src/work/athos/lp/lp_base.h
changeset 1305 c3dc75d4af24
parent 1304 c9c2e90b2342
child 1306 4ea2147274db
     1.1 --- a/src/work/athos/lp/lp_base.h	Tue Apr 05 08:43:51 2005 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,823 +0,0 @@
     1.4 -/* -*- C++ -*-
     1.5 - * src/lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
     1.6 - *
     1.7 - * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 - * (Egervary Combinatorial Optimization Research Group, EGRES).
     1.9 - *
    1.10 - * Permission to use, modify and distribute this software is granted
    1.11 - * provided that this copyright notice appears in all copies. For
    1.12 - * precise terms see the accompanying LICENSE file.
    1.13 - *
    1.14 - * This software is provided "AS IS" with no warranty of any kind,
    1.15 - * express or implied, and with no claim as to its suitability for any
    1.16 - * purpose.
    1.17 - *
    1.18 - */
    1.19 -
    1.20 -#ifndef LEMON_LP_BASE_H
    1.21 -#define LEMON_LP_BASE_H
    1.22 -
    1.23 -#include<vector>
    1.24 -#include<map>
    1.25 -#include<limits>
    1.26 -#include<math.h>
    1.27 -
    1.28 -#include<lemon/utility.h>
    1.29 -#include<lemon/error.h>
    1.30 -#include<lemon/invalid.h>
    1.31 -
    1.32 -//#include"lin_expr.h"
    1.33 -
    1.34 -///\file
    1.35 -///\brief The interface of the LP solver interface.
    1.36 -namespace lemon {
    1.37 -  
    1.38 -  ///Internal data structure to convert floating id's to fix one's
    1.39 -    
    1.40 -  ///\todo This might be implemented to be also usable in other places.
    1.41 -  class _FixId 
    1.42 -  {
    1.43 -    std::vector<int> index;
    1.44 -    std::vector<int> cross;
    1.45 -    int first_free;
    1.46 -  public:
    1.47 -    _FixId() : first_free(-1) {};
    1.48 -    ///Convert a floating id to a fix one
    1.49 -
    1.50 -    ///\param n is a floating id
    1.51 -    ///\return the corresponding fix id
    1.52 -    int fixId(int n) {return cross[n];}
    1.53 -    ///Convert a fix id to a floating one
    1.54 -
    1.55 -    ///\param n is a fix id
    1.56 -    ///\return the corresponding floating id
    1.57 -    int floatingId(int n) { return index[n];}
    1.58 -    ///Add a new floating id.
    1.59 -
    1.60 -    ///\param n is a floating id
    1.61 -    ///\return the fix id of the new value
    1.62 -    ///\todo Multiple additions should also be handled.
    1.63 -    int insert(int n)
    1.64 -    {
    1.65 -      if(n>=int(cross.size())) {
    1.66 -	cross.resize(n+1);
    1.67 -	if(first_free==-1) {
    1.68 -	  cross[n]=index.size();
    1.69 -	  index.push_back(n);
    1.70 -	}
    1.71 -	else {
    1.72 -	  cross[n]=first_free;
    1.73 -	  int next=index[first_free];
    1.74 -	  index[first_free]=n;
    1.75 -	  first_free=next;
    1.76 -	}
    1.77 -	return cross[n];
    1.78 -      }
    1.79 -      ///\todo Create an own exception type.
    1.80 -      else throw LogicError(); //floatingId-s must form a continuous range;
    1.81 -    }
    1.82 -    ///Remove a fix id.
    1.83 -
    1.84 -    ///\param n is a fix id
    1.85 -    ///
    1.86 -    void erase(int n) 
    1.87 -    {
    1.88 -      int fl=index[n];
    1.89 -      index[n]=first_free;
    1.90 -      first_free=n;
    1.91 -      for(int i=fl+1;i<int(cross.size());++i) {
    1.92 -	cross[i-1]=cross[i];
    1.93 -	index[cross[i]]--;
    1.94 -      }
    1.95 -      cross.pop_back();
    1.96 -    }
    1.97 -    ///An upper bound on the largest fix id.
    1.98 -
    1.99 -    ///\todo Do we need this?
