lemon/planarity.h
changeset 2480 eecaeab41472
child 2481 ddb851e1481a
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/planarity.h	Sun Sep 30 19:14:33 2007 +0000
     1.3 @@ -0,0 +1,1815 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2007
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +#ifndef LEMON_PLANARITY_H
    1.22 +#define LEMON_PLANARITY_H
    1.23 +
    1.24 +/// \ingroup graph_prop
    1.25 +/// \file
    1.26 +/// \brief Planarity checking, embedding
    1.27 +
    1.28 +#include <vector>
    1.29 +#include <list>
    1.30 +
    1.31 +#include <lemon/dfs.h>
    1.32 +#include <lemon/radix_sort.h>
    1.33 +#include <lemon/maps.h>
    1.34 +#include <lemon/path.h>
    1.35 +
    1.36 +
    1.37 +namespace lemon {
    1.38 +
    1.39 +  namespace _planarity_bits {
    1.40 +
    1.41 +    template <typename UGraph>
    1.42 +    struct PlanarityVisitor : DfsVisitor<UGraph> {
    1.43 +
    1.44 +      typedef typename UGraph::Node Node;
    1.45 +      typedef typename UGraph::Edge Edge;
    1.46 +
    1.47 +      typedef typename UGraph::template NodeMap<Edge> PredMap;
    1.48 +
    1.49 +      typedef typename UGraph::template UEdgeMap<bool> TreeMap;
    1.50 +
    1.51 +      typedef typename UGraph::template NodeMap<int> OrderMap;
    1.52 +      typedef std::vector<Node> OrderList;
    1.53 +
    1.54 +      typedef typename UGraph::template NodeMap<int> LowMap;
    1.55 +      typedef typename UGraph::template NodeMap<int> AncestorMap;
    1.56 +
    1.57 +      PlanarityVisitor(const UGraph& ugraph,
    1.58 +		       PredMap& pred_map, TreeMap& tree_map,
    1.59 +		       OrderMap& order_map, OrderList& order_list,
    1.60 +		       AncestorMap& ancestor_map, LowMap& low_map)
    1.61 +	: _ugraph(ugraph), _pred_map(pred_map), _tree_map(tree_map),
    1.62 +	  _order_map(order_map), _order_list(order_list),
    1.63 +	  _ancestor_map(ancestor_map), _low_map(low_map) {}
    1.64 +      
    1.65 +      void reach(const Node& node) {
    1.66 +	_order_map[node] = _order_list.size();
    1.67 +	_low_map[node] = _order_list.size();
    1.68 +	_ancestor_map[node] = _order_list.size();
    1.69 +	_order_list.push_back(node);
    1.70 +      }
    1.71 +
    1.72 +      void discover(const Edge& edge) {
    1.73 +	Node source = _ugraph.source(edge);
    1.74 +	Node target = _ugraph.target(edge);
    1.75 +
    1.76 +	_tree_map[edge] = true;
    1.77 +	_pred_map[target] = edge;
    1.78 +      }
    1.79 +
    1.80 +      void examine(const Edge& edge) {
    1.81 +	Node source = _ugraph.source(edge);
    1.82 +	Node target = _ugraph.target(edge);
    1.83 +	
    1.84 +	if (_order_map[target] < _order_map[source] && !_tree_map[edge]) {
    1.85 +	  if (_low_map[source] > _order_map[target]) {
    1.86 +	    _low_map[source] = _order_map[target];
    1.87 +	  }
    1.88 +	  if (_ancestor_map[source] > _order_map[target]) {
    1.89 +	    _ancestor_map[source] = _order_map[target];
    1.90 +	  }
    1.91 +	}
    1.92 +      }
    1.93 +
    1.94 +      void backtrack(const Edge& edge) {
    1.95 +	Node source = _ugraph.source(edge);
    1.96 +	Node target = _ugraph.target(edge);
    1.97 +
    1.98 +	if (_low_map[source] > _low_map[target]) {
    1.99 +	  _low_map[source] = _low_map[target];
   1.100 +	}
   1.101 +      }
   1.102 +
   1.103 +      const UGraph& _ugraph;
   1.104 +      PredMap& _pred_map;
   1.105 +      TreeMap& _tree_map;
   1.106 +      OrderMap& _order_map;
   1.107 +      OrderList& _order_list;
   1.108 +      AncestorMap& _ancestor_map;
   1.109 +      LowMap& _low_map;
   1.110 +    };
   1.111 +
   1.112 +    template <typename UGraph, bool embedding = true>
   1.113 +    struct NodeDataNode {
   1.114 +      int prev, next;
   1.115 +      int visited;
   1.116 +      typename UGraph::Edge first;
   1.117 +      bool inverted;
   1.118 +    };
   1.119 +
   1.120 +    template <typename UGraph>
   1.121 +    struct NodeDataNode<UGraph, false> {
   1.122 +      int prev, next;
   1.123 +      int visited;
   1.124 +    };
   1.125 +
   1.126 +    template <typename UGraph>
   1.127 +    struct ChildListNode {
   1.128 +      typedef typename UGraph::Node Node;
   1.129 +      Node first;
   1.130 +      Node prev, next;
   1.131 +    };
   1.132 +
   1.133 +    template <typename UGraph>
   1.134 +    struct EdgeListNode {
   1.135 +      typename UGraph::Edge prev, next;
   1.136 +    };
   1.137 +
   1.138 +  }
   1.139 +
   1.140 +  /// \ingroup  graph_prop
   1.141 +  ///
   1.142 +  /// \brief Planarity checking of an undirected simple graph
   1.143 +  ///
   1.144 +  /// This class implements the Boyer-Myrvold algorithm for planar
   1.145 +  /// checking of an undirected graph. This class is a simplified
   1.146 +  /// version of the PlanarEmbedding algorithm class, and it does
   1.147 +  /// provide neither embedding nor kuratowski subdivisons.
   1.148 +  template <typename UGraph>
   1.149 +  class PlanarityChecking {
   1.150 +  private:
   1.151 +    
   1.152 +    UGRAPH_TYPEDEFS(typename UGraph)
   1.153 +      
   1.154 +    const UGraph& _ugraph;
   1.155 +
   1.156 +  private:
   1.157 +
   1.158 +    typedef typename UGraph::template NodeMap<Edge> PredMap;
   1.159 +    
   1.160 +    typedef typename UGraph::template UEdgeMap<bool> TreeMap;
   1.161 +
   1.162 +    typedef typename UGraph::template NodeMap<int> OrderMap;
   1.163 +    typedef std::vector<Node> OrderList;
   1.164 +
   1.165 +    typedef typename UGraph::template NodeMap<int> LowMap;
   1.166 +    typedef typename UGraph::template NodeMap<int> AncestorMap;
   1.167 +
   1.168 +    typedef _planarity_bits::NodeDataNode<UGraph> NodeDataNode;
   1.169 +    typedef std::vector<NodeDataNode> NodeData;
   1.170 +    
   1.171 +    typedef _planarity_bits::ChildListNode<UGraph> ChildListNode;
   1.172 +    typedef typename UGraph::template NodeMap<ChildListNode> ChildLists;
   1.173 +
   1.174 +    typedef typename UGraph::template NodeMap<std::list<int> > MergeRoots;
   1.175 + 
   1.176 +    typedef typename UGraph::template NodeMap<bool> EmbedEdge;
   1.177 +
   1.178 +  public:
   1.179 +
   1.180 +    /// \brief Constructor
   1.181 +    ///
   1.182 +    /// \warining The graph should be simple, i.e. parallel and loop edge
   1.183 +    /// free.
   1.184 +    PlanarityChecking(const UGraph& ugraph) : _ugraph(ugraph) {}
   1.185 +
   1.186 +    /// \brief Runs the algorithm.
   1.187 +    ///
   1.188 +    /// Runs the algorithm.  
