src/include/unionfind.h
changeset 483 ce29ae5b2e1b
child 491 4804c967543d
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/include/unionfind.h	Thu Apr 29 17:00:44 2004 +0000
     1.3 @@ -0,0 +1,700 @@
     1.4 +// -*- c++ -*- //
     1.5 +#ifndef HUGO_UNION_FIND_H
     1.6 +#define HUGO_UNION_FIND_H
     1.7 +
     1.8 +//!ingroup auxdat
     1.9 +//!\file
    1.10 +//!\brief Union-Find data structures.
    1.11 +
    1.12 +
    1.13 +#include <vector>
    1.14 +#include <list>
    1.15 +#include <utility>
    1.16 +#include <algorithm>
    1.17 +
    1.18 +#include <invalid.h>
    1.19 +
    1.20 +namespace hugo {
    1.21 +
    1.22 +  //! \addtogroup auxdat
    1.23 +  //! @{
    1.24 +
    1.25 +  /**
    1.26 +   * \brief A \e Union-Find data structure implementation
    1.27 +   *
    1.28 +   * The class implements the \e Union-Find data structure. 
    1.29 +   * The union operation uses rank heuristic, while
    1.30 +   * the find operation uses path compresson.
    1.31 +   * This is a very simple but efficient implementation, providing 
    1.32 +   * only four methods: join (union), find, insert and size.
    1.33 +   * For more features see the \ref UnionFindEnum class.
    1.34 +   *
    1.35 +   * \pre The elements are automatically added only if the map 
    1.36 +   * given to the constructor was filled with -1's. Otherwise you
    1.37 +   * need to add all the elements by the \ref insert() method.
    1.38 +   */
    1.39 +
    1.40 +  template <typename T, typename TIntMap>
    1.41 +  class UnionFind {
    1.42 +    
    1.43 +  public:
    1.44 +    typedef T ElementType;
    1.45 +    typedef std::pair<int,int> PairType;
    1.46 +
    1.47 +  private:
    1.48 +    std::vector<PairType> data;
    1.49 +    TIntMap& map;
    1.50 +
    1.51 +  public:
    1.52 +    UnionFind(TIntMap& m) : map(m) {}
    1.53 +
    1.54 +    /**
    1.55 +     * \brief Returns the index of the element's component.
    1.56 +     *
    1.57 +     * The method returns the index of the element's component.
    1.58 +     * This is an integer between zero and the number of inserted elements.
    1.59 +     */
    1.60 +
    1.61 +    int find(T a)
    1.62 +    {
    1.63 +      int comp0 = map[a];
    1.64 +      if (comp0 < 0) {
    1.65 +	return insert(a);
    1.66 +      }
    1.67 +      int comp = comp0;
    1.68 +      int next;
    1.69 +      while ( (next = data[comp].first) != comp) {
    1.70 +	comp = next;
    1.71 +      }
    1.72 +      while ( (next = data[comp0].first) != comp) {
    1.73 +	data[comp0].first = comp;
    1.74 +	comp0 = next;
    1.75 +      }
    1.76 +
    1.77 +      return comp;
    1.78 +    }
    1.79 +
    1.80 +    /**
    1.81 +     * \brief Insert a new element into the structure.
    1.82 +     *
    1.83 +     * This method inserts a new element into the data structure. 
    1.84 +     *
    1.85 +     * It is not required to use this method:
    1.86 +     * if the map given to the constructor was filled 
    1.87 +     * with -1's then it is called automatically
    1.88 +     * on the first \ref find or \ref join.
    1.89 +     *
    1.90 +     * The method returns the index of the new component.
    1.91 +     */
    1.92 +
    1.93 +    int insert(T a)
    1.94 +    {
    1.95 +      int n = data.size();
    1.96 +      data.push_back(std::make_pair(n, 1));
    1.97 +      map.set(a,n);
    1.98 +      return n;
    1.99 +    }
   1.100 +
   1.101 +    /**
   1.102 +     * \brief Joining the components of element \e a and element \e b.
   1.103 +     *
   1.104 +     * This is the \e union operation of the Union-Find structure. 
   1.105 +     * Joins the component of elemenent \e a and component of
   1.106 +     * element \e b. If \e a and \e b are in the same component then
   1.107 +     * it returns false otherwise it returns true.
