lemon/network_simplex.h
changeset 2440 c9218405595b
child 2444 06f3702bf18d
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/network_simplex.h	Mon May 07 11:42:18 2007 +0000
     1.3 @@ -0,0 +1,945 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2007
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_NETWORK_SIMPLEX_H
    1.23 +#define LEMON_NETWORK_SIMPLEX_H
    1.24 +
    1.25 +/// \ingroup min_cost_flow
    1.26 +///
    1.27 +/// \file
    1.28 +/// \brief The network simplex algorithm for finding a minimum cost
    1.29 +/// flow.
    1.30 +
    1.31 +#include <limits>
    1.32 +#include <lemon/smart_graph.h>
    1.33 +#include <lemon/graph_utils.h>
    1.34 +
    1.35 +/// \brief The pivot rule used in the algorithm.
    1.36 +#define EDGE_BLOCK_PIVOT
    1.37 +//#define FIRST_ELIGIBLE_PIVOT
    1.38 +//#define BEST_ELIGIBLE_PIVOT
    1.39 +//#define CANDIDATE_LIST_PIVOT
    1.40 +//#define SORTED_LIST_PIVOT
    1.41 +
    1.42 +/// \brief State constant for edges at their lower bounds.
    1.43 +#define LOWER	1
    1.44 +/// \brief State constant for edges in the spanning tree.
    1.45 +#define TREE	0
    1.46 +/// \brief State constant for edges at their upper bounds.
    1.47 +#define UPPER	-1
    1.48 +
    1.49 +#ifdef EDGE_BLOCK_PIVOT
    1.50 +  /// \brief Number of blocks for the "Edge Block" pivot rule.
    1.51 +  #define BLOCK_NUM	  100
    1.52 +  /// \brief Lower bound for the number of edges to use "Edge Block"
    1.53 +  // pivot rule instead of "First Eligible" pivot rule.
    1.54 +  #define MIN_BOUND	  1000
    1.55 +#endif
    1.56 +
    1.57 +#ifdef CANDIDATE_LIST_PIVOT
    1.58 +  #include <list>
    1.59 +  /// \brief The maximum length of the edge list for the
    1.60 +  /// "Candidate List" pivot rule.
    1.61 +  #define LIST_LENGTH	  100
    1.62 +  /// \brief The maximum number of minor iterations between two major
    1.63 +  /// itarations.
    1.64 +  #define MINOR_LIMIT	  50
    1.65 +#endif
    1.66 +
    1.67 +#ifdef SORTED_LIST_PIVOT
    1.68 +  #include <deque>
    1.69 +  #include <algorithm>
    1.70 +  /// \brief The maximum length of the edge list for the
    1.71 +  /// "Sorted List" pivot rule.
    1.72 +  #define LIST_LENGTH	  500
    1.73 +  #define LOWER_DIV	  4
    1.74 +#endif
    1.75 +
    1.76 +//#define _DEBUG_ITER_
    1.77 +
    1.78 +namespace lemon {
    1.79 +
    1.80 +  /// \addtogroup min_cost_flow
    1.81 +  /// @{
    1.82 +
    1.83 +  /// \brief Implementation of the network simplex algorithm for
    1.84 +  /// finding a minimum cost flow.
    1.85 +  ///
    1.86 +  /// \ref lemon::NetworkSimplex "NetworkSimplex" implements the
    1.87 +  /// network simplex algorithm for finding a minimum cost flow.
    1.88 +  ///
    1.89 +  /// \param Graph The directed graph type the algorithm runs on.
    1.90 +  /// \param LowerMap The type of the lower bound map.
    1.91 +  /// \param CapacityMap The type of the capacity (upper bound) map.
    1.92 +  /// \param CostMap The type of the cost (length) map.
    1.93 +  /// \param SupplyMap The type of the supply map.
    1.94 +  ///
    1.95 +  /// \warning
    1.96 +  /// - Edge capacities and costs should be nonnegative integers.
    1.97 +  ///	However \c CostMap::Value should be signed type.
    1.98 +  /// - Supply values should be integers.
    1.99 +  /// - \c LowerMap::Value must be convertible to
   1.100 +  ///	\c CapacityMap::Value and \c CapacityMap::Value must be
   1.101 +  ///	convertible to \c SupplyMap::Value.
   1.102 +  ///
   1.103 +  /// \author Peter Kovacs
   1.104 +
   1.105 +template < typename Graph,
   1.106 +	   typename LowerMap = typename Graph::template EdgeMap<int>,
   1.107 +	   typename CapacityMap = LowerMap,
   1.108 +	   typename CostMap = typename Graph::template EdgeMap<int>,
   1.109 +	   typename SupplyMap = typename Graph::template NodeMap
   1.110 +				<typename CapacityMap::Value> >
   1.111 +  class NetworkSimplex
   1.112 +  {
   1.113 +    typedef typename LowerMap::Value Lower;
   1.114 +    typedef typename CapacityMap::Value Capacity;
   1.115 +    typedef typename CostMap::Value Cost;
   1.116 +    typedef typename SupplyMap::Value Supply;
   1.117 +
   1.118 +    typedef SmartGraph SGraph;
   1.119 +    typedef typename SGraph::Node Node;
   1.120 +    typedef typename SGraph::NodeIt NodeIt;
   1.121 +    typedef typename SGraph::Edge Edge;
   1.122 +    typedef typename SGraph::EdgeIt EdgeIt;
   1.123 +    typedef typename SGraph::InEdgeIt InEdgeIt;
   1.124 +    typedef typename SGraph::OutEdgeIt OutEdgeIt;
   1.125 +
   1.126 +    typedef typename SGraph::template EdgeMap<Lower> SLowerMap;
   1.127 +    typedef typename SGraph::template EdgeMap<Capacity> SCapacityMap;
   1.128 +    typedef typename SGraph::template EdgeMap<Cost> SCostMap;
   1.129 +    typedef typename SGraph::template NodeMap<Supply> SSupplyMap;
   1.130 +    typedef typename SGraph::template NodeMap<Cost> SPotentialMap;
   1.131 +
   1.132 +    typedef typename SGraph::template NodeMap<int> IntNodeMap;
   1.133 +    typedef typename SGraph::template NodeMap<bool> BoolNodeMap;
   1.134 +    typedef typename SGraph::template NodeMap<Node> NodeNodeMap;
   1.135 +    typedef typename SGraph::template NodeMap<Edge> EdgeNodeMap;
   1.136 +    typedef typename SGraph::template EdgeMap<int> IntEdgeMap;
   1.137 +
   1.138 +    typedef typename Graph::template NodeMap<Node> NodeRefMap;
   1.139 +    typedef typename Graph::template EdgeMap<Edge> EdgeRefMap;
   1.140 +
   1.141 +  public:
   1.142 +
   1.143 +    /// \brief The type of the flow map.