   1.100 -    ///
   1.101 -    std::size_t maxFixId() { return cross.size()-1; }
   1.102 -  
   1.103 -  };
   1.104 -    
   1.105 -  ///Common base class for LP solvers
   1.106 -  class LpSolverBase {
   1.107 -    
   1.108 -  public:
   1.109 -
   1.110 -    ///\e
   1.111 -    enum SolveExitStatus {
   1.112 -      ///\e
   1.113 -      SOLVED = 0,
   1.114 -      ///\e
   1.115 -      UNSOLVED = 1
   1.116 -    };
   1.117 -      
   1.118 -    ///\e
   1.119 -    enum SolutionStatus {
   1.120 -      ///Feasible solution has'n been found (but may exist).
   1.121 -
   1.122 -      ///\todo NOTFOUND might be a better name.
   1.123 -      ///
   1.124 -      UNDEFINED = 0,
   1.125 -      ///The problem has no feasible solution
   1.126 -      INFEASIBLE = 1,
   1.127 -      ///Feasible solution found
   1.128 -      FEASIBLE = 2,
   1.129 -      ///Optimal solution exists and found
   1.130 -      OPTIMAL = 3,
   1.131 -      ///The cost function is unbounded
   1.132 -
   1.133 -      ///\todo Give a feasible solution and an infinite ray (and the
   1.134 -      ///corresponding bases)
   1.135 -      INFINITE = 4
   1.136 -    };
   1.137 -      
   1.138 -    ///The floating point type used by the solver
   1.139 -    typedef double Value;
   1.140 -    ///The infinity constant
   1.141 -    static const Value INF;
   1.142 -    ///The not a number constant
   1.143 -    static const Value NaN;
   1.144 -    
   1.145 -    ///Refer to a column of the LP.
   1.146 -
   1.147 -    ///This type is used to refer to a column of the LP.
   1.148 -    ///
   1.149 -    ///Its value remains valid and correct even after the addition or erase of
   1.150 -    ///other columns.
   1.151 -    ///
   1.152 -    ///\todo Document what can one do with a Col (INVALID, comparing,
   1.153 -    ///it is similar to Node/Edge)
   1.154 -    class Col {
   1.155 -    protected:
   1.156 -      int id;
   1.157 -      friend class LpSolverBase;
   1.158 -    public:
   1.159 -      typedef Value ExprValue;
   1.160 -      typedef True LpSolverCol;
   1.161 -      Col() {}
   1.162 -      Col(const Invalid&) : id(-1) {}
   1.163 -      bool operator<(Col c) const  {return id<c.id;}
   1.164 -      bool operator==(Col c) const  {return id==c.id;}
   1.165 -      bool operator!=(Col c) const  {return id==c.id;}
   1.166 -    };
   1.167 -
   1.168 -    ///Refer to a row of the LP.
   1.169 -
   1.170 -    ///This type is used to refer to a row of the LP.
   1.171 -    ///
   1.172 -    ///Its value remains valid and correct even after the addition or erase of
   1.173 -    ///other rows.
   1.174 -    ///
   1.175 -    ///\todo Document what can one do with a Row (INVALID, comparing,
   1.176 -    ///it is similar to Node/Edge)
   1.177 -    class Row {
   1.178 -    protected:
   1.179 -      int id;
   1.180 -      friend class LpSolverBase;
   1.181 -    public:
   1.182 -      typedef Value ExprValue;
   1.183 -      typedef True LpSolverRow;
   1.184 -      Row() {}
   1.185 -      Row(const Invalid&) : id(-1) {}
   1.186 -      typedef True LpSolverRow;
   1.187 -      bool operator<(Row c) const  {return id<c.id;}
   1.188 -      bool operator==(Row c) const  {return id==c.id;}
   1.189 -      bool operator!=(Row c) const  {return id==c.id;} 
   1.190 -   };
   1.191 -    
   1.192 -    ///Linear expression of variables and a constant component
   1.193 -    
   1.194 -    ///This data structure strores a linear expression of the variables
   1.195 -    ///(\ref Col "Col"s) and also has a constant component.
   1.196 -    ///
   1.197 -    ///There are several ways to access and modify the contents of this
   1.198 -    ///container.
   1.199 -    ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   1.200 -    ///if \c e is an Expr and \c v and \c w are of type \ref Col then you can
   1.201 -    ///read and modify the coefficients like
   1.202 -    ///these.
   1.203 -    ///\code
   1.204 -    ///e[v]=5;
   1.205 -    ///e[v]+=12;
   1.206 -    ///e.erase(v);
   1.207 -    ///\endcode
   1.208 -    ///or you can also iterate through its elements.