   1.108 +     */
   1.109 +
   1.110 +    bool join(T a, T b)
   1.111 +    {
   1.112 +      int ca = find(a);
   1.113 +      int cb = find(b);
   1.114 +
   1.115 +      if ( ca == cb ) 
   1.116 +	return false;
   1.117 +
   1.118 +      if ( data[ca].second > data[cb].second ) {
   1.119 +	data[cb].first = ca;
   1.120 +	data[ca].second += data[cb].second;
   1.121 +      }
   1.122 +      else {
   1.123 +	data[ca].first = cb;
   1.124 +	data[cb].second += data[ca].second;
   1.125 +      }
   1.126 +      return true;
   1.127 +    }
   1.128 +
   1.129 +    /**
   1.130 +     * \brief Returns the size of the component of element \e a.
   1.131 +     *
   1.132 +     * Returns the size of the component of element \e a.
   1.133 +     */
   1.134 +
   1.135 +    int size(T a)
   1.136 +    {
   1.137 +      int ca = find(a);
   1.138 +      return data[ca].second;
   1.139 +    }
   1.140 +
   1.141 +  };
   1.142 +
   1.143 +
   1.144 +
   1.145 +
   1.146 +  /*******************************************************/
   1.147 +
   1.148 +
   1.149 +#ifdef DEVELOPMENT_DOCS
   1.150 +
   1.151 +  /**
   1.152 +   * \brief The auxiliary class for the \ref UnionFindEnum class.
   1.153 +   *
   1.154 +   * In the \ref UnionFindEnum class all components are represented as
   1.155 +   * a std::list. 
   1.156 +   * Items of these lists are UnionFindEnumItem structures.
   1.157 +   *
   1.158 +   * The class has four fields:
   1.159 +   *  - T me - the actual element 
   1.160 +   *  - IIter parent - the parent of the element in the union-find structure
   1.161 +   *  - int size - the size of the component of the element. 
   1.162 +   *            Only valid if the element
   1.163 +   *            is the leader of the component.
   1.164 +   *  - CIter my_class - pointer into the list of components 
   1.165 +   *            pointing to the component of the element.
   1.166 +   *            Only valid if the element is the leader of the component.
   1.167 +   */
   1.168 +
   1.169 +#endif
   1.170 +
   1.171 +  template <typename T>
   1.172 +  struct UnionFindEnumItem {
   1.173 +
   1.174 +    typedef std::list<UnionFindEnumItem> ItemList;
   1.175 +    typedef std::list<ItemList> ClassList;
   1.176 +    typedef typename ItemList::iterator IIter;
   1.177 +    typedef typename ClassList::iterator CIter;
   1.178 +
   1.179 +    T me;
   1.180 +    IIter parent;
   1.181 +    int size;
   1.182 +    CIter my_class;
   1.183 +
   1.184 +    UnionFindEnumItem() {}
   1.185 +    UnionFindEnumItem(const T &_me, CIter _my_class): 
   1.186 +      me(_me), size(1), my_class(_my_class) {}
   1.187 +  };
   1.188 +
   1.189 +
   1.190 +  /**
   1.191 +   * \brief A \e Union-Find data structure implementation which
   1.192 +   * is able to enumerate the components.
   1.193 +   *
   1.194 +   * The class implements an \e Union-Find data structure
   1.195 +   * which is able to enumerate the components and the items in
   1.196 +   * a component. If you don't need this feature then perhaps it's
   1.197 +   * better to use the \ref UnionFind class which is more efficient.
   1.198 +   *
   1.199 +   * The union operation uses rank heuristic, while
   1.200 +   * the find operation uses path compresson.
   1.201 +   *
   1.202 +   * \pre You
   1.203 +   * need to add all the elements by the \ref insert() method.
   1.204 +   */
   1.205 +
   1.206 +
   1.207 +  template <typename T, template <typename Item> class Map>
   1.208 +  class UnionFindEnum {
   1.209 +
   1.210 +    typedef std::list<UnionFindEnumItem<T> > ItemList;
   1.211 +    typedef std::list<ItemList> ClassList;
   1.212 +    typedef typename ItemList::iterator IIter;
   1.213 +    typedef typename ItemList::const_iterator IcIter;
   1.214 +    typedef typename ClassList::iterator CIter;
   1.215 +    typedef typename ClassList::const_iterator CcIter;
   1.216 +
   1.217 +  public:
   1.218 +    typedef T ElementType;
   1.219 +    typedef UnionFindEnumItem<T> ItemType;
   1.220 +    typedef Map< IIter > MapType;
   1.221 +
   1.222 +  private:
   1.223 +    MapType& m;
   1.224 +    ClassList classes;
   1.225 +
   1.226 +    IIter _find(IIter a) const {
   1.227 +      IIter comp = a;
   1.228 +      IIter next;
   1.229 +      while( (next = comp->parent) != comp ) {
   1.230 +	comp = next;
   1.231 +      }
   1.232 +
   1.233 +      IIter comp1 = a;
   1.234 +      while( (next = comp1->parent) != comp ) {
   1.235 +	comp1->parent = comp->parent;
   1.236 +	comp1 = next;
   1.237 +      }
   1.238 +      return comp;
   1.239 +    }
   1.240 +
   1.241 +  public:
   1.242 +    UnionFindEnum(MapType& _m) : m(_m) {}
   1.243 +
   1.244 +
   1.245 +    /**
   1.246 +     * \brief Insert the given element into a new component.
