143 -	    if ( level[w] == n && w != s ) {
   1.144 -	      bfs_queue.push(w);
   1.145 -	      Node first=level_list[l];
   1.146 -	      if ( G.valid(first) ) left.set(first,w);
   1.147 -	      right.set(w,first);
   1.148 -	      level_list[l]=w;
   1.149 -	      level.set(w, l);
   1.150 -	    }
   1.151 -	  }
   1.152 -	}
   1.153 -
   1.154 -	//the starting flow
   1.155 -	OutEdgeIt e;
   1.156 -	for(G.first(e,s); G.valid(e); G.next(e)) 
   1.157 -	{
   1.158 -	  T c=capacity[e];
   1.159 -	  if ( c == 0 ) continue;
   1.160 -	  Node w=G.target(e);
   1.161 -	  if ( level[w] < n ) {	  
   1.162 -	    if ( excess[w] == 0 && w!=t ) active[level[w]].push(w);
   1.163 -	    flow.set(e, c); 
   1.164 -	    excess.set(w, excess[w]+c);
   1.165 -	  }
   1.166 -	}
   1.167 -      }
   1.168 -      else 
   1.169 -      {
   1.170 -	
   1.171 -	/*
   1.172 -	  Reverse_bfs from t in the residual graph, 
   1.173 -	  to find the starting level.
   1.174 -	*/
   1.175 -	level.set(t,0);
   1.176 -	std::queue<Node> bfs_queue;
   1.177 -	bfs_queue.push(t);
   1.178 -	
   1.179 -	while (!bfs_queue.empty()) {
   1.180 -	  
   1.181 -	  Node v=bfs_queue.front();	
   1.182 -	  bfs_queue.pop();
   1.183 -	  int l=level[v]+1;
   1.184 -	  
   1.185 -	  InEdgeIt e;
   1.186 -	  for(G.first(e,v); G.valid(e); G.next(e)) {
   1.187 -	    if ( capacity[e] == flow[e] ) continue;
   1.188 -	    Node w=G.source(e);
   1.189 -	    if ( level[w] == n && w != s ) {
   1.190 -	      bfs_queue.push(w);
   1.191 -	      Node first=level_list[l];
   1.192 -	      if ( G.valid(first) ) left.set(first,w);
   1.193 -	      right.set(w,first);
   1.194 -	      level_list[l]=w;
   1.195 -	      level.set(w, l);
   1.196 -	    }
   1.197 -	  }
   1.198 -	    
   1.199 -	  OutEdgeIt f;
   1.200 -	  for(G.first(f,v); G.valid(f); G.next(f)) {
   1.201 -	    if ( 0 == flow[f] ) continue;
   1.202 -	    Node w=G.target(f);
   1.203 -	    if ( level[w] == n && w != s ) {
   1.204 -	      bfs_queue.push(w);
   1.205 -	      Node first=level_list[l];
   1.206 -	      if ( G.valid(first) ) left.set(first,w);
   1.207 -	      right.set(w,first);
   1.208 -	      level_list[l]=w;
   1.209 -	      level.set(w, l);
   1.210 -	    }
   1.211 -	  }
   1.212 -	}
   1.213 -      
   1.214 -	
   1.215 -	/*
   1.216 -	  Counting the excess
   1.217 -	*/
   1.218 -
   1.219 -	if ( !isflow ) {
   1.220 -	  NodeIt v;
   1.221 -	  for(G.first(v); G.valid(v); G.next(v)) {
   1.222 -	    T exc=0;
   1.223 -	    
   1.224 -	    InEdgeIt e;
   1.225 -	    for(G.first(e,v); G.valid(e); G.next(e)) exc+=flow[e];
   1.226 -	    OutEdgeIt f;
   1.227 -	    for(G.first(f,v); G.valid(f); G.next(f)) exc-=flow[f];
   1.228 -	    
   1.229 -	    excess.set(v,exc);	  
   1.230 -	    
   1.231 -	    //putting the active nodes into the stack
   1.232 -	    int lev=level[v];
   1.233 -	    if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
   1.234 -	  }
   1.235 -	} else {
   1.236 -	  T exc=0;
   1.237 -	    
   1.238 -	  InEdgeIt e;