   1.189 +    /// \param kuratowski If the parameter is false, then the
   1.190 +    /// algorithm does not calculate the isolate Kuratowski
   1.191 +    /// subdivisions.
   1.192 +    /// \return %True when the graph is planar.
   1.193 +    bool run(bool kuratowski = true) {
   1.194 +      typedef _planarity_bits::PlanarityVisitor<UGraph> Visitor;
   1.195 +
   1.196 +      PredMap pred_map(_ugraph, INVALID);
   1.197 +      TreeMap tree_map(_ugraph, false);
   1.198 +
   1.199 +      OrderMap order_map(_ugraph, -1);
   1.200 +      OrderList order_list;
   1.201 +
   1.202 +      AncestorMap ancestor_map(_ugraph, -1);
   1.203 +      LowMap low_map(_ugraph, -1);
   1.204 +
   1.205 +      Visitor visitor(_ugraph, pred_map, tree_map,
   1.206 +		      order_map, order_list, ancestor_map, low_map);
   1.207 +      DfsVisit<UGraph, Visitor> visit(_ugraph, visitor);
   1.208 +      visit.run();
   1.209 +
   1.210 +      ChildLists child_lists(_ugraph);
   1.211 +      createChildLists(tree_map, order_map, low_map, child_lists);
   1.212 +
   1.213 +      NodeData node_data(2 * order_list.size());
   1.214 +      
   1.215 +      EmbedEdge embed_edge(_ugraph, false);
   1.216 +
   1.217 +      MergeRoots merge_roots(_ugraph);
   1.218 +      
   1.219 +      for (int i = order_list.size() - 1; i >= 0; --i) {
   1.220 +
   1.221 +	Node node = order_list[i];
   1.222 +
   1.223 +	Node source = node;
   1.224 +	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   1.225 +	  Node target = _ugraph.target(e);
   1.226 +	  
   1.227 +	  if (order_map[source] < order_map[target] && tree_map[e]) {
   1.228 +	    initFace(target, node_data, pred_map, order_map, order_list);
   1.229 +	  }
   1.230 +	}
   1.231 +	
   1.232 +	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   1.233 +	  Node target = _ugraph.target(e);
   1.234 +	  
   1.235 +	  if (order_map[source] < order_map[target] && !tree_map[e]) {
   1.236 +	    embed_edge[target] = true;
   1.237 +	    walkUp(target, source, i, pred_map, low_map,
   1.238 +		   order_map, order_list, node_data, merge_roots);
   1.239 +	  }
   1.240 +	}
   1.241 +
   1.242 +	for (typename MergeRoots::Value::iterator it = 
   1.243 +	       merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
   1.244 +	  int rn = *it;
   1.245 +	  walkDown(rn, i, node_data, order_list, child_lists, 
   1.246 +		   ancestor_map, low_map, embed_edge, merge_roots);
   1.247 +	}
   1.248 +	merge_roots[node].clear();
   1.249 +	
   1.250 +	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   1.251 +	  Node target = _ugraph.target(e);
   1.252 +	  
   1.253 +	  if (order_map[source] < order_map[target] && !tree_map[e]) {
   1.254 +	    if (embed_edge[target]) {
   1.255 +	      return false;
   1.256 +	    }
   1.257 +	  }
   1.258 +	}
   1.259 +      }
   1.260 +
   1.261 +      return true;
   1.262 +    }
   1.263 +    
   1.264 +  private:
   1.265 +
   1.266 +    void createChildLists(const TreeMap& tree_map, const OrderMap& order_map,
   1.267 +			  const LowMap& low_map, ChildLists& child_lists) {
   1.268 +
   1.269 +      for (NodeIt n(_ugraph); n != INVALID; ++n) {
   1.270 +	Node source = n;
   1.271 +	
   1.272 +	std::vector<Node> targets;  
   1.273 +	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
   1.274 +	  Node target = _ugraph.target(e);
   1.275 +
   1.276 +	  if (order_map[source] < order_map[target] && tree_map[e]) {
   1.277 +	    targets.push_back(target);
   1.278 +	  }
   1.279 +	}	
   1.280 +
   1.281 +	if (targets.size() == 0) {
   1.282 +	  child_lists[source].first = INVALID;
   1.283 +	} else if (targets.size() == 1) {
   1.284 +	  child_lists[source].first = targets[0];
   1.285 +	  child_lists[targets[0]].prev = INVALID;
   1.286 +	  child_lists[targets[0]].next = INVALID;
   1.287 +	} else {
   1.288 +	  radixSort(targets.begin(), targets.end(), mapFunctor(low_map));
   1.289 +	  for (int i = 1; i < int(targets.size()); ++i) {
   1.290 +	    child_lists[targets[i]].prev = targets[i - 1];
   1.291 +	    child_lists[targets[i - 1]].next = targets[i];
   1.292 +	  }
   1.293 +	  child_lists[targets.back()].next = INVALID; 
   1.294 +	  child_lists[targets.front()].prev = INVALID;
   1.295 +	  child_lists[source].first = targets.front();
   1.296 +	}
   1.297 +      }
   1.298 +    }
   1.299 +
   1.300 +    void walkUp(const Node& node, Node root, int rorder,
   1.301 +		const PredMap& pred_map, const LowMap& low_map,
   1.302 +		const OrderMap& order_map, const OrderList& order_list,
   1.303 +		NodeData& node_data, MergeRoots& merge_roots) {
   1.304 +
   1.305 +      int na, nb;
   1.306 +      bool da, db;
   1.307 +      
   1.308 +      na = nb = order_map[node];
   1.309 +      da = true; db = false;
   1.310 +      
   1.311 +      while (true) {
   1.312 +	
   1.313 +	if (node_data[na].visited == rorder) break;
   1.314 +	if (node_data[nb].visited == rorder) break;
   1.315 +
   1.316 +	node_data[na].visited = rorder;
   1.317 +	node_data[nb].visited = rorder;
   1.318 +
   1.319 +	int rn = -1;
   1.320 +
   1.321 +	if (na >= int(order_list.size())) {
   1.322 +	  rn = na;
   1.323 +	} else if (nb >= int(order_list.size())) {
   1.324 +	  rn = nb;
   1.325 +	}
   1.326 +
   1.327 +	if (rn == -1) {
   1.328 +	  int nn;
   1.329 +	  
   1.330 +	  nn = da ? node_data[na].prev : node_data[na].next;
   1.331 +	  da = node_data[nn].prev != na;
   1.332 +	  na = nn;
   1.333 +	  
   1.334 +	  nn = db ? node_data[nb].prev : node_data[nb].next;
   1.335 +	  db = node_data[nn].prev != nb;
   1.336 +	  nb = nn;
   1.337 +
   1.338 +	} else {
   1.339 +
   1.340 +	  Node rep = order_list[rn - order_list.size()];
   1.341 +	  Node parent = _ugraph.source(pred_map[rep]);
   1.342 +
   1.343 +	  if (low_map[rep] < rorder) {
   1.344 +	    merge_roots[parent].push_back(rn);
   1.345 +	  } else {
   1.346 +	    merge_roots[parent].push_front(rn);
   1.347 +	  }
   1.348 +	  
   1.349 +	  if (parent != root) {  
   1.350 +	    na = nb = order_map[parent];
   1.351 +	    da = true; db = false;
   1.352 +	  } else {
   1.353 +	    break;
   1.354 +	  }
   1.355 +	}	
   1.356 +      }
   1.357 +    }
   1.358 +
   1.359 +    void walkDown(int rn, int rorder, NodeData& node_data,
   1.360 +		  OrderList& order_list, ChildLists& child_lists,
   1.361 +		  AncestorMap& ancestor_map, LowMap& low_map,
   1.362 +		  EmbedEdge& embed_edge, MergeRoots& merge_roots) {
   1.363 +
   1.364 +      std::vector<std::pair<int, bool> > merge_stack;
