lemon/cycle_canceling.h
changeset 2440 c9218405595b
child 2457 8c791ee69a45
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/cycle_canceling.h	Mon May 07 11:42:18 2007 +0000
     1.3 @@ -0,0 +1,509 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2007
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_CYCLE_CANCELING_H
    1.23 +#define LEMON_CYCLE_CANCELING_H
    1.24 +
    1.25 +/// \ingroup min_cost_flow
    1.26 +///
    1.27 +/// \file
    1.28 +/// \brief A cycle canceling algorithm for finding a minimum cost flow.
    1.29 +
    1.30 +#include <vector>
    1.31 +#include <lemon/circulation.h>
    1.32 +#include <lemon/graph_adaptor.h>
    1.33 +
    1.34 +/// \brief The used cycle canceling method.
    1.35 +#define LIMITED_CYCLE_CANCELING
    1.36 +//#define MIN_MEAN_CYCLE_CANCELING
    1.37 +
    1.38 +#ifdef LIMITED_CYCLE_CANCELING
    1.39 +  #include <lemon/bellman_ford.h>
    1.40 +  /// \brief The maximum number of iterations for the first execution
    1.41 +  /// of the \ref lemon::BellmanFord "Bellman-Ford" algorithm.
    1.42 +  #define STARTING_LIMIT	2
    1.43 +  /// \brief The iteration limit for the
    1.44 +  /// \ref lemon::BellmanFord "Bellman-Ford" algorithm is multiplied by
    1.45 +  /// <tt>ALPHA_MUL % ALPHA_DIV</tt> in every round.
    1.46 +  #define ALPHA_MUL		3
    1.47 +  /// \brief The iteration limit for the
    1.48 +  /// \ref lemon::BellmanFord "Bellman-Ford" algorithm is multiplied by
    1.49 +  /// <tt>ALPHA_MUL % ALPHA_DIV</tt> in every round.
    1.50 +  #define ALPHA_DIV		2
    1.51 +
    1.52 +//#define _ONLY_ONE_CYCLE_
    1.53 +//#define _DEBUG_ITER_
    1.54 +#endif
    1.55 +
    1.56 +#ifdef MIN_MEAN_CYCLE_CANCELING
    1.57 +  #include <lemon/min_mean_cycle.h>
    1.58 +  #include <lemon/path.h>
    1.59 +#endif
    1.60 +
    1.61 +namespace lemon {
    1.62 +
    1.63 +  /// \addtogroup min_cost_flow
    1.64 +  /// @{
    1.65 +
    1.66 +  /// \brief Implementation of a cycle canceling algorithm for finding
    1.67 +  /// a minimum cost flow.
    1.68 +  ///
    1.69 +  /// \ref lemon::CycleCanceling "CycleCanceling" implements a cycle
    1.70 +  /// canceling algorithm for finding a minimum cost flow.
    1.71 +  ///
    1.72 +  /// \param Graph The directed graph type the algorithm runs on.
    1.73 +  /// \param LowerMap The type of the lower bound map.
    1.74 +  /// \param CapacityMap The type of the capacity (upper bound) map.
    1.75 +  /// \param CostMap The type of the cost (length) map.
    1.76 +  /// \param SupplyMap The type of the supply map.
    1.77 +  ///
    1.78 +  /// \warning
    1.79 +  /// - Edge capacities and costs should be nonnegative integers.
    1.80 +  ///	However \c CostMap::Value should be signed type.
    1.81 +  /// - Supply values should be integers.
    1.82 +  /// - \c LowerMap::Value must be convertible to
    1.83 +  ///	\c CapacityMap::Value and \c CapacityMap::Value must be
    1.84 +  ///	convertible to \c SupplyMap::Value.