   1.239 -	  for(G.first(e,t); G.valid(e); G.next(e)) exc+=flow[e];
   1.240 -	  OutEdgeIt f;
   1.241 -	  for(G.first(f,t); G.valid(f); G.next(f)) exc-=flow[f];
   1.242 -
   1.243 -	  excess.set(t,exc);	  
   1.244 -	}
   1.245 -
   1.246 -
   1.247 -	//the starting flow
   1.248 -	OutEdgeIt e;
   1.249 -	for(G.first(e,s); G.valid(e); G.next(e)) 
   1.250 -	{
   1.251 -	  T rem=capacity[e]-flow[e];
   1.252 -	  if ( rem == 0 ) continue;
   1.253 -	  Node w=G.target(e);
   1.254 -	  if ( level[w] < n ) {	  
   1.255 -	    if ( excess[w] == 0 && w!=t ) active[level[w]].push(w);
   1.256 -	    flow.set(e, capacity[e]); 
   1.257 -	    excess.set(w, excess[w]+rem);
   1.258 -	  }
   1.259 -	}
   1.260 -	
   1.261 -	InEdgeIt f;
   1.262 -	for(G.first(f,s); G.valid(f); G.next(f)) 
   1.263 -	{
   1.264 -	  if ( flow[f] == 0 ) continue;
   1.265 -	  Node w=G.source(f);
   1.266 -	  if ( level[w] < n ) {	  
   1.267 -	    if ( excess[w] == 0 && w!=t ) active[level[w]].push(w);
   1.268 -	    excess.set(w, excess[w]+flow[f]);
   1.269 -	    flow.set(f, 0); 
   1.270 -	  }
   1.271 -	}
   1.272 -      }
   1.273 -
   1.274 -
   1.275 -
   1.276 -
   1.277 -      /* 
   1.278 -	 End of preprocessing 
   1.279 -      */
   1.280 -
   1.281 -
   1.282 -
   1.283 -      /*
   1.284 -	Push/relabel on the highest level active nodes.
   1.285 -      */	
   1.286 -      while ( true ) {
   1.287 -	
   1.288 -	if ( b == 0 ) {
   1.289 -	  if ( phase ) break;
   1.290 -	  
   1.291 -	  if ( !what_heur && !end && k > 0 ) {
   1.292 -	    b=k;
   1.293 -	    end=true;
   1.294 -	  } else {
   1.295 -	    phase=1;
   1.296 -	    level.set(s,0);
   1.297 -	    std::queue<Node> bfs_queue;
   1.298 -	    bfs_queue.push(s);
   1.299 -	    
   1.300 -	    while (!bfs_queue.empty()) {
   1.301 -	      
   1.302 -	      Node v=bfs_queue.front();	
   1.303 -	      bfs_queue.pop();
   1.304 -	      int l=level[v]+1;
   1.305 -	      
   1.306 -	      InEdgeIt e;
   1.307 -	      for(G.first(e,v); G.valid(e); G.next(e)) {
   1.308 -		if ( capacity[e] == flow[e] ) continue;
   1.309 -		Node u=G.source(e);
   1.310 -		if ( level[u] >= n ) { 
   1.311 -		  bfs_queue.push(u);
   1.312 -		  level.set(u, l);
   1.313 -		  if ( excess[u] > 0 ) active[l].push(u);
   1.314 -		}
   1.315 -	      }
   1.316 -	    
   1.317 -	      OutEdgeIt f;
   1.318 -	      for(G.first(f,v); G.valid(f); G.next(f)) {
   1.319 -		if ( 0 == flow[f] ) continue;
   1.320 -		Node u=G.target(f);
   1.321 -		if ( level[u] >= n ) { 
   1.322 -		  bfs_queue.push(u);
   1.323 -		  level.set(u, l);
   1.324 -		  if ( excess[u] > 0 ) active[l].push(u);
   1.325 -		}
   1.326 -	      }
   1.327 -	    }
   1.328 -	    b=n-2;
   1.329 -	    }
   1.330 -	    
   1.331 -	}
   1.332 -	  
   1.333 -
   1.334 -	///	  
   1.335 -	if ( active[b].empty() ) --b; 
   1.336 -	else {
   1.337 -	  end=false;  
   1.338 -
   1.339 -	  Node w=active[b].top();
   1.340 -	  active[b].pop();
   1.341 -	  int lev=level[w];
   1.342 -	  T exc=excess[w];
   1.343 -	  int newlevel=n;       //bound on the next level of w