   1.365 +
   1.366 +      for (int di = 0; di < 2; ++di) {
   1.367 +	bool rd = di == 0;
   1.368 +	int pn = rn;
   1.369 +	int n = rd ? node_data[rn].next : node_data[rn].prev;
   1.370 +	
   1.371 +	while (n != rn) {
   1.372 +	  
   1.373 +	  Node node = order_list[n];
   1.374 +	  
   1.375 +	  if (embed_edge[node]) {
   1.376 +
   1.377 +	    // Merging components on the critical path
   1.378 +	    while (!merge_stack.empty()) {
   1.379 +
   1.380 +	      // Component root
   1.381 +	      int cn = merge_stack.back().first;
   1.382 +	      bool cd = merge_stack.back().second;
   1.383 +	      merge_stack.pop_back();
   1.384 +
   1.385 +	      // Parent of component
   1.386 +	      int dn = merge_stack.back().first;
   1.387 +	      bool dd = merge_stack.back().second;
   1.388 +	      merge_stack.pop_back();
   1.389 +
   1.390 +	      Node parent = order_list[dn];
   1.391 +
   1.392 +	      // Erasing from merge_roots
   1.393 +	      merge_roots[parent].pop_front();
   1.394 +	      
   1.395 +	      Node child = order_list[cn - order_list.size()];
   1.396 +
   1.397 +	      // Erasing from child_lists
   1.398 +	      if (child_lists[child].prev != INVALID) {
   1.399 +		child_lists[child_lists[child].prev].next =
   1.400 +		  child_lists[child].next;
   1.401 +	      } else {
   1.402 +		child_lists[parent].first = child_lists[child].next;
   1.403 +	      }
   1.404 +	      
   1.405 +	      if (child_lists[child].next != INVALID) {
   1.406 +		child_lists[child_lists[child].next].prev =
   1.407 +		  child_lists[child].prev;
   1.408 +	      }
   1.409 +	      
   1.410 +	      // Merging external faces
   1.411 +	      {
   1.412 +		int en = cn;
   1.413 +		cn = cd ? node_data[cn].prev : node_data[cn].next;
   1.414 +		cd = node_data[cn].next == en;
   1.415 +
   1.416 +	      }
   1.417 +
   1.418 +	      if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn;
   1.419 +	      if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn;
   1.420 +
   1.421 +	    }
   1.422 +
   1.423 +	    bool d = pn == node_data[n].prev;
   1.424 +
   1.425 +	    if (node_data[n].prev == node_data[n].next && 
   1.426 +		node_data[n].inverted) {
   1.427 +	      d = !d;
   1.428 +	    }
   1.429 +
   1.430 +	    // Embedding edge into external face
   1.431 +	    if (rd) node_data[rn].next = n; else node_data[rn].prev = n;
   1.432 +	    if (d) node_data[n].prev = rn; else node_data[n].next = rn;
   1.433 +	    pn = rn;
   1.434 +
   1.435 +	    embed_edge[order_list[n]] = false;
   1.436 +	  }
   1.437 +
   1.438 +	  if (!merge_roots[node].empty()) {
   1.439 +
   1.440 +	    bool d = pn == node_data[n].prev;
   1.441 +
   1.442 +	    merge_stack.push_back(std::make_pair(n, d));
   1.443 +
   1.444 +	    int rn = merge_roots[node].front();
   1.445 +	    
   1.446 +	    int xn = node_data[rn].next;
   1.447 +	    Node xnode = order_list[xn];
   1.448 +	    
   1.449 +	    int yn = node_data[rn].prev;
   1.450 +	    Node ynode = order_list[yn];
   1.451 +	    
   1.452 +	    bool rd;
   1.453 +	    if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
   1.454 +	      rd = true;
   1.455 +	    } else if (!external(ynode, rorder, child_lists, 
   1.456 +				 ancestor_map, low_map)) {
   1.457 +	      rd = false;
   1.458 +	    } else if (pertinent(xnode, embed_edge, merge_roots)) {
   1.459 +	      rd = true;
   1.460 +	    } else {
   1.461 +	      rd = false;
   1.462 +	    }
   1.463 +	    
   1.464 +	    merge_stack.push_back(std::make_pair(rn, rd));
   1.465 +	    
   1.466 +	    pn = rn;
   1.467 +	    n = rd ? xn : yn;	      
   1.468 +	    	    
   1.469 +	  } else if (!external(node, rorder, child_lists,
   1.470 +			       ancestor_map, low_map)) {
   1.471 +	    int nn = (node_data[n].next != pn ? 
   1.472 +		      node_data[n].next : node_data[n].prev);
   1.473 +
   1.474 +	    bool nd = n == node_data[nn].prev;
   1.475 +
   1.476 +	    if (nd) node_data[nn].prev = pn;
   1.477 +	    else node_data[nn].next = pn; 
   1.478 +
   1.479 +	    if (n == node_data[pn].prev) node_data[pn].prev = nn;
   1.480 +	    else node_data[pn].next = nn;
   1.481 +
   1.482 +	    node_data[nn].inverted = 
   1.483 +	      (node_data[nn].prev == node_data[nn].next && nd != rd);
   1.484 +
   1.485 +	    n = nn;
   1.486 +	  }
   1.487 +	  else break;
   1.488 +	  
   1.489 +	}
   1.490 +
   1.491 +	if (!merge_stack.empty() || n == rn) {
   1.492 +	  break;
   1.493 +	}
   1.494 +      }
   1.495 +    }
   1.496 +
   1.497 +    void initFace(const Node& node, NodeData& node_data, 
   1.498 +		  const PredMap& pred_map, const OrderMap& order_map, 
   1.499 +		  const OrderList& order_list) {
   1.500 +      int n = order_map[node];
   1.501 +      int rn = n + order_list.size();
   1.502 +      
   1.503 +      node_data[n].next = node_data[n].prev = rn;
   1.504 +      node_data[rn].next = node_data[rn].prev = n;
   1.505 +      
   1.506 +      node_data[n].visited = order_list.size();
   1.507 +      node_data[rn].visited = order_list.size();
   1.508 +      
   1.509 +    }
   1.510 +
   1.511 +    bool external(const Node& node, int rorder,
   1.512 +		  ChildLists& child_lists, AncestorMap& ancestor_map, 
   1.513 +		  LowMap& low_map) {
   1.514 +      Node child = child_lists[node].first;
   1.515 +
   1.516 +      if (child != INVALID) {
   1.517 +	if (low_map[child] < rorder) return true;
   1.518 +      }
   1.519 +
   1.520 +      if (ancestor_map[node] < rorder) return true;
   1.521 +
   1.522 +      return false;
   1.523 +    }
   1.524 +
   1.525 +    bool pertinent(const Node& node, const EmbedEdge& embed_edge,
   1.526 +		   const MergeRoots& merge_roots) {
   1.527 +      return !merge_roots[node].empty() || embed_edge[node];
   1.528 +    }
   1.529 +
   1.530 +  };
   1.531 +
   1.532 +  /// \ingroup graph_prop
   1.533 +  ///
   1.534 +  /// \brief Planar embedding of an undirected simple graph
   1.535 +  ///
   1.536 +  /// This class implements the Boyer-Myrvold algorithm for planar
   1.537 +  /// embedding of an undirected graph. The planar embeding is an
   1.538 +  /// ordering of the outgoing edges in each node, which is a possible
   1.539 +  /// configuration to draw the graph in the plane. If there is not
   1.540 +  /// such ordering then the graph contains a \f$ K_5 \f$ (full graph
   1.541 +  /// with 5 nodes) or an \f$ K_{3,3} \f$ (complete bipartite graph on
   1.542 +  /// 3 ANode and 3 BNode) subdivision.