   1.209 -    ///\code
   1.210 -    ///double s=0;
   1.211 -    ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   1.212 -    ///  s+=i->second;
   1.213 -    ///\endcode
   1.214 -    ///(This code computes the sum of all coefficients).
   1.215 -    ///- Numbers (<tt>double</tt>'s)
   1.216 -    ///and variables (\ref Col "Col"s) directly convert to an
   1.217 -    ///\ref Expr and the usual linear operations are defined so  
   1.218 -    ///\code
   1.219 -    ///v+w
   1.220 -    ///2*v-3.12*(v-w/2)+2
   1.221 -    ///v*2.1+(3*v+(v*12+w+6)*3)/2
   1.222 -    ///\endcode
   1.223 -    ///are valid expressions. The usual assignment operations are also defined.
   1.224 -    ///\code
   1.225 -    ///e=v+w;
   1.226 -    ///e+=2*v-3.12*(v-w/2)+2;
   1.227 -    ///e*=3.4;
   1.228 -    ///e/=5;
   1.229 -    ///\endcode
   1.230 -    ///- The constant member can be set and read by \ref constComp()
   1.231 -    ///\code
   1.232 -    ///e.constComp()=12;
   1.233 -    ///double c=e.constComp();
   1.234 -    ///\endcode
   1.235 -    ///
   1.236 -    ///\note that \ref clear() not only sets all coefficients to 0 but also
   1.237 -    ///clears the constant components.
   1.238 -    class Expr : public std::map<Col,Value>
   1.239 -    {
   1.240 -    public:
   1.241 -      typedef LpSolverBase::Col Key; 
   1.242 -      typedef LpSolverBase::Value Value;
   1.243 -      
   1.244 -    protected:
   1.245 -      typedef std::map<Col,Value> Base;
   1.246 -      
   1.247 -      Value const_comp;
   1.248 -  public:
   1.249 -      typedef True IsLinExpression;
   1.250 -      ///\e
   1.251 -      Expr() : Base(), const_comp(0) { }
   1.252 -      ///\e
   1.253 -      Expr(const Key &v) : const_comp(0) {
   1.254 -	Base::insert(std::make_pair(v, 1));
   1.255 -      }
   1.256 -      ///\e
   1.257 -      Expr(const Value &v) : const_comp(v) {}
   1.258 -      ///\e
   1.259 -      void set(const Key &v,const Value &c) {
   1.260 -	Base::insert(std::make_pair(v, c));
   1.261 -      }
   1.262 -      ///\e
   1.263 -      Value &constComp() { return const_comp; }
   1.264 -      ///\e
   1.265 -      const Value &constComp() const { return const_comp; }
   1.266 -      
   1.267 -      ///Removes the components with zero coefficient.
   1.268 -      void simplify() {
   1.269 -	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   1.270 -	  Base::iterator j=i;
   1.271 -	  ++j;
   1.272 -	  if ((*i).second==0) Base::erase(i);
   1.273 -	  j=i;
   1.274 -	}
   1.275 -      }
   1.276 -
   1.277 -      ///Sets all coefficients and the constant component to 0.