    1.85 +  ///
    1.86 +  /// \author Peter Kovacs
    1.87 +
    1.88 +template < typename Graph,
    1.89 +	   typename LowerMap = typename Graph::template EdgeMap<int>,
    1.90 +	   typename CapacityMap = LowerMap,
    1.91 +	   typename CostMap = typename Graph::template EdgeMap<int>,
    1.92 +	   typename SupplyMap = typename Graph::template NodeMap
    1.93 +				<typename CapacityMap::Value> >
    1.94 +  class CycleCanceling
    1.95 +  {
    1.96 +    typedef typename Graph::Node Node;
    1.97 +    typedef typename Graph::NodeIt NodeIt;
    1.98 +    typedef typename Graph::Edge Edge;
    1.99 +    typedef typename Graph::EdgeIt EdgeIt;
   1.100 +    typedef typename Graph::InEdgeIt InEdgeIt;
   1.101 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
   1.102 +
   1.103 +    typedef typename LowerMap::Value Lower;
   1.104 +    typedef typename CapacityMap::Value Capacity;
   1.105 +    typedef typename CostMap::Value Cost;
   1.106 +    typedef typename SupplyMap::Value Supply;
   1.107 +    typedef typename Graph::template EdgeMap<Capacity> CapacityRefMap;
   1.108 +    typedef typename Graph::template NodeMap<Supply> SupplyRefMap;
   1.109 +
   1.110 +    typedef ResGraphAdaptor< const Graph, Capacity,
   1.111 +			     CapacityRefMap, CapacityRefMap > ResGraph;
   1.112 +    typedef typename ResGraph::Node ResNode;
   1.113 +    typedef typename ResGraph::NodeIt ResNodeIt;
   1.114 +    typedef typename ResGraph::Edge ResEdge;
   1.115 +    typedef typename ResGraph::EdgeIt ResEdgeIt;
   1.116 +
   1.117 +  public:
   1.118 +
   1.119 +    /// \brief The type of the flow map.
   1.120 +    typedef CapacityRefMap FlowMap;
   1.121 +
   1.122 +  protected:
   1.123 +
   1.124 +    /// \brief Map adaptor class for demand map.
   1.125 +    class DemandMap : public MapBase<Node, Supply>
   1.126 +    {
   1.127 +    private:
   1.128 +
   1.129 +      const SupplyMap *map;
   1.130 +
   1.131 +    public:
   1.132 +
   1.133 +      typedef typename MapBase<Node, Supply>::Value Value;
   1.134 +      typedef typename MapBase<Node, Supply>::Key Key;
   1.135 +
   1.136 +      DemandMap(const SupplyMap &_map) : map(&_map) {}
   1.137 +
   1.138 +      Value operator[](const Key &e) const {
   1.139 +	return -(*map)[e];
   1.140 +      }
   1.141 +
   1.142 +    }; //class DemandMap
   1.143 +
   1.144 +    /// \brief Map adaptor class for handling residual edge costs.
   1.145 +    class ResCostMap : public MapBase<ResEdge, Cost>
   1.146 +    {
   1.147 +    private:
   1.148 +
   1.149 +      const CostMap &cost_map;
   1.150 +
   1.151 +    public:
   1.152 +
   1.153 +      typedef typename MapBase<ResEdge, Cost>::Value Value;
   1.154 +      typedef typename MapBase<ResEdge, Cost>::Key Key;
   1.155 +
   1.156 +      ResCostMap(const CostMap &_cost) : cost_map(_cost) {}
   1.157 +
   1.158 +      Value operator[](const Key &e) const {
   1.159 +	return ResGraph::forward(e) ? cost_map[e] : -cost_map[e];
   1.160 +      }
   1.161 +
   1.162 +    }; //class ResCostMap
   1.163 +
   1.164 +  protected:
   1.165 +
   1.166 +    /// \brief The directed graph the algorithm runs on.
   1.167 +    const Graph &graph;
   1.168 +    /// \brief The original lower bound map.
   1.169 +    const LowerMap *lower;
   1.170 +    /// \brief The modified capacity map.
   1.171 +    CapacityRefMap capacity;
   1.172 +    /// \brief The cost map.
   1.173 +    const CostMap &cost;
   1.174 +    /// \brief The modified supply map.
   1.175 +    SupplyRefMap supply;
   1.176 +    /// \brief The modified demand map.
   1.177 +    DemandMap demand;
   1.178 +    /// \brief The sum of supply values equals zero.
   1.179 +    bool valid_supply;
   1.180 +
   1.181 +    /// \brief The current flow.