   1.543 +  ///
   1.544 +  /// The current implementation calculates an embedding or an
   1.545 +  /// Kuratowski subdivision if the graph is not planar. The running
   1.546 +  /// time of the algorithm is \f$ O(n) \f$.
   1.547 +  template <typename UGraph>
   1.548 +  class PlanarEmbedding {
   1.549 +  private:
   1.550 +    
   1.551 +    UGRAPH_TYPEDEFS(typename UGraph)
   1.552 +      
   1.553 +    const UGraph& _ugraph;
   1.554 +    typename UGraph::template EdgeMap<Edge> _embedding;
   1.555 +
   1.556 +    typename UGraph::template UEdgeMap<bool> _kuratowski;
   1.557 +
   1.558 +  private:
   1.559 +
   1.560 +    typedef typename UGraph::template NodeMap<Edge> PredMap;
   1.561 +    
   1.562 +    typedef typename UGraph::template UEdgeMap<bool> TreeMap;
   1.563 +
   1.564 +    typedef typename UGraph::template NodeMap<int> OrderMap;
   1.565 +    typedef std::vector<Node> OrderList;
   1.566 +
   1.567 +    typedef typename UGraph::template NodeMap<int> LowMap;
   1.568 +    typedef typename UGraph::template NodeMap<int> AncestorMap;
   1.569 +
   1.570 +    typedef _planarity_bits::NodeDataNode<UGraph> NodeDataNode;
   1.571 +    typedef std::vector<NodeDataNode> NodeData;
   1.572 +    
   1.573 +    typedef _planarity_bits::ChildListNode<UGraph> ChildListNode;
   1.574 +    typedef typename UGraph::template NodeMap<ChildListNode> ChildLists;
   1.575 +
   1.576 +    typedef typename UGraph::template NodeMap<std::list<int> > MergeRoots;
   1.577 + 
   1.578 +    typedef typename UGraph::template NodeMap<Edge> EmbedEdge;
   1.579 +
   1.580 +    typedef _planarity_bits::EdgeListNode<UGraph> EdgeListNode;
   1.581 +    typedef typename UGraph::template EdgeMap<EdgeListNode> EdgeLists;
   1.582 +
   1.583 +    typedef typename UGraph::template NodeMap<bool> FlipMap;
   1.584 +
   1.585 +    typedef typename UGraph::template NodeMap<int> TypeMap;
   1.586 +
   1.587 +    enum IsolatorNodeType {
   1.588 +      HIGHX = 6, LOWX = 7,
   1.589 +      HIGHY = 8, LOWY = 9,
   1.590 +      ROOT = 10, PERTINENT = 11,
   1.591 +      INTERNAL = 12
   1.592 +    };
   1.593 +
   1.594 +  public:
   1.595 +
   1.596 +    /// \brief Constructor
   1.597 +    ///
   1.598 +    /// \warining The graph should be simple, i.e. parallel and loop edge
   1.599 +    /// free.
   1.600 +    PlanarEmbedding(const UGraph& ugraph)
   1.601 +      : _ugraph(ugraph), _embedding(_ugraph), _kuratowski(ugraph, false) {}
   1.602 +
   1.603 +    /// \brief Runs the algorithm.
   1.604 +    ///
   1.605 +    /// Runs the algorithm.  
   1.606 +    /// \param kuratowski If the parameter is false, then the
   1.607 +    /// algorithm does not calculate the isolate Kuratowski
   1.608 +    /// subdivisions.
   1.609 +    ///\return %True when the graph is planar.
   1.610 +    bool run(bool kuratowski = true) {
   1.611 +      typedef _planarity_bits::PlanarityVisitor<UGraph> Visitor;
   1.612 +
   1.613 +      PredMap pred_map(_ugraph, INVALID);
   1.614 +      TreeMap tree_map(_ugraph, false);
   1.615 +
   1.616 +      OrderMap order_map(_ugraph, -1);
   1.617 +      OrderList order_list;
   1.618 +
   1.619 +      AncestorMap ancestor_map(_ugraph, -1);
   1.620 +      LowMap low_map(_ugraph, -1);
   1.621 +
   1.622 +      Visitor visitor(_ugraph, pred_map, tree_map,
   1.623 +		      order_map, order_list, ancestor_map, low_map);
   1.624 +      DfsVisit<UGraph, Visitor> visit(_ugraph, visitor);
   1.625 +      visit.run();
   1.626 +
   1.627 +      ChildLists child_lists(_ugraph);
   1.628 +      createChildLists(tree_map, order_map, low_map, child_lists);
   1.629 +
   1.630 +      NodeData node_data(2 * order_list.size());
   1.631 +      
   1.632 +      EmbedEdge embed_edge(_ugraph, INVALID);
   1.633 +
   1.634 +      MergeRoots merge_roots(_ugraph);
   1.635 +
   1.636 +      EdgeLists edge_lists(_ugraph);
   1.637 +
   1.638 +      FlipMap flip_map(_ugraph, false);
   1.639 +
   1.640 +      for (int i = order_list.size() - 1; i >= 0; --i) {
   1.641 +
   1.642 +	Node node = order_list[i];
   1.643 +
   1.644 +	node_data[i].first = INVALID;
   1.645 +	
   1.646 +	Node source = node;
   1.647 +	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   1.648 +	  Node target = _ugraph.target(e);
   1.649 +	  
   1.650 +	  if (order_map[source] < order_map[target] && tree_map[e]) {
   1.651 +	    initFace(target, edge_lists, node_data,
   1.652 +		      pred_map, order_map, order_list);
   1.653 +	  }
   1.654 +	}
   1.655 +	
   1.656 +	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   1.657 +	  Node target = _ugraph.target(e);
   1.658 +	  
   1.659 +	  if (order_map[source] < order_map[target] && !tree_map[e]) {
   1.660 +	    embed_edge[target] = e;
   1.661 +	    walkUp(target, source, i, pred_map, low_map,
   1.662 +		   order_map, order_list, node_data, merge_roots);
   1.663 +	  }
   1.664 +	}
   1.665 +
   1.666 +	for (typename MergeRoots::Value::iterator it = 
   1.667 +	       merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
   1.668 +	  int rn = *it;
   1.669 +	  walkDown(rn, i, node_data, edge_lists, flip_map, order_list, 
   1.670 +		   child_lists, ancestor_map, low_map, embed_edge, merge_roots);
   1.671 +	}
   1.672 +	merge_roots[node].clear();
   1.673 +	
   1.674 +	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   1.675 +	  Node target = _ugraph.target(e);
   1.676 +	  
   1.677 +	  if (order_map[source] < order_map[target] && !tree_map[e]) {
   1.678 +	    if (embed_edge[target] != INVALID) {
   1.679 +	      if (kuratowski) {
   1.680 +		isolateKuratowski(e, node_data, edge_lists, flip_map,
   1.681 +				  order_map, order_list, pred_map, child_lists,
   1.682 +				  ancestor_map, low_map, 
   1.683 +				  embed_edge, merge_roots);
   1.684 +	      }
   1.685 +	      return false;
   1.686 +	    }
   1.687 +	  }
   1.688 +	}
   1.689 +      }
   1.690 +
   1.691 +      for (int i = 0; i < int(order_list.size()); ++i) {
   1.692 +
   1.693 +	mergeRemainingFaces(order_list[i], node_data, order_list, order_map,
   1.694 +			    child_lists, edge_lists);
   1.695 +	storeEmbedding(order_list[i], node_data, order_map, pred_map,
   1.696 +		       edge_lists, flip_map);
   1.697 +      }
   1.698 +
   1.699 +      return true;
   1.700 +    }
   1.701 +
   1.702 +    /// \brief Gives back the successor of an edge
   1.703 +    ///
   1.704 +    /// Gives back the successor of an edge. This function makes
   1.705 +    /// possible to query the cyclic order of the outgoing edges from
   1.706 +    /// a node.