   1.344 -	  
   1.345 -	  OutEdgeIt e;
   1.346 -	  for(G.first(e,w); G.valid(e); G.next(e)) {
   1.347 -	    
   1.348 -	    if ( flow[e] == capacity[e] ) continue; 
   1.349 -	    Node v=G.target(e);            
   1.350 -	    //e=wv	    
   1.351 -	    
   1.352 -	    if( lev > level[v] ) {      
   1.353 -	      /*Push is allowed now*/
   1.354 -	      
   1.355 -	      if ( excess[v]==0 && v!=t && v!=s ) {
   1.356 -		int lev_v=level[v];
   1.357 -		active[lev_v].push(v);
   1.358 -	      }
   1.359 -	      
   1.360 -	      T cap=capacity[e];
   1.361 -	      T flo=flow[e];
   1.362 -	      T remcap=cap-flo;
   1.363 -	      
   1.364 -	      if ( remcap >= exc ) {       
   1.365 -		/*A nonsaturating push.*/
   1.366 -		
   1.367 -		flow.set(e, flo+exc);
   1.368 -		excess.set(v, excess[v]+exc);
   1.369 -		exc=0;
   1.370 -		break; 
   1.371 -		
   1.372 -	      } else { 
   1.373 -		/*A saturating push.*/
   1.374 -		
   1.375 -		flow.set(e, cap);
   1.376 -		excess.set(v, excess[v]+remcap);
   1.377 -		exc-=remcap;
   1.378 -	      }
   1.379 -	    } else if ( newlevel > level[v] ){
   1.380 -	      newlevel = level[v];
   1.381 -	    }	    
   1.382 -	    
   1.383 -	  } //for out edges wv 
   1.384 -	
   1.385 -	
   1.386 -	if ( exc > 0 ) {	
   1.387 -	  InEdgeIt e;
   1.388 -	  for(G.first(e,w); G.valid(e); G.next(e)) {
   1.389 -	    
   1.390 -	    if( flow[e] == 0 ) continue; 
   1.391 -	    Node v=G.source(e);  
   1.392 -	    //e=vw
   1.393 -	    
   1.394 -	    if( lev > level[v] ) {  
   1.395 -	      /*Push is allowed now*/
   1.396 -	      
   1.397 -	      if ( excess[v]==0 && v!=t && v!=s ) {
   1.398 -		int lev_v=level[v];
   1.399 -		active[lev_v].push(v);
   1.400 -	      }
   1.401 -	      
   1.402 -	      T flo=flow[e];
   1.403 -	      
   1.404 -	      if ( flo >= exc ) { 
   1.405 -		/*A nonsaturating push.*/
   1.406 -		
   1.407 -		flow.set(e, flo-exc);
   1.408 -		excess.set(v, excess[v]+exc);
   1.409 -		exc=0;
   1.410 -		break; 
   1.411 -	      } else {                                               
   1.412 -		/*A saturating push.*/
   1.413 -		
   1.414 -		excess.set(v, excess[v]+flo);
   1.415 -		exc-=flo;
   1.416 -		flow.set(e,0);
   1.417 -	      }  
   1.418 -	    } else if ( newlevel > level[v] ) {
   1.419 -	      newlevel = level[v];
   1.420 -	    }	    
   1.421 -	  } //for in edges vw
   1.422 -	  
   1.423 -	} // if w still has excess after the out edge for cycle
   1.424 -	
   1.425 -	excess.set(w, exc);
   1.426 -	///	push
   1.427 -
   1.428 - 
   1.429 -	/*
   1.430 -	  Relabel
   1.431 -	*/
   1.432 -	
   1.433 -
   1.434 -	if ( exc > 0 ) {
   1.435 -	  //now 'lev' is the old level of w
   1.436 -	
   1.437 -	  if ( phase ) {
   1.438 -	    level.set(w,++newlevel);
   1.439 -	    active[newlevel].push(w);
   1.440 -	    b=newlevel;
   1.441 -	  } else {
   1.442 -	    //unlacing starts
   1.443 -	    Node right_n=right[w];
   1.444 -	    Node left_n=left[w];
   1.445 -
   1.446 -	    if ( G.valid(right_n) ) {