   1.182 +    FlowMap flow;
   1.183 +    /// \brief The residual graph.
   1.184 +    ResGraph res_graph;
   1.185 +    /// \brief The residual cost map.
   1.186 +    ResCostMap res_cost;
   1.187 +
   1.188 +  public :
   1.189 +
   1.190 +    /// \brief General constructor of the class (with lower bounds).
   1.191 +    ///
   1.192 +    /// General constructor of the class (with lower bounds).
   1.193 +    ///
   1.194 +    /// \param _graph The directed graph the algorithm runs on.
   1.195 +    /// \param _lower The lower bounds of the edges.
   1.196 +    /// \param _capacity The capacities (upper bounds) of the edges.
   1.197 +    /// \param _cost The cost (length) values of the edges.
   1.198 +    /// \param _supply The supply values of the nodes (signed).
   1.199 +    CycleCanceling( const Graph &_graph,
   1.200 +		    const LowerMap &_lower,
   1.201 +		    const CapacityMap &_capacity,
   1.202 +		    const CostMap &_cost,
   1.203 +		    const SupplyMap &_supply ) :
   1.204 +      graph(_graph), lower(&_lower), capacity(_graph), cost(_cost),
   1.205 +      supply(_graph), demand(supply), flow(_graph, 0),
   1.206 +      res_graph(_graph, capacity, flow), res_cost(cost)
   1.207 +    {
   1.208 +      // Removing nonzero lower bounds
   1.209 +      capacity = subMap(_capacity, _lower);
   1.210 +      Supply sum = 0;
   1.211 +      for (NodeIt n(graph); n != INVALID; ++n) {
   1.212 +	Supply s = _supply[n];
   1.213 +	for (InEdgeIt e(graph, n); e != INVALID; ++e)
   1.214 +	  s += _lower[e];
   1.215 +	for (OutEdgeIt e(graph, n); e != INVALID; ++e)
   1.216 +	  s -= _lower[e];
   1.217 +	sum += (supply[n] = s);
   1.218 +      }
   1.219 +      valid_supply = sum == 0;
   1.220 +    }
   1.221 +
   1.222 +    /// \brief General constructor of the class (without lower bounds).
   1.223 +    ///
   1.224 +    /// General constructor of the class (without lower bounds).
   1.225 +    ///
   1.226 +    /// \param _graph The directed graph the algorithm runs on.
   1.227 +    /// \param _capacity The capacities (upper bounds) of the edges.
   1.228 +    /// \param _cost The cost (length) values of the edges.
   1.229 +    /// \param _supply The supply values of the nodes (signed).
   1.230 +    CycleCanceling( const Graph &_graph,
   1.231 +		    const CapacityMap &_capacity,
   1.232 +		    const CostMap &_cost,
   1.233 +		    const SupplyMap &_supply ) :
   1.234 +      graph(_graph), lower(NULL), capacity(_capacity), cost(_cost),
   1.235 +      supply(_supply), demand(supply), flow(_graph, 0),
   1.236 +      res_graph(_graph, capacity, flow), res_cost(cost)
   1.237 +    {
   1.238 +      // Checking the sum of supply values
   1.239 +      Supply sum = 0;
   1.240 +      for (NodeIt n(graph); n != INVALID; ++n) sum += supply[n];
   1.241 +      valid_supply = sum == 0;
   1.242 +    }
   1.243 +
   1.244 +
   1.245 +    /// \brief Simple constructor of the class (with lower bounds).
   1.246 +    ///
   1.247 +    /// Simple constructor of the class (with lower bounds).
   1.248 +    ///
   1.249 +    /// \param _graph The directed graph the algorithm runs on.
   1.250 +    /// \param _lower The lower bounds of the edges.
   1.251 +    /// \param _capacity The capacities (upper bounds) of the edges.
   1.252 +    /// \param _cost The cost (length) values of the edges.
   1.253 +    /// \param _s The source node.
   1.254 +    /// \param _t The target node.
   1.255 +    /// \param _flow_value The required amount of flow from node \c _s
   1.256 +    /// to node \c _t (i.e. the supply of \c _s and the demand of
   1.257 +    /// \c _t).