   1.278 -      void clear() {
   1.279 -	Base::clear();
   1.280 -	const_comp=0;
   1.281 -      }
   1.282 -
   1.283 -      ///\e
   1.284 -      Expr &operator+=(const Expr &e) {
   1.285 -	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   1.286 -	  (*this)[j->first]+=j->second;
   1.287 -	///\todo it might be speeded up using "hints"
   1.288 -	const_comp+=e.const_comp;
   1.289 -	return *this;
   1.290 -      }
   1.291 -      ///\e
   1.292 -      Expr &operator-=(const Expr &e) {
   1.293 -	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   1.294 -	  (*this)[j->first]-=j->second;
   1.295 -	const_comp-=e.const_comp;
   1.296 -	return *this;
   1.297 -      }
   1.298 -      ///\e
   1.299 -      Expr &operator*=(const Value &c) {
   1.300 -	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.301 -	  j->second*=c;
   1.302 -	const_comp*=c;
   1.303 -	return *this;
   1.304 -      }
   1.305 -      ///\e
   1.306 -      Expr &operator/=(const Value &c) {
   1.307 -	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.308 -	  j->second/=c;
   1.309 -	const_comp/=c;
   1.310 -	return *this;
   1.311 -      }
   1.312 -    };
   1.313 -    
   1.314 -    ///Linear constraint
   1.315 -    //typedef LinConstr<Expr> Constr;
   1.316 -    class Constr
   1.317 -    {
   1.318 -    public:
   1.319 -      typedef LpSolverBase::Expr Expr;
   1.320 -      typedef Expr::Key Key;
   1.321 -      typedef Expr::Value Value;
   1.322 -      
   1.323 -      static const Value INF;
   1.324 -      static const Value NaN;
   1.325 -      //     static const Value INF=0;
   1.326 -      //     static const Value NaN=1;
   1.327 -      
   1.328 -    protected:
   1.329 -      Expr _expr;
   1.330 -      Value _lb,_ub;
   1.331 -    public:
   1.332 -      ///\e
   1.333 -      Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   1.334 -      ///\e
   1.335 -      Constr(Value lb,const Expr &e,Value ub) :
   1.336 -	_expr(e), _lb(lb), _ub(ub) {}
   1.337 -      ///\e
   1.338 -      Constr(const Expr &e,Value ub) : 
   1.339 -	_expr(e), _lb(NaN), _ub(ub) {}
   1.340 -      ///\e
   1.341 -      Constr(Value lb,const Expr &e) :
   1.342 -	_expr(e), _lb(lb), _ub(NaN) {}
   1.343 -      ///\e
   1.344 -      Constr(const Expr &e) : 
   1.345 -	_expr(e), _lb(NaN), _ub(NaN) {}
   1.346 -      ///\e
   1.347 -      void clear() 
   1.348 -      {
   1.349 -	_expr.clear();
   1.350 -	_lb=_ub=NaN;
   1.351 -      }
   1.352 -      ///\e
   1.353 -      Expr &expr() { return _expr; }
   1.354 -      ///\e
   1.355 -      const Expr &expr() const { return _expr; }
   1.356 -      ///\e
   1.357 -      Value &lowerBound() { return _lb; }
   1.358 -      ///\e
   1.359 -      const Value &lowerBound() const { return _lb; }
   1.360 -      ///\e
   1.361 -      Value &upperBound() { return _ub; }
   1.362 -      ///\e
   1.363 -      const Value &upperBound() const { return _ub; }
   1.364 -      ///\e
   1.365 -      bool lowerBounded() const { 
   1.366 -	using namespace std;
   1.367 -	return isfinite(_lb);
   1.368 -      }
   1.369 -      ///\e
   1.370 -      bool upperBounded() const {
   1.371 -	using namespace std;
   1.372 -	return isfinite(_ub);
   1.373 -      }
   1.374 -    };
   1.375 -    
   1.376 -
   1.377 -  protected:
   1.378 -    _FixId rows;
   1.379 -    _FixId cols;
   1.380 -
   1.381 -    virtual int _addCol() = 0;
   1.382 -    virtual int _addRow() = 0;
   1.383 -    virtual void _setRowCoeffs(int i, 
   1.384 -			       int length,
   1.385 -                               int  const * indices, 
   1.386 -                               Value  const * values ) = 0;
   1.387 -    virtual void _setColCoeffs(int i, 
   1.388 -			       int length,
   1.389 -                               int  const * indices, 
   1.390 -                               Value  const * values ) = 0;
   1.391 -    virtual void _setColLowerBound(int i, Value value) = 0;
   1.392 -    virtual void _setColUpperBound(int i, Value value) = 0;