   1.144 +    typedef typename Graph::template EdgeMap<Capacity> FlowMap;
   1.145 +    /// \brief The type of the potential map.
   1.146 +    typedef typename Graph::template NodeMap<Cost> PotentialMap;
   1.147 +
   1.148 +  protected:
   1.149 +
   1.150 +    /// \brief Map adaptor class for handling reduced edge costs.
   1.151 +    class ReducedCostMap : public MapBase<Edge, Cost>
   1.152 +    {
   1.153 +    private:
   1.154 +
   1.155 +      const SGraph &gr;
   1.156 +      const SCostMap &cost_map;
   1.157 +      const SPotentialMap &pot_map;
   1.158 +
   1.159 +    public:
   1.160 +
   1.161 +      typedef typename MapBase<Edge, Cost>::Value Value;
   1.162 +      typedef typename MapBase<Edge, Cost>::Key Key;
   1.163 +
   1.164 +      ReducedCostMap( const SGraph &_gr,
   1.165 +		      const SCostMap &_cm,
   1.166 +		      const SPotentialMap &_pm ) :
   1.167 +	gr(_gr), cost_map(_cm), pot_map(_pm) {}
   1.168 +
   1.169 +      Value operator[](const Key &e) const {
   1.170 +	return cost_map[e] - pot_map[gr.source(e)] + pot_map[gr.target(e)];
   1.171 +      }
   1.172 +
   1.173 +    }; //class ReducedCostMap
   1.174 +
   1.175 +  protected:
   1.176 +
   1.177 +    /// \brief The directed graph the algorithm runs on.
   1.178 +    SGraph graph;
   1.179 +    /// \brief The original graph.
   1.180 +    const Graph &graph_ref;
   1.181 +    /// \brief The original lower bound map.
   1.182 +    const LowerMap *lower;
   1.183 +    /// \brief The capacity map.
   1.184 +    SCapacityMap capacity;
   1.185 +    /// \brief The cost map.
   1.186 +    SCostMap cost;
   1.187 +    /// \brief The supply map.
   1.188 +    SSupplyMap supply;
   1.189 +    /// \brief The reduced cost map.
   1.190 +    ReducedCostMap red_cost;
   1.191 +    /// \brief The sum of supply values equals zero.
   1.192 +    bool valid_supply;
   1.193 +
   1.194 +    /// \brief The edge map of the current flow.
   1.195 +    SCapacityMap flow;
   1.196 +    /// \brief The edge map of the found flow on the original graph.
   1.197 +    FlowMap flow_result;
   1.198 +    /// \brief The potential node map.
   1.199 +    SPotentialMap potential;
   1.200 +    /// \brief The potential node map on the original graph.
   1.201 +    PotentialMap potential_result;
   1.202 +
   1.203 +    /// \brief Node reference for the original graph.
   1.204 +    NodeRefMap node_ref;
   1.205 +    /// \brief Edge reference for the original graph.
   1.206 +    EdgeRefMap edge_ref;
   1.207 +
   1.208 +    /// \brief The depth node map of the spanning tree structure.
   1.209 +    IntNodeMap depth;
   1.210 +    /// \brief The parent node map of the spanning tree structure.
   1.211 +    NodeNodeMap parent;
   1.212 +    /// \brief The pred_edge node map of the spanning tree structure.
   1.213 +    EdgeNodeMap pred_edge;
   1.214 +    /// \brief The thread node map of the spanning tree structure.
   1.215 +    NodeNodeMap thread;
   1.216 +    /// \brief The forward node map of the spanning tree structure.
   1.217 +    BoolNodeMap forward;
   1.218 +    /// \brief The state edge map.
   1.219 +    IntEdgeMap state;
   1.220 +
   1.221 +
   1.222 +#ifdef EDGE_BLOCK_PIVOT
   1.223 +    /// \brief The size of blocks for the "Edge Block" pivot rule.
   1.224 +    int block_size;
   1.225 +#endif
   1.226 +#ifdef CANDIDATE_LIST_PIVOT
   1.227 +    /// \brief The list of candidate edges for the "Candidate List"
   1.228 +    /// pivot rule.
   1.229 +    std::list<Edge> candidates;
   1.230 +    /// \brief The number of minor iterations.
   1.231 +    int minor_count;
   1.232 +#endif
   1.233 +#ifdef SORTED_LIST_PIVOT
   1.234 +    /// \brief The list of candidate edges for the "Sorted List"
   1.235 +    /// pivot rule.