   1.247 +     *
   1.248 +     * This method creates a new component consisting only of the
   1.249 +     * given element.
   1.250 +     */
   1.251 +
   1.252 +    void insert(const T &a)
   1.253 +    {
   1.254 +
   1.255 +
   1.256 +      classes.push_back(ItemList());
   1.257 +      CIter aclass = classes.end();
   1.258 +      --aclass;
   1.259 +
   1.260 +      ItemList &alist = *aclass;
   1.261 +      alist.push_back(ItemType(a, aclass));
   1.262 +      IIter ai = alist.begin();
   1.263 +
   1.264 +      ai->parent = ai;
   1.265 +      m.set(a, ai);
   1.266 +
   1.267 +    }
   1.268 +
   1.269 +    /**
   1.270 +     * \brief Insert the given element into the component of the others.
   1.271 +     *
   1.272 +     * This methods insert the element \e a into the component of the
   1.273 +     * element \e comp. 
   1.274 +     */
   1.275 +
   1.276 +    void insert(const T &a, const T &comp) {
   1.277 +      
   1.278 +      IIter clit = _find(m[comp]);
   1.279 +      ItemList &c = *clit->my_class;
   1.280 +      c.push_back(ItemType(a,0));
   1.281 +      IIter ai = c.end();
   1.282 +      --ai;
   1.283 +      ai->parent = clit;
   1.284 +      m.set(a, ai);
   1.285 +      ++clit->size;
   1.286 +    }
   1.287 +
   1.288 +
   1.289 +    /**
   1.290 +     * \brief Find the leader of the component of the given element.
   1.291 +     *
   1.292 +     * The method returns the leader of the component of the given element.
   1.293 +     */
   1.294 +
   1.295 +    T find(const T &a) const {
   1.296 +      return _find(m[a])->me;
   1.297 +    }
   1.298 +
   1.299 +
   1.300 +    /**
   1.301 +     * \brief Joining the component of element \e a and element \e b.
   1.302 +     *
   1.303 +     * This is the \e union operation of the Union-Find structure. 
   1.304 +     * Joins the component of elemenent \e a and component of
   1.305 +     * element \e b. If \e a and \e b are in the same component then
   1.306 +     * returns false else returns true.
   1.307 +     */
   1.308 +
   1.309 +    bool join(T a, T b) {
   1.310 +
   1.311 +      IIter ca = _find(m[a]);
   1.312 +      IIter cb = _find(m[b]);
   1.313 +
   1.314 +      if ( ca == cb ) {
   1.315 +	return false;
   1.316 +      }
   1.317 +
   1.318 +      if ( ca->size > cb->size ) {
   1.319 +
   1.320 +	cb->parent = ca->parent;
   1.321 +	ca->size += cb->size;
   1.322 +	
   1.323 +	ItemList &alist = *ca->my_class;
   1.324 +	alist.splice(alist.end(),*cb->my_class);
   1.325 +
   1.326 +	classes.erase(cb->my_class);
   1.327 +	cb->my_class = 0;
   1.328 +      }
   1.329 +      else {
   1.330 +
   1.331 +	ca->parent = cb->parent;
   1.332 +	cb->size += ca->size;
   1.333 +	
   1.334 +	ItemList &blist = *cb->my_class;
   1.335 +	blist.splice(blist.end(),*ca->my_class);
   1.336 +
   1.337 +	classes.erase(ca->my_class);
   1.338 +	ca->my_class = 0;
   1.339 +      }
   1.340 +
   1.341 +      return true;
   1.342 +    }
   1.343 +
   1.344 +
   1.345 +    /**
   1.346 +     * \brief Returns the size of the component of element \e a.
   1.347 +     *
   1.348 +     * Returns the size of the component of element \e a.