   1.707 +    Edge next(const Edge& edge) const {
   1.708 +      return _embedding[edge];
   1.709 +    }
   1.710 +
   1.711 +    /// \brief Gives back true when the undirected edge is in the
   1.712 +    /// kuratowski subdivision
   1.713 +    ///
   1.714 +    /// Gives back true when the undirected edge is in the kuratowski
   1.715 +    /// subdivision
   1.716 +    bool kuratowski(const UEdge& uedge) {
   1.717 +      return _kuratowski[uedge];
   1.718 +    }
   1.719 +
   1.720 +  private:
   1.721 +
   1.722 +    void createChildLists(const TreeMap& tree_map, const OrderMap& order_map,
   1.723 +			  const LowMap& low_map, ChildLists& child_lists) {
   1.724 +
   1.725 +      for (NodeIt n(_ugraph); n != INVALID; ++n) {
   1.726 +	Node source = n;
   1.727 +	
   1.728 +	std::vector<Node> targets;  
   1.729 +	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
   1.730 +	  Node target = _ugraph.target(e);
   1.731 +
   1.732 +	  if (order_map[source] < order_map[target] && tree_map[e]) {
   1.733 +	    targets.push_back(target);
   1.734 +	  }
   1.735 +	}	
   1.736 +
   1.737 +	if (targets.size() == 0) {
   1.738 +	  child_lists[source].first = INVALID;
   1.739 +	} else if (targets.size() == 1) {
   1.740 +	  child_lists[source].first = targets[0];
   1.741 +	  child_lists[targets[0]].prev = INVALID;
   1.742 +	  child_lists[targets[0]].next = INVALID;
   1.743 +	} else {
   1.744 +	  radixSort(targets.begin(), targets.end(), mapFunctor(low_map));
   1.745 +	  for (int i = 1; i < int(targets.size()); ++i) {
   1.746 +	    child_lists[targets[i]].prev = targets[i - 1];
   1.747 +	    child_lists[targets[i - 1]].next = targets[i];
   1.748 +	  }
   1.749 +	  child_lists[targets.back()].next = INVALID; 
   1.750 +	  child_lists[targets.front()].prev = INVALID;
   1.751 +	  child_lists[source].first = targets.front();
   1.752 +	}
   1.753 +      }
   1.754 +    }
   1.755 +
   1.756 +    void walkUp(const Node& node, Node root, int rorder,
   1.757 +		const PredMap& pred_map, const LowMap& low_map,
   1.758 +		const OrderMap& order_map, const OrderList& order_list,
   1.759 +		NodeData& node_data, MergeRoots& merge_roots) {
   1.760 +
   1.761 +      int na, nb;
   1.762 +      bool da, db;
   1.763 +      
   1.764 +      na = nb = order_map[node];
   1.765 +      da = true; db = false;
   1.766 +      
   1.767 +      while (true) {
   1.768 +	
   1.769 +	if (node_data[na].visited == rorder) break;
   1.770 +	if (node_data[nb].visited == rorder) break;
   1.771 +
   1.772 +	node_data[na].visited = rorder;
   1.773 +	node_data[nb].visited = rorder;
   1.774 +
   1.775 +	int rn = -1;
   1.776 +
   1.777 +	if (na >= int(order_list.size())) {
   1.778 +	  rn = na;
   1.779 +	} else if (nb >= int(order_list.size())) {
   1.780 +	  rn = nb;
   1.781 +	}
   1.782 +
   1.783 +	if (rn == -1) {
   1.784 +	  int nn;
   1.785 +	  
   1.786 +	  nn = da ? node_data[na].prev : node_data[na].next;
   1.787 +	  da = node_data[nn].prev != na;
   1.788 +	  na = nn;
   1.789 +	  
   1.790 +	  nn = db ? node_data[nb].prev : node_data[nb].next;
   1.791 +	  db = node_data[nn].prev != nb;
   1.792 +	  nb = nn;
   1.793 +
   1.794 +	} else {
   1.795 +
   1.796 +	  Node rep = order_list[rn - order_list.size()];
   1.797 +	  Node parent = _ugraph.source(pred_map[rep]);
   1.798 +
   1.799 +	  if (low_map[rep] < rorder) {
   1.800 +	    merge_roots[parent].push_back(rn);
   1.801 +	  } else {
   1.802 +	    merge_roots[parent].push_front(rn);
   1.803 +	  }
   1.804 +	  
   1.805 +	  if (parent != root) {  
   1.806 +	    na = nb = order_map[parent];
   1.807 +	    da = true; db = false;
   1.808 +	  } else {
   1.809 +	    break;
   1.810 +	  }
   1.811 +	}	
   1.812 +      }
   1.813 +    }
   1.814 +
   1.815 +    void walkDown(int rn, int rorder, NodeData& node_data,
   1.816 +		  EdgeLists& edge_lists, FlipMap& flip_map, 
   1.817 +		  OrderList& order_list, ChildLists& child_lists,
   1.818 +		  AncestorMap& ancestor_map, LowMap& low_map,
   1.819 +		  EmbedEdge& embed_edge, MergeRoots& merge_roots) {
   1.820 +
   1.821 +      std::vector<std::pair<int, bool> > merge_stack;
   1.822 +
   1.823 +      for (int di = 0; di < 2; ++di) {
   1.824 +	bool rd = di == 0;
   1.825 +	int pn = rn;
   1.826 +	int n = rd ? node_data[rn].next : node_data[rn].prev;
   1.827 +	
   1.828 +	while (n != rn) {
   1.829 +	  
   1.830 +	  Node node = order_list[n];
   1.831 +	  
   1.832 +	  if (embed_edge[node] != INVALID) {
   1.833 +
   1.834 +	    // Merging components on the critical path
   1.835 +	    while (!merge_stack.empty()) {
   1.836 +
   1.837 +	      // Component root
   1.838 +	      int cn = merge_stack.back().first;
   1.839 +	      bool cd = merge_stack.back().second;
   1.840 +	      merge_stack.pop_back();
   1.841 +
   1.842 +	      // Parent of component
   1.843 +	      int dn = merge_stack.back().first;
   1.844 +	      bool dd = merge_stack.back().second;
   1.845 +	      merge_stack.pop_back();
   1.846 +
   1.847 +	      Node parent = order_list[dn];
   1.848 +
   1.849 +	      // Erasing from merge_roots
   1.850 +	      merge_roots[parent].pop_front();
   1.851 +	      
   1.852 +	      Node child = order_list[cn - order_list.size()];
   1.853 +
   1.854 +	      // Erasing from child_lists
   1.855 +	      if (child_lists[child].prev != INVALID) {
   1.856 +		child_lists[child_lists[child].prev].next =
   1.857 +		  child_lists[child].next;
   1.858 +	      } else {
   1.859 +		child_lists[parent].first = child_lists[child].next;
   1.860 +	      }
   1.861 +	      
   1.862 +	      if (child_lists[child].next != INVALID) {
   1.863 +		child_lists[child_lists[child].next].prev =
   1.864 +		  child_lists[child].prev;
   1.865 +	      }
   1.866 +
   1.867 +	      // Merging edges + flipping
   1.868 +	      Edge de = node_data[dn].first;
   1.869 +	      Edge ce = node_data[cn].first;
   1.870 +
   1.871 +	      flip_map[order_list[cn - order_list.size()]] = cd != dd;
   1.872 +	      if (cd != dd) {
   1.873 +		std::swap(edge_lists[ce].prev, edge_lists[ce].next);
   1.874 +		ce = edge_lists[ce].prev;
   1.875 +		std::swap(edge_lists[ce].prev, edge_lists[ce].next);
   1.876 +	      }
   1.877 +
   1.878 +	      {
   1.879 +		Edge dne = edge_lists[de].next; 
   1.880 +		Edge cne = edge_lists[ce].next; 
   1.881 +
   1.882 +		edge_lists[de].next = cne;
   1.883 +		edge_lists[ce].next = dne;
   1.884 +	      
   1.885 +		edge_lists[dne].prev = ce;
   1.886 +		edge_lists[cne].prev = de;
   1.887 +	      }
   1.888 +	      	      
   1.889 +	      if (dd) {
   1.890 +		node_data[dn].first = ce;
   1.891 +	      }
   1.892 +	      
   1.893 +	      // Merging external faces
   1.894 +	      {
   1.895 +		int en = cn;