   1.236 +    std::deque<Edge> candidates;
   1.237 +#endif
   1.238 +
   1.239 +    // Root node of the starting spanning tree.
   1.240 +    Node root;
   1.241 +    // The entering edge of the current pivot iteration.
   1.242 +    Edge in_edge;
   1.243 +    // Temporary nodes used in the current pivot iteration.
   1.244 +    Node join, u_in, v_in, u_out, v_out;
   1.245 +    Node right, first, second, last;
   1.246 +    Node stem, par_stem, new_stem;
   1.247 +    // The maximum augment amount along the cycle in the current pivot
   1.248 +    // iteration.
   1.249 +    Capacity delta;
   1.250 +
   1.251 +  public :
   1.252 +
   1.253 +    /// \brief General constructor of the class (with lower bounds).
   1.254 +    ///
   1.255 +    /// General constructor of the class (with lower bounds).
   1.256 +    ///
   1.257 +    /// \param _graph The directed graph the algorithm runs on.
   1.258 +    /// \param _lower The lower bounds of the edges.
   1.259 +    /// \param _capacity The capacities (upper bounds) of the edges.
   1.260 +    /// \param _cost The cost (length) values of the edges.
   1.261 +    /// \param _supply The supply values of the nodes (signed).
   1.262 +    NetworkSimplex( const Graph &_graph,
   1.263 +		    const LowerMap &_lower,
   1.264 +		    const CapacityMap &_capacity,
   1.265 +		    const CostMap &_cost,
   1.266 +		    const SupplyMap &_supply ) :
   1.267 +      graph_ref(_graph), lower(&_lower), capacity(graph), cost(graph),
   1.268 +      supply(graph), flow(graph), flow_result(_graph), potential(graph),
   1.269 +      potential_result(_graph), depth(graph), parent(graph),
   1.270 +      pred_edge(graph), thread(graph), forward(graph), state(graph),
   1.271 +      node_ref(graph_ref), edge_ref(graph_ref),
   1.272 +      red_cost(graph, cost, potential)
   1.273 +    {
   1.274 +      // Checking the sum of supply values
   1.275 +      Supply sum = 0;
   1.276 +      for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n)
   1.277 +	sum += _supply[n];
   1.278 +      if (!(valid_supply = sum == 0)) return;
   1.279 +
   1.280 +      // Copying graph_ref to graph
   1.281 +      copyGraph(graph, graph_ref)
   1.282 +	.edgeMap(cost, _cost)
   1.283 +	.nodeRef(node_ref)
   1.284 +	.edgeRef(edge_ref)
   1.285 +	.run();
   1.286 +
   1.287 +      // Removing nonzero lower bounds
   1.288 +      for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e) {
   1.289 +	capacity[edge_ref[e]] = _capacity[e] - _lower[e];
   1.290 +      }
   1.291 +      for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n) {
   1.292 +	Supply s = _supply[n];
   1.293 +	for (typename Graph::InEdgeIt e(graph_ref, n); e != INVALID; ++e)
   1.294 +	  s += _lower[e];
   1.295 +	for (typename Graph::OutEdgeIt e(graph_ref, n); e != INVALID; ++e)
   1.296 +	  s -= _lower[e];
   1.297 +	supply[node_ref[n]] = s;
   1.298 +      }
   1.299 +    }
   1.300 +
   1.301 +    /// \brief General constructor of the class (without lower bounds).
   1.302 +    ///
   1.303 +    /// General constructor of the class (without lower bounds).
   1.304 +    ///
   1.305 +    /// \param _graph The directed graph the algorithm runs on.
   1.306 +    /// \param _capacity The capacities (upper bounds) of the edges.
   1.307 +    /// \param _cost The cost (length) values of the edges.
   1.308 +    /// \param _supply The supply values of the nodes (signed).
   1.309 +    NetworkSimplex( const Graph &_graph,
   1.310 +		    const CapacityMap &_capacity,
   1.311 +		    const CostMap &_cost,
   1.312 +		    const SupplyMap &_supply ) :
   1.313 +      graph_ref(_graph), lower(NULL), capacity(graph), cost(graph),
   1.314 +      supply(graph), flow(graph), flow_result(_graph), potential(graph),
   1.315 +      potential_result(_graph), depth(graph), parent(graph),
   1.316 +      pred_edge(graph), thread(graph), forward(graph), state(graph),
   1.317 +      node_ref(graph_ref), edge_ref(graph_ref),
   1.318 +      red_cost(graph, cost, potential)
   1.319 +    {
   1.320 +      // Checking the sum of supply values
   1.321 +      Supply sum = 0;
   1.322 +      for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n)
   1.323 +	sum += _supply[n];
   1.324 +      if (!(valid_supply = sum == 0)) return;
   1.325 +
   1.326 +      // Copying graph_ref to graph
   1.327 +      copyGraph(graph, graph_ref)
   1.328 +	.edgeMap(capacity, _capacity)
   1.329 +	.edgeMap(cost, _cost)
   1.330 +	.nodeMap(supply, _supply)
   1.331 +	.nodeRef(node_ref)
   1.332 +	.edgeRef(edge_ref)
   1.333 +	.run();
   1.334 +    }
   1.335 +
   1.336 +    /// \brief Simple constructor of the class (with lower bounds).
   1.337 +    ///
   1.338 +    /// Simple constructor of the class (with lower bounds).
   1.339 +    ///
   1.340 +    /// \param _graph The directed graph the algorithm runs on.
   1.341 +    /// \param _lower The lower bounds of the edges.
   1.342 +    /// \param _capacity The capacities (upper bounds) of the edges.