   1.349 +     */
   1.350 +
   1.351 +    int size(const T &a) const {
   1.352 +      return _find(m[a])->size;
   1.353 +    }
   1.354 +
   1.355 +
   1.356 +    /**
   1.357 +     * \brief Split up the component of the element. 
   1.358 +     *
   1.359 +     * Splitting the component of the element into sigleton
   1.360 +     * components (component of size one).
   1.361 +     */
   1.362 +
   1.363 +    void split(const T &a) {
   1.364 +
   1.365 +      IIter ca = _find(m[a]);
   1.366 + 
   1.367 +      if ( ca->size == 1 )
   1.368 +	return;
   1.369 +      
   1.370 +      CIter aclass = ca->my_class;
   1.371 +
   1.372 +      for(IIter curr = ca; ++curr != aclass->end(); curr=ca) {
   1.373 +	classes.push_back(ItemList());
   1.374 +	CIter nl = --classes.end();
   1.375 +	nl->splice(nl->end(), *aclass, curr);
   1.376 +
   1.377 +	curr->size=1;
   1.378 +	curr->parent=curr;
   1.379 +	curr->my_class = nl;
   1.380 +      }
   1.381 +
   1.382 +      ca->size=1;
   1.383 +      return;
   1.384 +    }
   1.385 +
   1.386 +
   1.387 +    /**
   1.388 +     * \brief Set the given element to the leader element of its component.
   1.389 +     *
   1.390 +     * Set the given element to the leader element of its component.
   1.391 +     */
   1.392 +
   1.393 +    void makeRep(const T &a) {
   1.394 +
   1.395 +      IIter ia = m[a];
   1.396 +      IIter la = _find(ia);
   1.397 +      if (la == ia) return;
   1.398 +
   1.399 +      ia->my_class = la->my_class;
   1.400 +      la->my_class = 0;
   1.401 +
   1.402 +      ia->size = la->size;
   1.403 +
   1.404 +      CIter l = ia->my_class;
   1.405 +      l->splice(l->begin(),*l,ia);
   1.406 +
   1.407 +      ia->parent = ia;
   1.408 +      la->parent = ia;
   1.409 +    }
   1.410 +
   1.411 +    /**
   1.412 +     * \brief Move the given element to an other component.
   1.413 +     *
   1.414 +     * This method moves the element \e a from its component
   1.415 +     * to the component of \e comp.
   1.416 +     * If \e a and \e comp are in the same component then
   1.417 +     * it returns false otherwise it returns true.
   1.418 +     */
   1.419 +
   1.420 +    bool move(const T &a, const T &comp) {
   1.421 +
   1.422 +      IIter ai = m[a];
   1.423 +      IIter lai = _find(ai);
   1.424 +      IIter clit = _find(m[comp]);
   1.425 +
   1.426 +      if (lai == clit)
   1.427 +	return false;
   1.428 +
   1.429 +      ItemList &c = *clit->my_class;
   1.430 +
   1.431 +      bool is_leader = (lai == ai);
   1.432 +      bool singleton = false;
   1.433 +
   1.434 +      if (is_leader) {
   1.435 +	++lai;
   1.436 +      }
   1.437 +
   1.438 +      c.splice(c.end(), *lai->my_class, ai);
   1.439 +
   1.440 +      if (is_leader) {
   1.441 +	if (ai->size == 1) {
   1.442 +	  classes.erase(ai->my_class);
   1.443 +	  singleton = true;
   1.444 +	}
   1.445 +	else {
   1.446 +	  lai->size = ai->size; 
   1.447 +	  lai->my_class = ai->my_class;	
   1.448 +	}
   1.449 +      }
   1.450 +      if (!singleton) {
   1.451 +	for (IIter i = lai; i != lai->my_class->end(); ++i)
   1.452 +	  i->parent = lai;
   1.453 +	--lai->size;
   1.454 +      }
   1.455 +
   1.456 +      ai->parent = clit;
   1.457 +      ai->my_class = 0;
   1.458 +      ++clit->size;
   1.459 +
   1.460 +      return true;
   1.461 +    }
   1.462 +
   1.463 +
   1.464 +    /**
   1.465 +     * \brief Remove the given element from the structure.
   1.466 +     *
   1.467 +     * Remove the given element from the structure.
   1.468 +     *
   1.469 +     * Removes the element from its component and if the component becomes
   1.470 +     * empty then removes that component from the component list.