   1.896 +		cn = cd ? node_data[cn].prev : node_data[cn].next;
   1.897 +		cd = node_data[cn].next == en;
   1.898 +
   1.899 + 		if (node_data[cn].prev == node_data[cn].next && 
   1.900 +		    node_data[cn].inverted) {
   1.901 + 		  cd = !cd;
   1.902 + 		}
   1.903 +	      }
   1.904 +
   1.905 +	      if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn;
   1.906 +	      if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn;
   1.907 +
   1.908 +	    }
   1.909 +
   1.910 +	    bool d = pn == node_data[n].prev;
   1.911 +
   1.912 +	    if (node_data[n].prev == node_data[n].next && 
   1.913 +		node_data[n].inverted) {
   1.914 +	      d = !d;
   1.915 +	    }
   1.916 +
   1.917 +	    // Add new edge
   1.918 +	    {
   1.919 +	      Edge edge = embed_edge[node];
   1.920 +	      Edge re = node_data[rn].first;
   1.921 +
   1.922 +	      edge_lists[edge_lists[re].next].prev = edge;
   1.923 +	      edge_lists[edge].next = edge_lists[re].next;
   1.924 +	      edge_lists[edge].prev = re;
   1.925 +	      edge_lists[re].next = edge;
   1.926 +
   1.927 +	      if (!rd) {
   1.928 +		node_data[rn].first = edge;
   1.929 +	      }
   1.930 +
   1.931 +	      Edge rev = _ugraph.oppositeEdge(edge);
   1.932 +	      Edge e = node_data[n].first;
   1.933 +
   1.934 +	      edge_lists[edge_lists[e].next].prev = rev;
   1.935 +	      edge_lists[rev].next = edge_lists[e].next;
   1.936 +	      edge_lists[rev].prev = e;
   1.937 +	      edge_lists[e].next = rev;
   1.938 +
   1.939 +	      if (d) {
   1.940 +		node_data[n].first = rev;
   1.941 +	      }
   1.942 +	      
   1.943 +	    }
   1.944 +
   1.945 +	    // Embedding edge into external face
   1.946 +	    if (rd) node_data[rn].next = n; else node_data[rn].prev = n;
   1.947 +	    if (d) node_data[n].prev = rn; else node_data[n].next = rn;
   1.948 +	    pn = rn;
   1.949 +
   1.950 +	    embed_edge[order_list[n]] = INVALID;
   1.951 +	  }
   1.952 +
   1.953 +	  if (!merge_roots[node].empty()) {
   1.954 +
   1.955 +	    bool d = pn == node_data[n].prev;
   1.956 +	    if (node_data[n].prev == node_data[n].next && 
   1.957 +		node_data[n].inverted) {
   1.958 +	      d = !d;
   1.959 +	    }
   1.960 +
   1.961 +	    merge_stack.push_back(std::make_pair(n, d));
   1.962 +
   1.963 +	    int rn = merge_roots[node].front();
   1.964 +	    
   1.965 +	    int xn = node_data[rn].next;
   1.966 +	    Node xnode = order_list[xn];
   1.967 +	    
   1.968 +	    int yn = node_data[rn].prev;
   1.969 +	    Node ynode = order_list[yn];
   1.970 +	    
   1.971 +	    bool rd;
   1.972 +	    if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
   1.973 +	      rd = true;
   1.974 +	    } else if (!external(ynode, rorder, child_lists, 
   1.975 +				 ancestor_map, low_map)) {
   1.976 +	      rd = false;
   1.977 +	    } else if (pertinent(xnode, embed_edge, merge_roots)) {
   1.978 +	      rd = true;
   1.979 +	    } else {
   1.980 +	      rd = false;
   1.981 +	    }
   1.982 +	    
   1.983 +	    merge_stack.push_back(std::make_pair(rn, rd));
   1.984 +	    
   1.985 +	    pn = rn;
   1.986 +	    n = rd ? xn : yn;	      
   1.987 +	    	    
   1.988 +	  } else if (!external(node, rorder, child_lists,
   1.989 +			       ancestor_map, low_map)) {
   1.990 +	    int nn = (node_data[n].next != pn ? 
   1.991 +		      node_data[n].next : node_data[n].prev);
   1.992 +
   1.993 +	    bool nd = n == node_data[nn].prev;
   1.994 +
   1.995 +	    if (nd) node_data[nn].prev = pn;
   1.996 +	    else node_data[nn].next = pn; 
   1.997 +
   1.998 +	    if (n == node_data[pn].prev) node_data[pn].prev = nn;
   1.999 +	    else node_data[pn].next = nn;
  1.1000 +
  1.1001 +	    node_data[nn].inverted = 
  1.1002 +	      (node_data[nn].prev == node_data[nn].next && nd != rd);
  1.1003 +
  1.1004 +	    n = nn;
  1.1005 +	  }
  1.1006 +	  else break;
  1.1007 +	  
  1.1008 +	}
  1.1009 +
  1.1010 +	if (!merge_stack.empty() || n == rn) {
  1.1011 +	  break;
  1.1012 +	}
  1.1013 +      }
  1.1014 +    }
  1.1015 +
  1.1016 +    void initFace(const Node& node, EdgeLists& edge_lists,
  1.1017 +		   NodeData& node_data, const PredMap& pred_map,
  1.1018 +		   const OrderMap& order_map, const OrderList& order_list) {
  1.1019 +      int n = order_map[node];
  1.1020 +      int rn = n + order_list.size();
  1.1021 +      
  1.1022 +      node_data[n].next = node_data[n].prev = rn;
  1.1023 +      node_data[rn].next = node_data[rn].prev = n;
  1.1024 +      
  1.1025 +      node_data[n].visited = order_list.size();
  1.1026 +      node_data[rn].visited = order_list.size();
  1.1027 +
  1.1028 +      node_data[n].inverted = false;
  1.1029 +      node_data[rn].inverted = false;
  1.1030 +
  1.1031 +      Edge edge = pred_map[node];
  1.1032 +      Edge rev = _ugraph.oppositeEdge(edge);
  1.1033 +
  1.1034 +      node_data[rn].first = edge;
  1.1035 +      node_data[n].first = rev;
  1.1036 +
  1.1037 +      edge_lists[edge].prev = edge;
  1.1038 +      edge_lists[edge].next = edge;
  1.1039 +
  1.1040 +      edge_lists[rev].prev = rev;
  1.1041 +      edge_lists[rev].next = rev;
  1.1042 +
  1.1043 +    }
  1.1044 +
  1.1045 +    void mergeRemainingFaces(const Node& node, NodeData& node_data,
  1.1046 +			     OrderList& order_list, OrderMap& order_map,
  1.1047 +			     ChildLists& child_lists, EdgeLists& edge_lists) {
  1.1048 +      while (child_lists[node].first != INVALID) {
  1.1049 +	int dd = order_map[node];
  1.1050 +	Node child = child_lists[node].first; 
  1.1051 +	int cd = order_map[child] + order_list.size();
  1.1052 +	child_lists[node].first = child_lists[child].next;
  1.1053 +
  1.1054 +	Edge de = node_data[dd].first;
  1.1055 +	Edge ce = node_data[cd].first;
  1.1056 +
  1.1057 +	if (de != INVALID) {
  1.1058 +	  Edge dne = edge_lists[de].next; 
  1.1059 +	  Edge cne = edge_lists[ce].next; 
  1.1060 +	  
  1.1061 +	  edge_lists[de].next = cne;
  1.1062 +	  edge_lists[ce].next = dne;
  1.1063 +	  
  1.1064 +	  edge_lists[dne].prev = ce;
  1.1065 +	  edge_lists[cne].prev = de;
  1.1066 +	}
  1.1067 +	
  1.1068 +	node_data[dd].first = ce;
  1.1069 +
  1.1070 +      }
  1.1071 +    }
  1.1072 +
  1.1073 +    void storeEmbedding(const Node& node, NodeData& node_data,
  1.1074 +			OrderMap& order_map, PredMap& pred_map,
  1.1075 +			EdgeLists& edge_lists, FlipMap& flip_map) {
  1.1076 +
  1.1077 +      if (node_data[order_map[node]].first == INVALID) return;
  1.1078 +
  1.1079 +      if (pred_map[node] != INVALID) {
  1.1080 +	Node source = _ugraph.source(pred_map[node]);
  1.1081 +	flip_map[node] = flip_map[node] != flip_map[source];
  1.1082 +      }
  1.1083 +      
  1.1084 +      Edge first = node_data[order_map[node]].first;
  1.1085 +      Edge prev = first;
  1.1086 +
  1.1087 +      Edge edge = flip_map[node] ?