   1.343 +    /// \param _cost The cost (length) values of the edges.
   1.344 +    /// \param _s The source node.
   1.345 +    /// \param _t The target node.
   1.346 +    /// \param _flow_value The required amount of flow from node \c _s
   1.347 +    /// to node \c _t (i.e. the supply of \c _s and the demand of
   1.348 +    /// \c _t).
   1.349 +    NetworkSimplex( const Graph &_graph,
   1.350 +		    const LowerMap &_lower,
   1.351 +		    const CapacityMap &_capacity,
   1.352 +		    const CostMap &_cost,
   1.353 +		    typename Graph::Node _s,
   1.354 +		    typename Graph::Node _t,
   1.355 +		    typename SupplyMap::Value _flow_value ) :
   1.356 +      graph_ref(_graph), lower(&_lower), capacity(graph), cost(graph),
   1.357 +      supply(graph), flow(graph), flow_result(_graph), potential(graph),
   1.358 +      potential_result(_graph), depth(graph), parent(graph),
   1.359 +      pred_edge(graph), thread(graph), forward(graph), state(graph),
   1.360 +      node_ref(graph_ref), edge_ref(graph_ref),
   1.361 +      red_cost(graph, cost, potential)
   1.362 +    {
   1.363 +      // Copying graph_ref to graph
   1.364 +      copyGraph(graph, graph_ref)
   1.365 +	.edgeMap(cost, _cost)
   1.366 +	.nodeRef(node_ref)
   1.367 +	.edgeRef(edge_ref)
   1.368 +	.run();
   1.369 +
   1.370 +      // Removing nonzero lower bounds
   1.371 +      for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e) {
   1.372 +	capacity[edge_ref[e]] = _capacity[e] - _lower[e];
   1.373 +      }
   1.374 +      for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n) {
   1.375 +	Supply s = 0;
   1.376 +	if (n == _s) s =  _flow_value;
   1.377 +	if (n == _t) s = -_flow_value;
   1.378 +	for (typename Graph::InEdgeIt e(graph_ref, n); e != INVALID; ++e)
   1.379 +	  s += _lower[e];
   1.380 +	for (typename Graph::OutEdgeIt e(graph_ref, n); e != INVALID; ++e)
   1.381 +	  s -= _lower[e];
   1.382 +	supply[node_ref[n]] = s;
   1.383 +      }
   1.384 +      valid_supply = true;
   1.385 +    }
   1.386 +
   1.387 +    /// \brief Simple constructor of the class (without lower bounds).
   1.388 +    ///
   1.389 +    /// Simple constructor of the class (without lower bounds).
   1.390 +    ///
   1.391 +    /// \param _graph The directed graph the algorithm runs on.
   1.392 +    /// \param _capacity The capacities (upper bounds) of the edges.
   1.393 +    /// \param _cost The cost (length) values of the edges.
   1.394 +    /// \param _s The source node.
   1.395 +    /// \param _t The target node.
   1.396 +    /// \param _flow_value The required amount of flow from node \c _s
   1.397 +    /// to node \c _t (i.e. the supply of \c _s and the demand of
   1.398 +    /// \c _t).
   1.399 +    NetworkSimplex( const Graph &_graph,
   1.400 +		    const CapacityMap &_capacity,
   1.401 +		    const CostMap &_cost,
   1.402 +		    typename Graph::Node _s,
   1.403 +		    typename Graph::Node _t,
   1.404 +		    typename SupplyMap::Value _flow_value ) :
   1.405 +      graph_ref(_graph), lower(NULL), capacity(graph), cost(graph),
   1.406 +      supply(graph, 0), flow(graph), flow_result(_graph), potential(graph),
   1.407 +      potential_result(_graph), depth(graph), parent(graph),
   1.408 +      pred_edge(graph), thread(graph), forward(graph), state(graph),
   1.409 +      node_ref(graph_ref), edge_ref(graph_ref),
   1.410 +      red_cost(graph, cost, potential)
   1.411 +    {
   1.412 +      // Copying graph_ref to graph
   1.413 +      copyGraph(graph, graph_ref)
   1.414 +	.edgeMap(capacity, _capacity)
   1.415 +	.edgeMap(cost, _cost)
   1.416 +	.nodeRef(node_ref)
   1.417 +	.edgeRef(edge_ref)
   1.418 +	.run();
   1.419 +      supply[node_ref[_s]] =  _flow_value;
   1.420 +      supply[node_ref[_t]] = -_flow_value;
   1.421 +      valid_supply = true;
   1.422 +    }
   1.423 +
   1.424 +    /// \brief Returns a const reference to the flow map.
   1.425 +    ///
   1.426 +    /// Returns a const reference to the flow map.
   1.427 +    ///
   1.428 +    /// \pre \ref run() must be called before using this function.
   1.429 +    const FlowMap& flowMap() const {
   1.430 +      return flow_result;
   1.431 +    }
   1.432 +
   1.433 +    /// \brief Returns a const reference to the potential map (the dual
   1.434 +    /// solution).
   1.435 +    ///
   1.436 +    /// Returns a const reference to the potential map (the dual
   1.437 +    /// solution).
   1.438 +    ///
   1.439 +    /// \pre \ref run() must be called before using this function.
   1.440 +    const PotentialMap& potentialMap() const {
   1.441 +      return potential_result;
   1.442 +    }
   1.443 +
   1.444 +    /// \brief Returns the total cost of the found flow.
   1.445 +    ///
   1.446 +    /// Returns the total cost of the found flow. The complexity of the
   1.447 +    /// function is \f$ O(e) \f$.
   1.448 +    ///
   1.449 +    /// \pre \ref run() must be called before using this function.