   1.471 +     */
   1.472 +    void erase(const T &a) {
   1.473 +
   1.474 +      IIter ma = m[a];
   1.475 +      if (ma == 0) return;
   1.476 +
   1.477 +      IIter la = _find(ma);
   1.478 +      if (la == ma) {
   1.479 +	if (ma -> size == 1){
   1.480 +	  classes.erase(ma->my_class);
   1.481 +	  m.set(a,0);
   1.482 +	  return;
   1.483 +	}
   1.484 +	++la;
   1.485 +	la->size = ma->size; 
   1.486 +	la->my_class = ma->my_class;	
   1.487 +      }
   1.488 +
   1.489 +      for (IIter i = la; i != la->my_class->end(); ++i) {
   1.490 +	i->parent = la;
   1.491 +      }
   1.492 +
   1.493 +      la->size--;
   1.494 +      la->my_class->erase(ma);
   1.495 +      m.set(a,0);
   1.496 +    }
   1.497 +
   1.498 +    /**
   1.499 +     * \brief Removes the component of the given element from the structure.
   1.500 +     *
   1.501 +     * Removes the component of the given element from the structure.
   1.502 +     */
   1.503 +
   1.504 +    void eraseClass(const T &a) {
   1.505 +      IIter ma = m[a];
   1.506 +      if (ma == 0) return;
   1.507 +#     ifdef DEBUG
   1.508 +      CIter c = _find(ma)->my_class;
   1.509 +      for (IIter i=c->begin(); i!=c->end(); ++i)
   1.510 +	m.set(i->me, 0);
   1.511 +#     endif
   1.512 +      classes.erase(_find(ma)->my_class);
   1.513 +    }
   1.514 +
   1.515 +
   1.516 +    class ClassIt {
   1.517 +      friend class UnionFindEnum;
   1.518 +
   1.519 +      CcIter i;
   1.520 +    public:
   1.521 +      ClassIt(Invalid): i(0) {}
   1.522 +      ClassIt() {}
   1.523 +      
   1.524 +      operator const T& () const { 
   1.525 +	ItemList const &ll = *i;
   1.526 +	return (ll.begin())->me; }
   1.527 +      bool operator == (ClassIt it) const {
   1.528 +	return (i == it.i);
   1.529 +      }
   1.530 +      bool operator != (ClassIt it) const {
   1.531 +	return (i != it.i);
   1.532 +      }
   1.533 +      bool operator < (ClassIt it) const {
   1.534 +	return (i < it.i);
   1.535 +      }
   1.536 +
   1.537 +      bool valid() const { return i != 0; }
   1.538 +    private:
   1.539 +      void first(const ClassList &l) { i = l.begin(); validate(l); }
   1.540 +      void next(const ClassList &l) {
   1.541 +	++i; 
   1.542 +	validate(l);
   1.543 +      }
   1.544 +      void validate(const ClassList &l) {
   1.545 +	if ( i == l.end() ) 
   1.546 +	  i = 0;
   1.547 +      }
   1.548 +    };
   1.549 +
   1.550 +    /**
   1.551 +     * \brief Sets the iterator to point to the first component.
   1.552 +     * 
   1.553 +     * Sets the iterator to point to the first component.
   1.554 +     *
   1.555 +     * With the \ref first, \ref valid and \ref next methods you can
   1.556 +     * iterate through the components. For example:
   1.557 +     * \code
   1.558 +     * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
   1.559 +     * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
   1.560 +     * UnionFindEnum<Graph::Node, Graph::NodeMap>::ClassIt iter;
   1.561 +     *  for (U.first(iter); U.valid(iter); U.next(iter)) {
   1.562 +     *    // iter is convertible to Graph::Node
   1.563 +     *    cout << iter << endl;
   1.564 +     *  }
   1.565 +     * \endcode
   1.566 +     */
   1.567 +
   1.568 +    ClassIt& first(ClassIt& it) const {
   1.569 +      it.first(classes);
   1.570 +      return it;
   1.571 +    }
   1.572 +
   1.573 +    /**
   1.574 +     * \brief Returns whether the iterator is valid.
   1.575 +     *
   1.576 +     * Returns whether the iterator is valid.
   1.577 +     *
   1.578 +     * With the \ref first, \ref valid and \ref next methods you can
   1.579 +     * iterate through the components. See the example here: \ref first.
   1.580 +     */
   1.581 +
   1.582 +    bool valid(ClassIt const &it) const {
   1.583 +      return it.valid(); 
   1.584 +    }
   1.585 +
   1.586 +    /**
   1.587 +     * \brief Steps the iterator to the next component. 
   1.588 +     *
   1.589 +     * Steps the iterator to the next component.