   1.393 -    virtual void _setRowLowerBound(int i, Value value) = 0;
   1.394 -    virtual void _setRowUpperBound(int i, Value value) = 0;
   1.395 -    virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   1.396 -    virtual SolveExitStatus _solve() = 0;
   1.397 -    virtual Value _getPrimal(int i) = 0;
   1.398 -    virtual SolutionStatus _getPrimalType() = 0;
   1.399 -
   1.400 -
   1.401 -    void clearObj() {}
   1.402 -  public:
   1.403 -
   1.404 -
   1.405 -    ///\e
   1.406 -    virtual ~LpSolverBase() {}
   1.407 -
   1.408 -    ///\name Build up and modify of the LP
   1.409 -
   1.410 -    ///@{
   1.411 -
   1.412 -    ///Add a new empty column (i.e a new variable) to the LP
   1.413 -    Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
   1.414 -
   1.415 -    ///\brief Adds several new columns
   1.416 -    ///(i.e a variables) at once
   1.417 -    ///
   1.418 -    ///This magic function takes a container as its argument
   1.419 -    ///and fills its elements
   1.420 -    ///with new columns (i.e. variables)
   1.421 -    ///\param t can be
   1.422 -    ///- a standard STL compatible iterable container with
   1.423 -    ///\ref Col as its \c values_type
   1.424 -    ///like
   1.425 -    ///\code
   1.426 -    ///std::vector<LpSolverBase::Col>
   1.427 -    ///std::list<LpSolverBase::Col>
   1.428 -    ///\endcode
   1.429 -    ///- a standard STL compatible iterable container with
   1.430 -    ///\ref Col as its \c mapped_type
   1.431 -    ///like
   1.432 -    ///\code
   1.433 -    ///std::map<AnyType,LpSolverBase::Col>
   1.434 -    ///\endcode
   1.435 -    ///- an iterable lemon \ref concept::WriteMap "write map" like 
   1.436 -    ///\code
   1.437 -    ///ListGraph::NodeMap<LpSolverBase::Col>
   1.438 -    ///ListGraph::EdgeMap<LpSolverBase::Col>
   1.439 -    ///\endcode
   1.440 -    ///\return The number of the created column.
   1.441 -    ///\bug Iterable nodemap hasn't been implemented yet.
   1.442 -#ifdef DOXYGEN
   1.443 -    template<class T>
   1.444 -    int addColSet(T &t) { return 0;} 
   1.445 -#else
   1.446 -    template<class T>
   1.447 -    typename enable_if<typename T::value_type::LpSolverCol,int>::type
   1.448 -    addColSet(T &t,dummy<0> = 0) {
   1.449 -      int s=0;
   1.450 -      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   1.451 -      return s;
   1.452 -    }
   1.453 -    template<class T>
   1.454 -    typename enable_if<typename T::value_type::second_type::LpSolverCol,
   1.455 -		       int>::type
   1.456 -    addColSet(T &t,dummy<1> = 1) { 
   1.457 -      int s=0;
   1.458 -      for(typename T::iterator i=t.begin();i!=t.end();++i) {
   1.459 -	i->second=addCol();
   1.460 -	s++;
   1.461 -      }
   1.462 -      return s;
   1.463 -    }
   1.464 -    template<class T>
   1.465 -    typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
   1.466 -		       int>::type
   1.467 -    addColSet(T &t,dummy<2> = 2) { 
   1.468 -      ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
   1.469 -      int s=0;
   1.470 -      for(typename T::ValueSet::iterator i=t.valueSet().begin();
   1.471 -	  i!=t.valueSet().end();
   1.472 -	  ++i)
   1.473 -	{
   1.474 -	  *i=addCol();
   1.475 -	  s++;
   1.476 -	}
   1.477 -      return s;
   1.478 -    }
   1.479 -#endif
   1.480 -
   1.481 -    ///Add a new empty row (i.e a new constaint) to the LP
   1.482 -
   1.483 -    ///This function adds a new empty row (i.e a new constaint) to the LP.
   1.484 -    ///\return The created row
   1.485 -    Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   1.486 -
   1.487 -    ///Set a row (i.e a constaint) of the LP
   1.488 -
   1.489 -    ///\param r is the row to be modified
   1.490 -    ///\param l is lower bound (-\ref INF means no bound)
   1.491 -    ///\param e is a linear expression (see \ref Expr)
   1.492 -    ///\param u is the upper bound (\ref INF means no bound)
   1.493 -    ///\bug This is a temportary function. The interface will change to
   1.494 -    ///a better one.