   1.450 +    Cost totalCost() const {
   1.451 +      Cost c = 0;
   1.452 +      for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e)
   1.453 +	c += flow_result[e] * cost[edge_ref[e]];
   1.454 +      return c;
   1.455 +    }
   1.456 +
   1.457 +    /// \brief Runs the algorithm.
   1.458 +    ///
   1.459 +    /// Runs the algorithm.
   1.460 +    ///
   1.461 +    /// \return \c true if a feasible flow can be found.
   1.462 +    bool run() {
   1.463 +      return init() && start();
   1.464 +    }
   1.465 +
   1.466 +  protected:
   1.467 +
   1.468 +    /// \brief Extends the underlaying graph and initializes all the
   1.469 +    /// node and edge maps.
   1.470 +    bool init() {
   1.471 +      if (!valid_supply) return false;
   1.472 +
   1.473 +      // Initializing state and flow maps
   1.474 +      for (EdgeIt e(graph); e != INVALID; ++e) {
   1.475 +	flow[e] = 0;
   1.476 +	state[e] = LOWER;
   1.477 +      }
   1.478 +
   1.479 +      // Adding an artificial root node to the graph
   1.480 +      root = graph.addNode();
   1.481 +      parent[root] = INVALID;
   1.482 +      pred_edge[root] = INVALID;
   1.483 +      depth[root] = supply[root] = potential[root] = 0;
   1.484 +
   1.485 +      // Adding artificial edges to the graph and initializing the node
   1.486 +      // maps of the spanning tree data structure
   1.487 +      Supply sum = 0;
   1.488 +      Node last = root;
   1.489 +      Edge e;
   1.490 +      Cost max_cost = std::numeric_limits<Cost>::max() / 4;
   1.491 +      for (NodeIt u(graph); u != INVALID; ++u) {
   1.492 +	if (u == root) continue;
   1.493 +	thread[last] = u;
   1.494 +	last = u;
   1.495 +	parent[u] = root;
   1.496 +	depth[u] = 1;
   1.497 +	sum += supply[u];
   1.498 +	if (supply[u] >= 0) {
   1.499 +	  e = graph.addEdge(u, root);
   1.500 +	  flow[e] = supply[u];
   1.501 +	  forward[u] = true;
   1.502 +	  potential[u] = max_cost;
   1.503 +	} else {
   1.504 +	  e = graph.addEdge(root, u);
   1.505 +	  flow[e] = -supply[u];
   1.506 +	  forward[u] = false;
   1.507 +	  potential[u] = -max_cost;
   1.508 +	}
   1.509 +	cost[e] = max_cost;
   1.510 +	capacity[e] = std::numeric_limits<Capacity>::max();
   1.511 +	state[e] = TREE;
   1.512 +	pred_edge[u] = e;
   1.513 +      }
   1.514 +      thread[last] = root;
   1.515 +
   1.516 +#ifdef EDGE_BLOCK_PIVOT
   1.517 +      // Initializing block_size for the edge block pivot rule
   1.518 +      int edge_num = countEdges(graph);
   1.519 +      block_size = edge_num > MIN_BOUND ? edge_num / BLOCK_NUM + 1 : 1;
   1.520 +#endif
   1.521 +#ifdef CANDIDATE_LIST_PIVOT
   1.522 +      minor_count = 0;
   1.523 +#endif
   1.524 +
   1.525 +      return sum == 0;
   1.526 +    }
   1.527 +
   1.528 +#ifdef FIRST_ELIGIBLE_PIVOT
   1.529 +    /// \brief Finds entering edge according to the "First Eligible"
   1.530 +    /// pivot rule.
   1.531 +    bool findEnteringEdge(EdgeIt &next_edge) {
   1.532 +      for (EdgeIt e = next_edge; e != INVALID; ++e) {
   1.533 +	if (state[e] * red_cost[e] < 0) {
   1.534 +	  in_edge = e;
   1.535 +	  next_edge = ++e;
   1.536 +	  return true;
   1.537 +	}
   1.538 +      }
   1.539 +      for (EdgeIt e(graph); e != next_edge; ++e) {
   1.540 +	if (state[e] * red_cost[e] < 0) {
   1.541 +	  in_edge = e;
   1.542 +	  next_edge = ++e;
   1.543 +	  return true;
   1.544 +	}
   1.545 +      }
   1.546 +      return false;
   1.547 +    }
   1.548 +#endif
   1.549 +
   1.550 +#ifdef BEST_ELIGIBLE_PIVOT
   1.551 +    /// \brief Finds entering edge according to the "Best Eligible"
   1.552 +    /// pivot rule.
   1.553 +    bool findEnteringEdge() {
   1.554 +      Cost min = 0;
   1.555 +      for (EdgeIt e(graph); e != INVALID; ++e) {
   1.556 +	if (state[e] * red_cost[e] < min) {
   1.557 +	  min = state[e] * red_cost[e];
   1.558 +	  in_edge = e;
   1.559 +	}
   1.560 +      }
   1.561 +      return min < 0;
   1.562 +    }
   1.563 +#endif
   1.564 +
   1.565 +#ifdef EDGE_BLOCK_PIVOT
   1.566 +    /// \brief Finds entering edge according to the "Edge Block"
   1.567 +    /// pivot rule.