   1.590 +     *
   1.591 +     * With the \ref first, \ref valid and \ref next methods you can
   1.592 +     * iterate through the components. See the example here: \ref first.
   1.593 +     */
   1.594 +
   1.595 +    ClassIt& next(ClassIt& it) const {
   1.596 +      it.next(classes);
   1.597 +      return it;
   1.598 +    }
   1.599 +
   1.600 +
   1.601 +    class ItemIt {
   1.602 +      friend class UnionFindEnum;
   1.603 +
   1.604 +      IcIter i;
   1.605 +      const ItemList *l;
   1.606 +    public:
   1.607 +      ItemIt(Invalid): i(0) {}
   1.608 +      ItemIt() {}
   1.609 +      
   1.610 +      operator const T& () const { return i->me; }
   1.611 +      bool operator == (ItemIt it) const {
   1.612 +	return (i == it.i);
   1.613 +      }
   1.614 +      bool operator != (ItemIt it) const {
   1.615 +	return (i != it.i);
   1.616 +      }
   1.617 +      bool operator < (ItemIt it) const {
   1.618 +	return (i < it.i);
   1.619 +      }
   1.620 +
   1.621 +      bool valid() const { return i != 0; }
   1.622 +    private:
   1.623 +      void first(const ItemList &il) { l=&il; i = l->begin(); validate(); }
   1.624 +      void next() {
   1.625 +	++i; 
   1.626 +	validate();
   1.627 +      }
   1.628 +      void validate() {
   1.629 +	if ( i == l->end() ) 
   1.630 +	  i = 0;
   1.631 +      }
   1.632 +    };
   1.633 +
   1.634 +
   1.635 +
   1.636 +    /**
   1.637 +     * \brief Sets the iterator to point to the first element of the component.
   1.638 +     * 
   1.639 +     * \anchor first2 
   1.640 +     * Sets the iterator to point to the first element of the component.
   1.641 +     *
   1.642 +     * With the \ref first2 "first", \ref valid2 "valid" 
   1.643 +     * and \ref next2 "next" methods you can
   1.644 +     * iterate through the elements of a component. For example
   1.645 +     * (iterating through the component of the node \e node):
   1.646 +     * \code
   1.647 +     * Graph::Node node = ...;
   1.648 +     * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
   1.649 +     * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
   1.650 +     * UnionFindEnum<Graph::Node, Graph::NodeMap>::ItemIt iiter;
   1.651 +     *   for (U.first(iiter, node); U.valid(iiter); U.next(iiter)) {
   1.652 +     *     // iiter is convertible to Graph::Node
   1.653 +     *     cout << iiter << endl;
   1.654 +     *   }
   1.655 +     * \endcode
   1.656 +     */
   1.657 +    
   1.658 +    ItemIt& first(ItemIt& it, const T& a) const {
   1.659 +      it.first( * _find(m[a])->my_class );
   1.660 +      return it;
   1.661 +    }
   1.662 +
   1.663 +    /**
   1.664 +     * \brief Returns whether the iterator is valid.
   1.665 +     *
   1.666 +     * \anchor valid2
   1.667 +     * Returns whether the iterator is valid.
   1.668 +     *
   1.669 +     * With the \ref first2 "first", \ref valid2 "valid" 
   1.670 +     * and \ref next2 "next" methods you can
   1.671 +     * iterate through the elements of a component.
   1.672 +     * See the example here: \ref first2 "first".
   1.673 +     */
   1.674 +
   1.675 +    bool valid(ItemIt const &it) const {
   1.676 +      return it.valid(); 
   1.677 +    }
   1.678 +
   1.679 +    /**
   1.680 +     * \brief Steps the iterator to the next component. 
   1.681 +     *
   1.682 +     * \anchor next2
   1.683 +     * Steps the iterator to the next component.
   1.684 +     *
   1.685 +     * With the \ref first2 "first", \ref valid2 "valid" 
   1.686 +     * and \ref next2 "next" methods you can
   1.687 +     * iterate through the elements of a component.
   1.688 +     * See the example here: \ref first2 "first".
   1.689 +     */
   1.690 +
   1.691 +    ItemIt& next(ItemIt& it) const {
   1.692 +      it.next();
   1.693 +      return it;
   1.694 +    }
   1.695 +    
   1.696 +  };
   1.697 +
   1.698 +
   1.699 +  //! @}
   1.700 +
   1.701 +} //namespace hugo
   1.702 +
   1.703 +#endif //HUGO_UNION_FIND_H