   1.495 -    void setRow(Row r, Value l,const Expr &e, Value u) {
   1.496 -      std::vector<int> indices;
   1.497 -      std::vector<Value> values;
   1.498 -      indices.push_back(0);
   1.499 -      values.push_back(0);
   1.500 -      for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
   1.501 -	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   1.502 -	  indices.push_back(cols.floatingId((*i).first.id));
   1.503 -	  values.push_back((*i).second);
   1.504 -	}
   1.505 -      _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
   1.506 -		    &indices[0],&values[0]);
   1.507 -      _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
   1.508 -      _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
   1.509 -    }
   1.510 -
   1.511 -    ///Set a row (i.e a constaint) of the LP
   1.512 -
   1.513 -    ///\param r is the row to be modified
   1.514 -    ///\param c is a linear expression (see \ref Constr)
   1.515 -    void setRow(Row r, const Constr &c) {
   1.516 -      setRow(r,
   1.517 -	     c.lowerBounded()?c.lowerBound():-INF,
   1.518 -	     c.expr(),
   1.519 -	     c.upperBounded()?c.upperBound():INF);
   1.520 -    }
   1.521 -
   1.522 -    ///Add a new row (i.e a new constaint) to the LP
   1.523 -
   1.524 -    ///\param l is the lower bound (-\ref INF means no bound)
   1.525 -    ///\param e is a linear expression (see \ref Expr)
   1.526 -    ///\param u is the upper bound (\ref INF means no bound)
   1.527 -    ///\return The created row.
   1.528 -    ///\bug This is a temportary function. The interface will change to
   1.529 -    ///a better one.
   1.530 -    Row addRow(Value l,const Expr &e, Value u) {
   1.531 -      Row r=addRow();
   1.532 -      setRow(r,l,e,u);
   1.533 -      return r;
   1.534 -    }
   1.535 -
   1.536 -    ///Add a new row (i.e a new constaint) to the LP
   1.537 -
   1.538 -    ///\param c is a linear expression (see \ref Constr)
   1.539 -    ///\return The created row.
   1.540 -    Row addRow(const Constr &c) {
   1.541 -      Row r=addRow();
   1.542 -      setRow(r,c);
   1.543 -      return r;
   1.544 -    }
   1.545 -
   1.546 -    /// Set the lower bound of a column (i.e a variable)
   1.547 -
   1.548 -    /// The upper bound of a variable (column) has to be given by an 
   1.549 -    /// extended number of type Value, i.e. a finite number of type 
   1.550 -    /// Value or -\ref INF.
   1.551 -    void colLowerBound(Col c, Value value) {
   1.552 -      _setColLowerBound(cols.floatingId(c.id),value);
   1.553 -    }
   1.554 -    /// Set the upper bound of a column (i.e a variable)
   1.555 -
   1.556 -    /// The upper bound of a variable (column) has to be given by an 
   1.557 -    /// extended number of type Value, i.e. a finite number of type 
   1.558 -    /// Value or \ref INF.
   1.559 -    void colUpperBound(Col c, Value value) {
   1.560 -      _setColUpperBound(cols.floatingId(c.id),value);
   1.561 -    };
   1.562 -    /// Set the lower and the upper bounds of a column (i.e a variable)
   1.563 -
   1.564 -    /// The lower and the upper bounds of
   1.565 -    /// a variable (column) have to be given by an 
   1.566 -    /// extended number of type Value, i.e. a finite number of type 
   1.567 -    /// Value, -\ref INF or \ref INF.
   1.568 -    void colBounds(Col c, Value lower, Value upper) {
   1.569 -      _setColLowerBound(cols.floatingId(c.id),lower);
   1.570 -      _setColUpperBound(cols.floatingId(c.id),upper);
   1.571 -    }
   1.572 -    
   1.573 -    /// Set the lower bound of a row (i.e a constraint)
   1.574 -
   1.575 -    /// The lower bound of a linear expression (row) has to be given by an 
   1.576 -    /// extended number of type Value, i.e. a finite number of type 
   1.577 -    /// Value or -\ref INF.
   1.578 -    void rowLowerBound(Row r, Value value) {
   1.579 -      _setRowLowerBound(rows.floatingId(r.id),value);
   1.580 -    };
   1.581 -    /// Set the upper bound of a row (i.e a constraint)
   1.582 -
   1.583 -    /// The upper bound of a linear expression (row) has to be given by an 
   1.584 -    /// extended number of type Value, i.e. a finite number of type 
   1.585 -    /// Value or \ref INF.
   1.586 -    void rowUpperBound(Row r, Value value) {
   1.587 -      _setRowUpperBound(rows.floatingId(r.id),value);
   1.588 -    };
   1.589 -    /// Set the lower and the upper bounds of a row (i.e a variable)
   1.590 -
   1.591 -    /// The lower and the upper bounds of
   1.592 -    /// a constraint (row) have to be given by an 
   1.593 -    /// extended number of type Value, i.e. a finite number of type 
   1.594 -    /// Value, -\ref INF or \ref INF.