   1.447 -	      if ( G.valid(left_n) ) {
   1.448 -		right.set(left_n, right_n);
   1.449 -		left.set(right_n, left_n);
   1.450 -	      } else {
   1.451 -		level_list[lev]=right_n;   
   1.452 -		left.set(right_n, INVALID);
   1.453 -	      } 
   1.454 -	    } else {
   1.455 -	      if ( G.valid(left_n) ) {
   1.456 -		right.set(left_n, INVALID);
   1.457 -	      } else { 
   1.458 -		level_list[lev]=INVALID;   
   1.459 -	      } 
   1.460 -	    } 
   1.461 -	    //unlacing ends
   1.462 -		
   1.463 -	    if ( !G.valid(level_list[lev]) ) {
   1.464 -	      
   1.465 -	       //gapping starts
   1.466 -	      for (int i=lev; i!=k ; ) {
   1.467 -		Node v=level_list[++i];
   1.468 -		while ( G.valid(v) ) {
   1.469 -		  level.set(v,n);
   1.470 -		  v=right[v];
   1.471 -		}
   1.472 -		level_list[i]=INVALID;
   1.473 -		if ( !what_heur ) {
   1.474 -		  while ( !active[i].empty() ) {
   1.475 -		    active[i].pop();    //FIXME: ezt szebben kene
   1.476 -		  }
   1.477 -		}	     
   1.478 -	      }
   1.479 -
   1.480 -	      level.set(w,n);
   1.481 -	      b=lev-1;
   1.482 -	      k=b;
   1.483 -	      //gapping ends
   1.484 -	    
   1.485 -	    } else {
   1.486 -	      
   1.487 -	      if ( newlevel == n ) level.set(w,n); 
   1.488 -	      else {
   1.489 -		level.set(w,++newlevel);
   1.490 -		active[newlevel].push(w);
   1.491 -		if ( what_heur ) b=newlevel;
   1.492 -		if ( k < newlevel ) ++k;      //now k=newlevel
   1.493 -		Node first=level_list[newlevel];
   1.494 -		if ( G.valid(first) ) left.set(first,w);
   1.495 -		right.set(w,first);
   1.496 -		left.set(w,INVALID);
   1.497 -		level_list[newlevel]=w;
   1.498 -	      }
   1.499 -	    }
   1.500 -
   1.501 -
   1.502 -	    ++relabel; 
   1.503 -	    if ( relabel >= heur ) {
   1.504 -	      relabel=0;
   1.505 -	      if ( what_heur ) {
   1.506 -		what_heur=0;
   1.507 -		heur=heur0;
   1.508 -		end=false;
   1.509 -	      } else {
   1.510 -		what_heur=1;
   1.511 -		heur=heur1;
   1.512 -		b=k; 
   1.513 -	      }
   1.514 -	    }
   1.515 -	  } //phase 0
   1.516 -	  
   1.517 -	  
   1.518 -	} // if ( exc > 0 )
   1.519 -	  
   1.520 -	
   1.521 -	}  // if stack[b] is nonempty
   1.522 -	
   1.523 -      } // while(true)
   1.524 -
   1.525 -
   1.526 -      value = excess[t];
   1.527 -      /*Max flow value.*/
   1.528 -     
   1.529 -    } //void run()
   1.530 -
   1.531 -
   1.532 -
   1.533 -
   1.534 -
   1.535 -    /*
   1.536 -      Returns the maximum value of a flow.
   1.537 -     */
   1.538 -
   1.539 -    T flowValue() {
   1.540 -      return value;
   1.541 -    }
   1.542 -
   1.543 -
   1.544 -    FlowMap Flow() {
   1.545 -      return flow;
   1.546 -      }
   1.547 -
   1.548 -
   1.549 -    void Flow(FlowMap& _flow ) {
   1.550 -      NodeIt v;
   1.551 -      for(G.first(v) ; G.valid(v); G.next(v))
   1.552 -	_flow.set(v,flow[v]);
   1.553 -    }
   1.554 -
   1.555 -
   1.556 -
   1.557 -    /*
   1.558 -      Returns the minimum min cut, by a bfs from s in the residual graph.