   1.258 +    CycleCanceling( const Graph &_graph,
   1.259 +		    const LowerMap &_lower,
   1.260 +		    const CapacityMap &_capacity,
   1.261 +		    const CostMap &_cost,
   1.262 +		    Node _s, Node _t,
   1.263 +		    Supply _flow_value ) :
   1.264 +      graph(_graph), lower(&_lower), capacity(_graph), cost(_cost),
   1.265 +      supply(_graph), demand(supply), flow(_graph, 0),
   1.266 +      res_graph(_graph, capacity, flow), res_cost(cost)
   1.267 +    {
   1.268 +      // Removing nonzero lower bounds
   1.269 +      capacity = subMap(_capacity, _lower);
   1.270 +      for (NodeIt n(graph); n != INVALID; ++n) {
   1.271 +	Supply s = 0;
   1.272 +	if (n == _s) s =  _flow_value;
   1.273 +	if (n == _t) s = -_flow_value;
   1.274 +	for (InEdgeIt e(graph, n); e != INVALID; ++e)
   1.275 +	  s += _lower[e];
   1.276 +	for (OutEdgeIt e(graph, n); e != INVALID; ++e)
   1.277 +	  s -= _lower[e];
   1.278 +	supply[n] = s;
   1.279 +      }
   1.280 +      valid_supply = true;
   1.281 +    }
   1.282 +
   1.283 +    /// \brief Simple constructor of the class (without lower bounds).
   1.284 +    ///
   1.285 +    /// Simple constructor of the class (without lower bounds).
   1.286 +    ///
   1.287 +    /// \param _graph The directed graph the algorithm runs on.
   1.288 +    /// \param _capacity The capacities (upper bounds) of the edges.
   1.289 +    /// \param _cost The cost (length) values of the edges.
   1.290 +    /// \param _s The source node.
   1.291 +    /// \param _t The target node.
   1.292 +    /// \param _flow_value The required amount of flow from node \c _s
   1.293 +    /// to node \c _t (i.e. the supply of \c _s and the demand of
   1.294 +    /// \c _t).
   1.295 +    CycleCanceling( const Graph &_graph,
   1.296 +		    const CapacityMap &_capacity,
   1.297 +		    const CostMap &_cost,
   1.298 +		    Node _s, Node _t,
   1.299 +		    Supply _flow_value ) :
   1.300 +      graph(_graph), lower(NULL), capacity(_capacity), cost(_cost),
   1.301 +      supply(_graph, 0), demand(supply), flow(_graph, 0),
   1.302 +      res_graph(_graph, capacity, flow), res_cost(cost)
   1.303 +    {
   1.304 +      supply[_s] =  _flow_value;
   1.305 +      supply[_t] = -_flow_value;
   1.306 +      valid_supply = true;
   1.307 +    }
   1.308 +
   1.309 +    /// \brief Returns a const reference to the flow map.
   1.310 +    ///
   1.311 +    /// Returns a const reference to the flow map.
   1.312 +    ///
   1.313 +    /// \pre \ref run() must be called before using this function.
   1.314 +    const FlowMap& flowMap() const {
   1.315 +      return flow;
   1.316 +    }
   1.317 +
   1.318 +    /// \brief Returns the total cost of the found flow.
   1.319 +    ///
   1.320 +    /// Returns the total cost of the found flow. The complexity of the
   1.321 +    /// function is \f$ O(e) \f$.
   1.322 +    ///
   1.323 +    /// \pre \ref run() must be called before using this function.
   1.324 +    Cost totalCost() const {
   1.325 +      Cost c = 0;
   1.326 +      for (EdgeIt e(graph); e != INVALID; ++e)
   1.327 +	c += flow[e] * cost[e];
   1.328 +      return c;
   1.329 +    }
   1.330 +
   1.331 +    /// \brief Runs the algorithm.
   1.332 +    ///
   1.333 +    /// Runs the algorithm.
   1.334 +    ///
   1.335 +    /// \return \c true if a feasible flow can be found.
   1.336 +    bool run() {
   1.337 +      return init() && start();
   1.338 +    }
   1.339 +
   1.340 +  protected:
   1.341 +
   1.342 +    /// \brief Initializes the algorithm.