  1.1088 +	edge_lists[prev].prev : edge_lists[prev].next;
  1.1089 +
  1.1090 +      _embedding[prev] = edge;
  1.1091 +      
  1.1092 +      while (edge != first) {
  1.1093 +	Edge next = edge_lists[edge].prev == prev ?
  1.1094 +	  edge_lists[edge].next : edge_lists[edge].prev;
  1.1095 +	prev = edge; edge = next;
  1.1096 +	_embedding[prev] = edge;
  1.1097 +      }
  1.1098 +    }
  1.1099 +
  1.1100 +
  1.1101 +    bool external(const Node& node, int rorder,
  1.1102 +		  ChildLists& child_lists, AncestorMap& ancestor_map, 
  1.1103 +		  LowMap& low_map) {
  1.1104 +      Node child = child_lists[node].first;
  1.1105 +
  1.1106 +      if (child != INVALID) {
  1.1107 +	if (low_map[child] < rorder) return true;
  1.1108 +      }
  1.1109 +
  1.1110 +      if (ancestor_map[node] < rorder) return true;
  1.1111 +
  1.1112 +      return false;
  1.1113 +    }
  1.1114 +
  1.1115 +    bool pertinent(const Node& node, const EmbedEdge& embed_edge,
  1.1116 +		   const MergeRoots& merge_roots) {
  1.1117 +      return !merge_roots[node].empty() || embed_edge[node] != INVALID;
  1.1118 +    }
  1.1119 +
  1.1120 +    int lowPoint(const Node& node, OrderMap& order_map, ChildLists& child_lists,
  1.1121 +		 AncestorMap& ancestor_map, LowMap& low_map) {
  1.1122 +      int low_point;
  1.1123 +
  1.1124 +      Node child = child_lists[node].first;
  1.1125 +
  1.1126 +      if (child != INVALID) {
  1.1127 +	low_point = low_map[child];
  1.1128 +      } else {
  1.1129 +	low_point = order_map[node];
  1.1130 +      }
  1.1131 +
  1.1132 +      if (low_point > ancestor_map[node]) {
  1.1133 +	low_point = ancestor_map[node];
  1.1134 +      }
  1.1135 +
  1.1136 +      return low_point;
  1.1137 +    }
  1.1138 +
  1.1139 +    int findComponentRoot(Node root, Node node, ChildLists& child_lists, 
  1.1140 +			  OrderMap& order_map, OrderList& order_list) {
  1.1141 +
  1.1142 +      int order = order_map[root];
  1.1143 +      int norder = order_map[node];
  1.1144 +
  1.1145 +      Node child = child_lists[root].first;
  1.1146 +      while (child != INVALID) {
  1.1147 +	int corder = order_map[child];
  1.1148 +	if (corder > order && corder < norder) {
  1.1149 +	  order = corder;
  1.1150 +	}
  1.1151 +	child = child_lists[child].next;
  1.1152 +      }
  1.1153 +      return order + order_list.size();
  1.1154 +    }
  1.1155 +
  1.1156 +    Node findPertinent(Node node, OrderMap& order_map, NodeData& node_data,
  1.1157 +		       EmbedEdge& embed_edge, MergeRoots& merge_roots) {
  1.1158 +      Node wnode =_ugraph.target(node_data[order_map[node]].first);
  1.1159 +      while (!pertinent(wnode, embed_edge, merge_roots)) {
  1.1160 +	wnode = _ugraph.target(node_data[order_map[wnode]].first);
  1.1161 +      }
  1.1162 +      return wnode;
  1.1163 +    }
  1.1164 +
  1.1165 +
  1.1166 +    Node findExternal(Node node, int rorder, OrderMap& order_map, 
  1.1167 +		      ChildLists& child_lists, AncestorMap& ancestor_map,
  1.1168 +		      LowMap& low_map, NodeData& node_data) {
  1.1169 +      Node wnode =_ugraph.target(node_data[order_map[node]].first);
  1.1170 +      while (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
  1.1171 +	wnode = _ugraph.target(node_data[order_map[wnode]].first);
  1.1172 +      }
  1.1173 +      return wnode;
  1.1174 +    }
  1.1175 +
  1.1176 +    void markCommonPath(Node node, int rorder, Node& wnode, Node& znode, 
  1.1177 +			OrderList& order_list, OrderMap& order_map, 
  1.1178 +			NodeData& node_data, EdgeLists& edge_lists, 
  1.1179 +			EmbedEdge& embed_edge, MergeRoots& merge_roots, 
  1.1180 +			ChildLists& child_lists, AncestorMap& ancestor_map, 
  1.1181 +			LowMap& low_map) {
  1.1182 +      
  1.1183 +      Node cnode = node;
  1.1184 +      Node pred = INVALID;
  1.1185 +      
  1.1186 +      while (true) {
  1.1187 +
  1.1188 +	bool pert = pertinent(cnode, embed_edge, merge_roots);
  1.1189 +	bool ext = external(cnode, rorder, child_lists, ancestor_map, low_map);
  1.1190 +
  1.1191 +	if (pert && ext) {
  1.1192 +	  if (!merge_roots[cnode].empty()) {
  1.1193 +	    int cn = merge_roots[cnode].back();
  1.1194 +	    
  1.1195 +	    if (low_map[order_list[cn - order_list.size()]] < rorder) {
  1.1196 +	      Edge edge = node_data[cn].first;
  1.1197 +	      _kuratowski.set(edge, true);
  1.1198 +	      
  1.1199 +	      pred = cnode;
  1.1200 +	      cnode = _ugraph.target(edge);
  1.1201 +	    
  1.1202 +	      continue;
  1.1203 +	    }
  1.1204 +	  }
  1.1205 +	  wnode = znode = cnode;
  1.1206 +	  return;
  1.1207 +
  1.1208 +	} else if (pert) {
  1.1209 +	  wnode = cnode;
  1.1210 +	  
  1.1211 +	  while (!external(cnode, rorder, child_lists, ancestor_map, low_map)) {
  1.1212 +	    Edge edge = node_data[order_map[cnode]].first;
  1.1213 +	  
  1.1214 +	    if (_ugraph.target(edge) == pred) {
  1.1215 +	      edge = edge_lists[edge].next;
  1.1216 +	    }
  1.1217 +	    _kuratowski.set(edge, true);
  1.1218 +	    
  1.1219 +	    Node next = _ugraph.target(edge);
  1.1220 +	    pred = cnode; cnode = next;
  1.1221 +	  }
  1.1222 +	  
  1.1223 +	  znode = cnode;
  1.1224 +	  return;
  1.1225 +
  1.1226 +	} else if (ext) {
  1.1227 +	  znode = cnode;
  1.1228 +	  
  1.1229 +	  while (!pertinent(cnode, embed_edge, merge_roots)) {
  1.1230 +	    Edge edge = node_data[order_map[cnode]].first;