   1.568 +    bool findEnteringEdge(EdgeIt &next_edge) {
   1.569 +      if (block_size == 1) {
   1.570 +	// Performing first eligible selection
   1.571 +	for (EdgeIt e = next_edge; e != INVALID; ++e) {
   1.572 +	  if (state[e] * red_cost[e] < 0) {
   1.573 +	    in_edge = e;
   1.574 +	    next_edge = ++e;
   1.575 +	    return true;
   1.576 +	  }
   1.577 +	}
   1.578 +	for (EdgeIt e(graph); e != next_edge; ++e) {
   1.579 +	  if (state[e] * red_cost[e] < 0) {
   1.580 +	    in_edge = e;
   1.581 +	    next_edge = ++e;
   1.582 +	    return true;
   1.583 +	  }
   1.584 +	}
   1.585 +	return false;
   1.586 +      } else {
   1.587 +	// Performing edge block selection
   1.588 +	Cost curr, min = 0;
   1.589 +	EdgeIt min_edge(graph);
   1.590 +	int cnt = 0;
   1.591 +	for (EdgeIt e = next_edge; e != INVALID; ++e) {
   1.592 +	  if ((curr = state[e] * red_cost[e]) < min) {
   1.593 +	    min = curr;
   1.594 +	    min_edge = e;
   1.595 +	  }
   1.596 +	  if (++cnt == block_size) {
   1.597 +	    if (min < 0) break;
   1.598 +	    cnt = 0;
   1.599 +	  }
   1.600 +	}
   1.601 +	if (!(min < 0)) {
   1.602 +	  for (EdgeIt e(graph); e != next_edge; ++e) {
   1.603 +	    if ((curr = state[e] * red_cost[e]) < min) {
   1.604 +	      min = curr;
   1.605 +	      min_edge = e;
   1.606 +	    }
   1.607 +	    if (++cnt == block_size) {
   1.608 +	      if (min < 0) break;
   1.609 +	      cnt = 0;
   1.610 +	    }
   1.611 +	  }
   1.612 +	}
   1.613 +	in_edge = min_edge;
   1.614 +	if ((next_edge = ++min_edge) == INVALID)
   1.615 +	  next_edge = EdgeIt(graph);
   1.616 +	return min < 0;
   1.617 +      }
   1.618 +    }
   1.619 +#endif
   1.620 +
   1.621 +#ifdef CANDIDATE_LIST_PIVOT
   1.622 +    /// \brief Functor class for removing non-eligible edges from the
   1.623 +    /// candidate list.
   1.624 +    class RemoveFunc
   1.625 +    {
   1.626 +    private:
   1.627 +      const IntEdgeMap &st;
   1.628 +      const ReducedCostMap &rc;
   1.629 +    public:
   1.630 +      RemoveFunc(const IntEdgeMap &_st, const ReducedCostMap &_rc) :
   1.631 +	st(_st), rc(_rc) {}
   1.632 +      bool operator()(const Edge &e) {
   1.633 +	return st[e] * rc[e] >= 0;
   1.634 +      }
   1.635 +    };
   1.636 +
   1.637 +    /// \brief Finds entering edge according to the "Candidate List"
   1.638 +    /// pivot rule.
   1.639 +    bool findEnteringEdge() {
   1.640 +      static RemoveFunc remove_func(state, red_cost);
   1.641 +      typedef typename std::list<Edge>::iterator ListIt;
   1.642 +
   1.643 +      candidates.remove_if(remove_func);
   1.644 +      if (minor_count >= MINOR_LIMIT || candidates.size() == 0) {
   1.645 +	// Major iteration
   1.646 +	for (EdgeIt e(graph); e != INVALID; ++e) {
   1.647 +	  if (state[e] * red_cost[e] < 0) {
   1.648 +	    candidates.push_back(e);
   1.649 +	    if (candidates.size() == LIST_LENGTH) break;
   1.650 +	  }
   1.651 +	}
   1.652 +	if (candidates.size() == 0) return false;
   1.653 +      }
   1.654 +
   1.655 +      // Minor iteration
   1.656 +      ++minor_count;
   1.657 +      Cost min = 0;
   1.658 +      for (ListIt it = candidates.begin(); it != candidates.end(); ++it) {
   1.659 +	if (state[*it] * red_cost[*it] < min) {
   1.660 +	  min = state[*it] * red_cost[*it];
   1.661 +	  in_edge = *it;
   1.662 +	}
   1.663 +      }
   1.664 +      return true;
   1.665 +    }
   1.666 +#endif
   1.667 +
   1.668 +#ifdef SORTED_LIST_PIVOT
   1.669 +    /// \brief Functor class to compare edges during sort of the
   1.670 +    /// candidate list.
   1.671 +    class SortFunc
   1.672 +    {
   1.673 +    private:
   1.674 +      const IntEdgeMap &st;
   1.675 +      const ReducedCostMap &rc;
   1.676 +    public:
   1.677 +      SortFunc(const IntEdgeMap &_st, const ReducedCostMap &_rc) :
   1.678 +	st(_st), rc(_rc) {}
   1.679 +      bool operator()(const Edge &e1, const Edge &e2) {
   1.680 +	return st[e1] * rc[e1] < st[e2] * rc[e2];
   1.681 +      }
   1.682 +    };
   1.683 +
   1.684 +    /// \brief Finds entering edge according to the "Sorted List"
   1.685 +    /// pivot rule.
   1.686 +    bool findEnteringEdge() {
   1.687 +      static SortFunc sort_func(state, red_cost);
   1.688 +
   1.689 +      // Minor iteration
   1.690 +      while (candidates.size() > 0) {
   1.691 +	in_edge = candidates.front();
   1.692 +	candidates.pop_front();
   1.693 +	if (state[in_edge] * red_cost[in_edge] < 0) return true;
   1.694 +      }
   1.695 +
   1.696 +      // Major iteration
   1.697 +      Cost curr, min = 0;
   1.698 +      for (EdgeIt e(graph); e != INVALID; ++e) {
   1.699 +	if ((curr = state[e] * red_cost[e]) < min / LOWER_DIV) {
   1.700 +	  candidates.push_back(e);
   1.701 +	  if (curr < min) min = curr;
   1.702 +	  if (candidates.size() >= LIST_LENGTH) break;
   1.703 +	}
   1.704 +      }
   1.705 +      if (candidates.size() == 0) return false;
   1.706 +      sort(candidates.begin(), candidates.end(), sort_func);
   1.707 +      return true;
   1.708 +    }
   1.709 +#endif
   1.710 +
   1.711 +    /// \brief Finds the join node.