   1.559 -    */
   1.560 -   
   1.561 -    template<typename _CutMap>
   1.562 -    void minMinCut(_CutMap& M) {
   1.563 -    
   1.564 -      std::queue<Node> queue;
   1.565 -      
   1.566 -      M.set(s,true);      
   1.567 -      queue.push(s);
   1.568 -
   1.569 -      while (!queue.empty()) {
   1.570 -        Node w=queue.front();
   1.571 -	queue.pop();
   1.572 -
   1.573 -	OutEdgeIt e;
   1.574 -	for(G.first(e,w) ; G.valid(e); G.next(e)) {
   1.575 -	  Node v=G.target(e);
   1.576 -	  if (!M[v] && flow[e] < capacity[e] ) {
   1.577 -	    queue.push(v);
   1.578 -	    M.set(v, true);
   1.579 -	  }
   1.580 -	} 
   1.581 -
   1.582 -	InEdgeIt f;
   1.583 -	for(G.first(f,w) ; G.valid(f); G.next(f)) {
   1.584 -	  Node v=G.source(f);
   1.585 -	  if (!M[v] && flow[f] > 0 ) {
   1.586 -	    queue.push(v);
   1.587 -	    M.set(v, true);
   1.588 -	  }
   1.589 -	} 
   1.590 -      }
   1.591 -    }
   1.592 -
   1.593 -
   1.594 -  
   1.595 -    /*
   1.596 -      Returns the maximum min cut, by a reverse bfs 
   1.597 -      from t in the residual graph.
   1.598 -    */
   1.599 -    
   1.600 -    template<typename _CutMap>
   1.601 -    void maxMinCut(_CutMap& M) {
   1.602 -    
   1.603 -      std::queue<Node> queue;
   1.604 -      
   1.605 -      M.set(t,true);        
   1.606 -      queue.push(t);
   1.607 -
   1.608 -      while (!queue.empty()) {
   1.609 -        Node w=queue.front();
   1.610 -	queue.pop();
   1.611 -
   1.612 -
   1.613 -	InEdgeIt e;
   1.614 -	for(G.first(e,w) ; G.valid(e); G.next(e)) {
   1.615 -	  Node v=G.source(e);
   1.616 -	  if (!M[v] && flow[e] < capacity[e] ) {
   1.617 -	    queue.push(v);
   1.618 -	    M.set(v, true);
   1.619 -	  }
   1.620 -	}
   1.621 -	
   1.622 -	OutEdgeIt f;
   1.623 -	for(G.first(f,w) ; G.valid(f); G.next(f)) {
   1.624 -	  Node v=G.target(f);
   1.625 -	  if (!M[v] && flow[f] > 0 ) {
   1.626 -	    queue.push(v);
   1.627 -	    M.set(v, true);
   1.628 -	  }
   1.629 -	}
   1.630 -      }
   1.631 -
   1.632 -      NodeIt v;
   1.633 -      for(G.first(v) ; G.valid(v); G.next(v)) {
   1.634 -	M.set(v, !M[v]);
   1.635 -      }
   1.636 -
   1.637 -    }
   1.638 -
   1.639 -
   1.640 -
   1.641 -    template<typename CutMap>
   1.642 -    void minCut(CutMap& M) {
   1.643 -      minMinCut(M);
   1.644 -    }
   1.645 -
   1.646 -    
   1.647 -    void resetTarget (Node _t) {t=_t;}
   1.648 -    void resetSource (Node _s) {s=_s;}
   1.649 -   
   1.650 -    void resetCap (CapMap _cap) {capacity=_cap;}
   1.651 -
   1.652 -    void resetFlow (FlowMap _flow, bool _constzero) {
   1.653 -      flow=_flow;
   1.654 -      constzero=_constzero;
   1.655 -    }
   1.656 -
   1.657 -
   1.658 -
   1.659 -  };
   1.660 -
   1.661 -} //namespace lemon
   1.662 -
   1.663 -#endif //PREFLOW_H
   1.664 -
   1.665 -
   1.666 -
   1.667 -