   1.343 +    bool init() {
   1.344 +      // Checking the sum of supply values
   1.345 +      Supply sum = 0;
   1.346 +      for (NodeIt n(graph); n != INVALID; ++n) sum += supply[n];
   1.347 +      if (sum != 0) return false;
   1.348 +
   1.349 +      // Finding a feasible flow
   1.350 +      Circulation< Graph, Capacity, FlowMap, ConstMap<Edge, Capacity>,
   1.351 +		   CapacityRefMap, DemandMap >
   1.352 +	circulation( graph, constMap<Edge>((Capacity)0),
   1.353 +		     capacity, demand, flow );
   1.354 +      return circulation.run() == -1;
   1.355 +    }
   1.356 +
   1.357 +#ifdef LIMITED_CYCLE_CANCELING
   1.358 +    /// \brief Executes a cycle canceling algorithm using
   1.359 +    /// \ref lemon::BellmanFord "Bellman-Ford" algorithm with limited
   1.360 +    /// iteration count.
   1.361 +    bool start() {
   1.362 +      typename BellmanFord<ResGraph, ResCostMap>::PredMap pred(res_graph);
   1.363 +      typename ResGraph::template NodeMap<int> visited(res_graph);
   1.364 +      std::vector<ResEdge> cycle;
   1.365 +      int node_num = countNodes(graph);
   1.366 +
   1.367 +#ifdef _DEBUG_ITER_
   1.368 +      int cycle_num = 0;
   1.369 +#endif
   1.370 +      int length_bound = STARTING_LIMIT;
   1.371 +      bool optimal = false;
   1.372 +      while (!optimal) {
   1.373 +	BellmanFord<ResGraph, ResCostMap> bf(res_graph, res_cost);
   1.374 +	bf.predMap(pred);
   1.375 +	bf.init(0);
   1.376 +	int iter_num = 0;
   1.377 +	bool cycle_found = false;
   1.378 +	while (!cycle_found) {
   1.379 +	  int curr_iter_num = iter_num + length_bound <= node_num ?
   1.380 +			      length_bound : node_num - iter_num;
   1.381 +	  iter_num += curr_iter_num;
   1.382 +	  int real_iter_num = curr_iter_num;
   1.383 +	  for (int i = 0; i < curr_iter_num; ++i) {
   1.384 +	    if (bf.processNextWeakRound()) {
   1.385 +	      real_iter_num = i;
   1.386 +	      break;
   1.387 +	    }
   1.388 +	  }
   1.389 +	  if (real_iter_num < curr_iter_num) {
   1.390 +	    optimal = true;
   1.391 +	    break;
   1.392 +	  } else {
   1.393 +	    // Searching for node disjoint negative cycles
   1.394 +	    for (ResNodeIt n(res_graph); n != INVALID; ++n)
   1.395 +	      visited[n] = 0;
   1.396 +	    int id = 0;
   1.397 +	    for (ResNodeIt n(res_graph); n != INVALID; ++n) {
   1.398 +	      if (visited[n] > 0) continue;
   1.399 +	      visited[n] = ++id;
   1.400 +	      ResNode u = pred[n] == INVALID ?
   1.401 +			  INVALID : res_graph.source(pred[n]);
   1.402 +	      while (u != INVALID && visited[u] == 0) {
   1.403 +		visited[u] = id;
   1.404 +		u = pred[u] == INVALID ?