   1.712 +    Node findJoinNode() {
   1.713 +      // Finding the join node
   1.714 +      Node u = graph.source(in_edge);
   1.715 +      Node v = graph.target(in_edge);
   1.716 +      while (u != v) {
   1.717 +	if (depth[u] == depth[v]) {
   1.718 +	  u = parent[u];
   1.719 +	  v = parent[v];
   1.720 +	}
   1.721 +	else if (depth[u] > depth[v]) u = parent[u];
   1.722 +	else v = parent[v];
   1.723 +      }
   1.724 +      return u;
   1.725 +    }
   1.726 +
   1.727 +    /// \brief Finds the leaving edge of the cycle. Returns \c true if
   1.728 +    /// the leaving edge is not the same as the entering edge.
   1.729 +    bool findLeavingEdge() {
   1.730 +      // Initializing first and second nodes according to the direction
   1.731 +      // of the cycle
   1.732 +      if (state[in_edge] == LOWER) {
   1.733 +	first = graph.source(in_edge);
   1.734 +	second	= graph.target(in_edge);
   1.735 +      } else {
   1.736 +	first = graph.target(in_edge);
   1.737 +	second	= graph.source(in_edge);
   1.738 +      }
   1.739 +      delta = capacity[in_edge];
   1.740 +      bool result = false;
   1.741 +      Capacity d;
   1.742 +      Edge e;
   1.743 +
   1.744 +      // Searching the cycle along the path form the first node to the
   1.745 +      // root node
   1.746 +      for (Node u = first; u != join; u = parent[u]) {
   1.747 +	e = pred_edge[u];
   1.748 +	d = forward[u] ? flow[e] : capacity[e] - flow[e];
   1.749 +	if (d < delta) {
   1.750 +	  delta = d;
   1.751 +	  u_out = u;
   1.752 +	  u_in = first;
   1.753 +	  v_in = second;
   1.754 +	  result = true;
   1.755 +	}
   1.756 +      }
   1.757 +      // Searching the cycle along the path form the second node to the
   1.758 +      // root node
   1.759 +      for (Node u = second; u != join; u = parent[u]) {
   1.760 +	e = pred_edge[u];
   1.761 +	d = forward[u] ? capacity[e] - flow[e] : flow[e];
   1.762 +	if (d <= delta) {
   1.763 +	  delta = d;
   1.764 +	  u_out = u;
   1.765 +	  u_in = second;
   1.766 +	  v_in = first;
   1.767 +	  result = true;
   1.768 +	}
   1.769 +      }
   1.770 +      return result;
   1.771 +    }
   1.772 +
   1.773 +    /// \brief Changes flow and state edge maps.
   1.774 +    void changeFlows(bool change) {
   1.775 +      // Augmenting along the cycle
   1.776 +      if (delta > 0) {
   1.777 +	Capacity val = state[in_edge] * delta;
   1.778 +	flow[in_edge] += val;
   1.779 +	for (Node u = graph.source(in_edge); u != join; u = parent[u]) {
   1.780 +	  flow[pred_edge[u]] += forward[u] ? -val : val;
   1.781 +	}
   1.782 +	for (Node u = graph.target(in_edge); u != join; u = parent[u]) {
   1.783 +	  flow[pred_edge[u]] += forward[u] ? val : -val;
   1.784 +	}
   1.785 +      }
   1.786 +      // Updating the state of the entering and leaving edges
   1.787 +      if (change) {
   1.788 +	state[in_edge] = TREE;
   1.789 +	state[pred_edge[u_out]] =
   1.790 +	  (flow[pred_edge[u_out]] == 0) ? LOWER : UPPER;
   1.791 +      } else {
   1.792 +	state[in_edge] = -state[in_edge];
   1.793 +      }
   1.794 +    }
   1.795 +
   1.796 +    /// \brief Updates thread and parent node maps.