   1.595 -    void rowBounds(Row c, Value lower, Value upper) {
   1.596 -      _setRowLowerBound(rows.floatingId(c.id),lower);
   1.597 -      _setRowUpperBound(rows.floatingId(c.id),upper);
   1.598 -    }
   1.599 -    
   1.600 -    ///Set an element of the objective function
   1.601 -    void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
   1.602 -    ///Set the objective function
   1.603 -    
   1.604 -    ///\param e is a linear expression of type \ref Expr.
   1.605 -    ///\todo What to do with the constant component?
   1.606 -    void setObj(Expr e) {
   1.607 -      clearObj();
   1.608 -      for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
   1.609 -	objCoeff((*i).first,(*i).second);
   1.610 -    }
   1.611 -
   1.612 -    ///@}
   1.613 -
   1.614 -
   1.615 -    ///\name Solve the LP
   1.616 -
   1.617 -    ///@{
   1.618 -
   1.619 -    ///\e
   1.620 -    SolveExitStatus solve() { return _solve(); }
   1.621 -    
   1.622 -    ///@}
   1.623 -    
   1.624 -    ///\name Obtain the solution
   1.625 -
   1.626 -    ///@{
   1.627 -
   1.628 -    ///\e
   1.629 -    SolutionStatus primalType() {
   1.630 -      return _getPrimalType();
   1.631 -    }
   1.632 -
   1.633 -    ///\e
   1.634 -    Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
   1.635 -
   1.636 -    ///@}
   1.637 -    
   1.638 -  };  
   1.639 -
   1.640 -  ///\e
   1.641 -  
   1.642 -  ///\relates LpSolverBase::Expr
   1.643 -  ///
   1.644 -  inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
   1.645 -				      const LpSolverBase::Expr &b) 
   1.646 -  {
   1.647 -    LpSolverBase::Expr tmp(a);
   1.648 -    tmp+=b; ///\todo Don't STL have some special 'merge' algorithm?
   1.649 -    return tmp;
   1.650 -  }
   1.651 -  ///\e
   1.652 -  
   1.653 -  ///\relates LpSolverBase::Expr
   1.654 -  ///
   1.655 -  inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
   1.656 -				      const LpSolverBase::Expr &b) 
   1.657 -  {
   1.658 -    LpSolverBase::Expr tmp(a);
   1.659 -    tmp-=b; ///\todo Don't STL have some special 'merge' algorithm?
   1.660 -    return tmp;
   1.661 -  }
   1.662 -  ///\e
   1.663 -  
   1.664 -  ///\relates LpSolverBase::Expr
   1.665 -  ///
   1.666 -  inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
   1.667 -				      const LpSolverBase::Value &b) 
   1.668 -  {
   1.669 -    LpSolverBase::Expr tmp(a);
   1.670 -    tmp*=b; ///\todo Don't STL have some special 'merge' algorithm?
   1.671 -    return tmp;
   1.672 -  }
   1.673 -  
   1.674 -  ///\e
   1.675 -  
   1.676 -  ///\relates LpSolverBase::Expr
   1.677 -  ///
   1.678 -  inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
   1.679 -				      const LpSolverBase::Expr &b) 
   1.680 -  {
   1.681 -    LpSolverBase::Expr tmp(b);
   1.682 -    tmp*=a; ///\todo Don't STL have some special 'merge' algorithm?
   1.683 -    return tmp;
   1.684 -  }
   1.685 -  ///\e
   1.686 -  
   1.687 -  ///\relates LpSolverBase::Expr
   1.688 -  ///
   1.689 -  inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
   1.690 -				      const LpSolverBase::Value &b) 
   1.691 -  {
   1.692 -    LpSolverBase::Expr tmp(a);
   1.693 -    tmp/=b; ///\todo Don't STL have some special 'merge' algorithm?