   1.405 +		    INVALID : res_graph.source(pred[u]);
   1.406 +	      }
   1.407 +	      if (u != INVALID && visited[u] == id) {
   1.408 +		// Finding the negative cycle
   1.409 +		cycle_found = true;
   1.410 +		cycle.clear();
   1.411 +		ResEdge e = pred[u];
   1.412 +		cycle.push_back(e);
   1.413 +		Capacity d = res_graph.rescap(e);
   1.414 +		while (res_graph.source(e) != u) {
   1.415 +		  cycle.push_back(e = pred[res_graph.source(e)]);
   1.416 +		  if (res_graph.rescap(e) < d)
   1.417 +		    d = res_graph.rescap(e);
   1.418 +		}
   1.419 +#ifdef _DEBUG_ITER_
   1.420 +		++cycle_num;
   1.421 +#endif
   1.422 +		// Augmenting along the cycle
   1.423 +		for (int i = 0; i < cycle.size(); ++i)
   1.424 +		  res_graph.augment(cycle[i], d);
   1.425 +#ifdef _ONLY_ONE_CYCLE_
   1.426 +		break;
   1.427 +#endif
   1.428 +	      }
   1.429 +	    }
   1.430 +	  }
   1.431 +
   1.432 +	  if (!cycle_found)
   1.433 +	    length_bound = length_bound * ALPHA_MUL / ALPHA_DIV;
   1.434 +	}
   1.435 +      }
   1.436 +
   1.437 +#ifdef _DEBUG_ITER_
   1.438 +      std::cout << "Limited cycle canceling algorithm finished. "
   1.439 +		<< "Found " << cycle_num << " negative cycles."
   1.440 +		<< std::endl;
   1.441 +#endif
   1.442 +
   1.443 +      // Handling nonzero lower bounds
   1.444 +      if (lower) {
   1.445 +	for (EdgeIt e(graph); e != INVALID; ++e)
   1.446 +	  flow[e] += (*lower)[e];
   1.447 +      }
   1.448 +      return true;
   1.449 +    }
   1.450 +#endif
   1.451 +
   1.452 +#ifdef MIN_MEAN_CYCLE_CANCELING
   1.453 +    /// \brief Executes the minimum mean cycle canceling algorithm
   1.454 +    /// using \ref lemon::MinMeanCycle "MinMeanCycle" class.
   1.455 +    bool start() {
   1.456 +      typedef Path<ResGraph> ResPath;
   1.457 +      MinMeanCycle<ResGraph, ResCostMap> mmc(res_graph, res_cost);
   1.458 +      ResPath cycle;
   1.459 +
   1.460 +#ifdef _DEBUG_ITER_
   1.461 +      int cycle_num = 0;
   1.462 +#endif
   1.463 +      mmc.cyclePath(cycle).init();
   1.464 +      if (mmc.findMinMean()) {
   1.465 +	while (mmc.cycleLength() < 0) {
   1.466 +#ifdef _DEBUG_ITER_
   1.467 +	  ++iter;
   1.468 +#endif
   1.469 +	  // Finding the cycle
   1.470 +	  mmc.findCycle();
   1.471 +
   1.472 +	  // Finding the largest flow amount that can be augmented
   1.473 +	  // along the cycle
   1.474 +	  Capacity delta = 0;
   1.475 +	  for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e) {
   1.476 +	    if (delta == 0 || res_graph.rescap(e) < delta)
   1.477 +	      delta = res_graph.rescap(e);
   1.478 +	  }
   1.479 +
   1.480 +	  // Augmenting along the cycle
   1.481 +	  for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e)
   1.482 +	    res_graph.augment(e, delta);
   1.483 +
   1.484 +	  // Finding the minimum cycle mean for the modified residual
   1.485 +	  // graph
   1.486 +	  mmc.reset();
   1.487 +	  if (!mmc.findMinMean()) break;
   1.488 +	}
   1.489 +      }
   1.490 +
   1.491 +#ifdef _DEBUG_ITER_
   1.492 +      std::cout << "Minimum mean cycle canceling algorithm finished. "
   1.493 +		<< "Found " << cycle_num << " negative cycles."
   1.494 +		<< std::endl;
   1.495 +#endif
   1.496 +
   1.497 +      // Handling nonzero lower bounds
   1.498 +      if (lower) {
   1.499 +	for (EdgeIt e(graph); e != INVALID; ++e)
   1.500 +	  flow[e] += (*lower)[e];
   1.501 +      }
   1.502 +      return true;
   1.503 +    }
   1.504 +#endif
   1.505 +
   1.506 +  }; //class CycleCanceling
   1.507 +
   1.508 +  ///@}
   1.509 +
   1.510 +} //namespace lemon
   1.511 +
   1.512 +#endif //LEMON_CYCLE_CANCELING_H