   1.797 +    void updateThreadParent() {
   1.798 +      Node u;
   1.799 +      v_out = parent[u_out];
   1.800 +
   1.801 +      // Handling the case when join and v_out coincide
   1.802 +      bool par_first = false;
   1.803 +      if (join == v_out) {
   1.804 +	for (u = join; u != u_in && u != v_in; u = thread[u]) ;
   1.805 +	if (u == v_in) {
   1.806 +	  par_first = true;
   1.807 +	  while (thread[u] != u_out) u = thread[u];
   1.808 +	  first = u;
   1.809 +	}
   1.810 +      }
   1.811 +
   1.812 +      // Finding the last successor of u_in (u) and the node after it
   1.813 +      // (right) according to the thread index
   1.814 +      for (u = u_in; depth[thread[u]] > depth[u_in]; u = thread[u]) ;
   1.815 +      right = thread[u];
   1.816 +      if (thread[v_in] == u_out) {
   1.817 +	for (last = u; depth[last] > depth[u_out]; last = thread[last]) ;
   1.818 +	if (last == u_out) last = thread[last];
   1.819 +      }
   1.820 +      else last = thread[v_in];
   1.821 +
   1.822 +      // Updating stem nodes
   1.823 +      thread[v_in] = stem = u_in;
   1.824 +      par_stem = v_in;
   1.825 +      while (stem != u_out) {
   1.826 +	thread[u] = new_stem = parent[stem];
   1.827 +
   1.828 +	// Finding the node just before the stem node (u) according to
   1.829 +	// the original thread index
   1.830 +	for (u = new_stem; thread[u] != stem; u = thread[u]) ;
   1.831 +	thread[u] = right;
   1.832 +
   1.833 +	// Changing the parent node of stem and shifting stem and
   1.834 +	// par_stem nodes
   1.835 +	parent[stem] = par_stem;
   1.836 +	par_stem = stem;
   1.837 +	stem = new_stem;
   1.838 +
   1.839 +	// Finding the last successor of stem (u) and the node after it
   1.840 +	// (right) according to the thread index
   1.841 +	for (u = stem; depth[thread[u]] > depth[stem]; u = thread[u]) ;
   1.842 +	right = thread[u];
   1.843 +      }
   1.844 +      parent[u_out] = par_stem;
   1.845 +      thread[u] = last;
   1.846 +
   1.847 +      if (join == v_out && par_first) {
   1.848 +	if (first != v_in) thread[first] = right;
   1.849 +      } else {
   1.850 +	for (u = v_out; thread[u] != u_out; u = thread[u]) ;
   1.851 +	thread[u] = right;
   1.852 +      }
   1.853 +    }
   1.854 +
   1.855 +    /// \brief Updates pred_edge and forward node maps.
   1.856 +    void updatePredEdge() {
   1.857 +      Node u = u_out, v;
   1.858 +      while (u != u_in) {
   1.859 +	v = parent[u];
   1.860 +	pred_edge[u] = pred_edge[v];
   1.861 +	forward[u] = !forward[v];
   1.862 +	u = v;
   1.863 +      }
   1.864 +      pred_edge[u_in] = in_edge;
   1.865 +      forward[u_in] = (u_in == graph.source(in_edge));
   1.866 +    }
   1.867 +
   1.868 +    /// \brief Updates depth and potential node maps.
   1.869 +    void updateDepthPotential() {
   1.870 +      depth[u_in] = depth[v_in] + 1;
   1.871 +      potential[u_in] = forward[u_in] ?
   1.872 +	potential[v_in] + cost[pred_edge[u_in]] :
   1.873 +	potential[v_in] - cost[pred_edge[u_in]];
   1.874 +
   1.875 +      Node u = thread[u_in], v;
   1.876 +      while (true) {
   1.877 +	v = parent[u];
   1.878 +	if (v == INVALID) break;
   1.879 +	depth[u] = depth[v] + 1;
   1.880 +	potential[u] = forward[u] ?
   1.881 +	  potential[v] + cost[pred_edge[u]] :
   1.882 +	  potential[v] - cost[pred_edge[u]];
   1.883 +	if (depth[u] <= depth[v_in]) break;
   1.884 +	u = thread[u];
   1.885 +      }
   1.886 +    }
   1.887 +
   1.888 +    /// \brief Executes the algorithm.
   1.889 +    bool start() {
   1.890 +      // Processing pivots
   1.891 +#ifdef _DEBUG_ITER_
   1.892 +      int iter_num = 0;
   1.893 +#endif
   1.894 +#if defined(FIRST_ELIGIBLE_PIVOT) || defined(EDGE_BLOCK_PIVOT)
   1.895 +      EdgeIt next_edge(graph);
   1.896 +      while (findEnteringEdge(next_edge))
   1.897 +#else
   1.898 +      while (findEnteringEdge())
   1.899 +#endif
   1.900 +      {
   1.901 +	join = findJoinNode();
   1.902 +	bool change = findLeavingEdge();
   1.903 +	changeFlows(change);
   1.904 +	if (change) {
   1.905 +	  updateThreadParent();
   1.906 +	  updatePredEdge();
   1.907 +	  updateDepthPotential();
   1.908 +	}
   1.909 +#ifdef _DEBUG_ITER_
   1.910 +	++iter_num;
   1.911 +#endif
   1.912 +      }
   1.913 +
   1.914 +#ifdef _DEBUG_ITER_
   1.915 +      t_iter.stop();
   1.916 +      std::cout << "Network Simplex algorithm finished. " << iter_num
   1.917 +		<< " pivot iterations performed.";
   1.918 +#endif
   1.919 +
   1.920 +      // Checking if the flow amount equals zero on all the
   1.921 +      // artificial edges
   1.922 +      for (InEdgeIt e(graph, root); e != INVALID; ++e)
   1.923 +	if (flow[e] > 0) return false;
   1.924 +      for (OutEdgeIt e(graph, root); e != INVALID; ++e)
   1.925 +	if (flow[e] > 0) return false;
   1.926 +
   1.927 +      // Copying flow values to flow_result
   1.928 +      if (lower) {
   1.929 +	for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e)
   1.930 +	  flow_result[e] = (*lower)[e] + flow[edge_ref[e]];
   1.931 +      } else {
   1.932 +	for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e)
   1.933 +	  flow_result[e] = flow[edge_ref[e]];
   1.934 +      }
   1.935 +      // Copying potential values to potential_result
   1.936 +      for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n)
   1.937 +	potential_result[n] = potential[node_ref[n]];
   1.938 +
   1.939 +      return true;
   1.940 +    }
   1.941 +
   1.942 +  }; //class NetworkSimplex
   1.943 +
   1.944 +  ///@}
   1.945 +
   1.946 +} //namespace lemon
   1.947 +
   1.948 +#endif //LEMON_NETWORK_SIMPLEX_H