   1.694 -    return tmp;
   1.695 -  }
   1.696 -  
   1.697 -  ///\e
   1.698 -  
   1.699 -  ///\relates LpSolverBase::Constr
   1.700 -  ///
   1.701 -  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   1.702 -					 const LpSolverBase::Expr &f) 
   1.703 -  {
   1.704 -    return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
   1.705 -  }
   1.706 -
   1.707 -  ///\e
   1.708 -  
   1.709 -  ///\relates LpSolverBase::Constr
   1.710 -  ///
   1.711 -  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
   1.712 -					 const LpSolverBase::Expr &f) 
   1.713 -  {
   1.714 -    return LpSolverBase::Constr(e,f);
   1.715 -  }
   1.716 -
   1.717 -  ///\e
   1.718 -  
   1.719 -  ///\relates LpSolverBase::Constr
   1.720 -  ///
   1.721 -  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   1.722 -					 const LpSolverBase::Value &f) 
   1.723 -  {
   1.724 -    return LpSolverBase::Constr(e,f);
   1.725 -  }
   1.726 -
   1.727 -  ///\e
   1.728 -  
   1.729 -  ///\relates LpSolverBase::Constr
   1.730 -  ///
   1.731 -  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   1.732 -					 const LpSolverBase::Expr &f) 
   1.733 -  {
   1.734 -    return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
   1.735 -  }
   1.736 -
   1.737 -
   1.738 -  ///\e
   1.739 -  
   1.740 -  ///\relates LpSolverBase::Constr
   1.741 -  ///
   1.742 -  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
   1.743 -					 const LpSolverBase::Expr &f) 
   1.744 -  {
   1.745 -    return LpSolverBase::Constr(f,e);
   1.746 -  }
   1.747 -
   1.748 -
   1.749 -  ///\e
   1.750 -  
   1.751 -  ///\relates LpSolverBase::Constr
   1.752 -  ///
   1.753 -  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   1.754 -					 const LpSolverBase::Value &f) 
   1.755 -  {
   1.756 -    return LpSolverBase::Constr(f,e);
   1.757 -  }
   1.758 -
   1.759 -  ///\e
   1.760 -  
   1.761 -  ///\relates LpSolverBase::Constr
   1.762 -  ///
   1.763 -  inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
   1.764 -					 const LpSolverBase::Expr &f) 
   1.765 -  {
   1.766 -    return LpSolverBase::Constr(0,e-f,0);
   1.767 -  }
   1.768 -
   1.769 -  ///\e
   1.770 -  
   1.771 -  ///\relates LpSolverBase::Constr
   1.772 -  ///
   1.773 -  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
   1.774 -					 const LpSolverBase::Constr&c) 
   1.775 -  {
   1.776 -    LpSolverBase::Constr tmp(c);
   1.777 -    ///\todo Create an own exception type.
   1.778 -    if(!isnan(tmp.lowerBound())) throw LogicError();
   1.779 -    else tmp.lowerBound()=n;
   1.780 -    return tmp;
   1.781 -  }
   1.782 -  ///\e
   1.783 -  
   1.784 -  ///\relates LpSolverBase::Constr
   1.785 -  ///
   1.786 -  inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
   1.787 -					 const LpSolverBase::Value &n)
   1.788 -  {
   1.789 -    LpSolverBase::Constr tmp(c);
   1.790 -    ///\todo Create an own exception type.
   1.791 -    if(!isnan(tmp.upperBound())) throw LogicError();
   1.792 -    else tmp.upperBound()=n;
   1.793 -    return tmp;
   1.794 -  }
   1.795 -
   1.796 -  ///\e
   1.797 -  
   1.798 -  ///\relates LpSolverBase::Constr
   1.799 -  ///
   1.800 -  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
   1.801 -					 const LpSolverBase::Constr&c) 
   1.802 -  {
   1.803 -    LpSolverBase::Constr tmp(c);
   1.804 -    ///\todo Create an own exception type.
   1.805 -    if(!isnan(tmp.upperBound())) throw LogicError();
   1.806 -    else tmp.upperBound()=n;
   1.807 -    return tmp;
   1.808 -  }
   1.809 -  ///\e
   1.810 -  
   1.811 -  ///\relates LpSolverBase::Constr
   1.812 -  ///
   1.813 -  inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
   1.814 -					 const LpSolverBase::Value &n)
   1.815 -  {
   1.816 -    LpSolverBase::Constr tmp(c);
   1.817 -    ///\todo Create an own exception type.
   1.818 -    if(!isnan(tmp.lowerBound())) throw LogicError();
   1.819 -    else tmp.lowerBound()=n;
   1.820 -    return tmp;
   1.821 -  }
   1.822 -
   1.823 -
   1.824 -} //namespace lemon
   1.825 -
   1.826 -#endif //LEMON_LP_BASE_H