  1.1231 +	  
  1.1232 +	    if (_ugraph.target(edge) == pred) {
  1.1233 +	      edge = edge_lists[edge].next;
  1.1234 +	    }
  1.1235 +	    _kuratowski.set(edge, true);
  1.1236 +	    
  1.1237 +	    Node next = _ugraph.target(edge);
  1.1238 +	    pred = cnode; cnode = next;
  1.1239 +	  }
  1.1240 +	  
  1.1241 +	  wnode = cnode;
  1.1242 +	  return;
  1.1243 +	  
  1.1244 +	} else {
  1.1245 +	  Edge edge = node_data[order_map[cnode]].first;
  1.1246 +	  
  1.1247 +	  if (_ugraph.target(edge) == pred) {
  1.1248 +	    edge = edge_lists[edge].next;
  1.1249 +	  }
  1.1250 +	  _kuratowski.set(edge, true);
  1.1251 +
  1.1252 +	  Node next = _ugraph.target(edge);
  1.1253 +	  pred = cnode; cnode = next;
  1.1254 +	}
  1.1255 +	
  1.1256 +      }
  1.1257 +
  1.1258 +    }
  1.1259 +
  1.1260 +    void orientComponent(Node root, int rn, OrderMap& order_map,
  1.1261 +			 PredMap& pred_map, NodeData& node_data, 
  1.1262 +			 EdgeLists& edge_lists, FlipMap& flip_map, 
  1.1263 +			 TypeMap& type_map) {
  1.1264 +      node_data[order_map[root]].first = node_data[rn].first;
  1.1265 +      type_map[root] = 1;
  1.1266 +
  1.1267 +      std::vector<Node> st, qu;
  1.1268 +
  1.1269 +      st.push_back(root);
  1.1270 +      while (!st.empty()) {
  1.1271 +	Node node = st.back();
  1.1272 +	st.pop_back();
  1.1273 +	qu.push_back(node);
  1.1274 +	
  1.1275 +	Edge edge = node_data[order_map[node]].first;
  1.1276 +	
  1.1277 +	if (type_map[_ugraph.target(edge)] == 0) {
  1.1278 +	  st.push_back(_ugraph.target(edge));
  1.1279 +	  type_map[_ugraph.target(edge)] = 1;
  1.1280 +	} 
  1.1281 +	
  1.1282 +	Edge last = edge, pred = edge;
  1.1283 +	edge = edge_lists[edge].next;
  1.1284 +	while (edge != last) {
  1.1285 +
  1.1286 +	  if (type_map[_ugraph.target(edge)] == 0) {
  1.1287 +	    st.push_back(_ugraph.target(edge));
  1.1288 +	    type_map[_ugraph.target(edge)] = 1;
  1.1289 +	  } 
  1.1290 +	  
  1.1291 +	  Edge next = edge_lists[edge].next != pred ? 
  1.1292 +	    edge_lists[edge].next : edge_lists[edge].prev;
  1.1293 +	  pred = edge; edge = next;
  1.1294 +	}
  1.1295 +
  1.1296 +      }
  1.1297 +
  1.1298 +      type_map[root] = 2;
  1.1299 +      flip_map[root] = false;
  1.1300 +
  1.1301 +      for (int i = 1; i < int(qu.size()); ++i) {
  1.1302 +
  1.1303 +	Node node = qu[i];
  1.1304 +
  1.1305 +	while (type_map[node] != 2) {
  1.1306 +	  st.push_back(node);
  1.1307 +	  type_map[node] = 2;
  1.1308 +	  node = _ugraph.source(pred_map[node]);
  1.1309 +	}
  1.1310 +
  1.1311 +	bool flip = flip_map[node];
  1.1312 +
  1.1313 +	while (!st.empty()) {
  1.1314 +	  node = st.back();
  1.1315 +	  st.pop_back();
  1.1316 +	  
  1.1317 +	  flip_map[node] = flip != flip_map[node];
  1.1318 +	  flip = flip_map[node];
  1.1319 +
  1.1320 +	  if (flip) {
  1.1321 +	    Edge edge = node_data[order_map[node]].first;
  1.1322 +	    std::swap(edge_lists[edge].prev, edge_lists[edge].next);
  1.1323 +	    edge = edge_lists[edge].prev;
  1.1324 +	    std::swap(edge_lists[edge].prev, edge_lists[edge].next);
  1.1325 +	    node_data[order_map[node]].first = edge;
  1.1326 +	  }
  1.1327 +	}
  1.1328 +      }
  1.1329 +
  1.1330 +      for (int i = 0; i < int(qu.size()); ++i) {
  1.1331 +
  1.1332 +	Edge edge = node_data[order_map[qu[i]]].first;
  1.1333 +	Edge last = edge, pred = edge;
  1.1334 +
  1.1335 +	edge = edge_lists[edge].next;
  1.1336 +	while (edge != last) {
  1.1337 +
  1.1338 +	  if (edge_lists[edge].next == pred) {
  1.1339 +	    std::swap(edge_lists[edge].next, edge_lists[edge].prev);
  1.1340 +	  } 
  1.1341 +	  pred = edge; edge = edge_lists[edge].next;
  1.1342 +	}
  1.1343 +	
  1.1344 +      }
  1.1345 +    }
  1.1346 +
  1.1347 +    void setFaceFlags(Node root, Node wnode, Node ynode, Node xnode,
  1.1348 +		      OrderMap& order_map, NodeData& node_data, 
  1.1349 +		      TypeMap& type_map) {
  1.1350 +      Node node = _ugraph.target(node_data[order_map[root]].first);
  1.1351 +
  1.1352 +      while (node != ynode) {
  1.1353 +	type_map[node] = HIGHY;
  1.1354 +	node = _ugraph.target(node_data[order_map[node]].first);
  1.1355 +      }
  1.1356 +
  1.1357 +      while (node != wnode) {
  1.1358 +	type_map[node] = LOWY;
  1.1359 +	node = _ugraph.target(node_data[order_map[node]].first);
  1.1360 +      }
  1.1361 +      
  1.1362 +      node = _ugraph.target(node_data[order_map[wnode]].first);
  1.1363 +      
  1.1364 +      while (node != xnode) {
  1.1365 +	type_map[node] = LOWX;
  1.1366 +	node = _ugraph.target(node_data[order_map[node]].first);
  1.1367 +      }
  1.1368 +      type_map[node] = LOWX;
  1.1369 +
  1.1370 +      node = _ugraph.target(node_data[order_map[xnode]].first);
  1.1371 +      while (node != root) {
  1.1372 +	type_map[node] = HIGHX;
  1.1373 +	node = _ugraph.target(node_data[order_map[node]].first);
  1.1374 +      }
  1.1375 +
  1.1376 +      type_map[wnode] = PERTINENT;
  1.1377 +      type_map[root] = ROOT;
  1.1378 +    }
  1.1379 +
  1.1380 +    void findInternalPath(std::vector<Edge>& ipath,
  1.1381 +			  Node wnode, Node root, TypeMap& type_map, 
  1.1382 +			  OrderMap& order_map, NodeData& node_data, 
  1.1383 +			  EdgeLists& edge_lists) {
  1.1384 +      std::vector<Edge> st;
  1.1385 +
  1.1386 +      Node node = wnode;
  1.1387 +      
  1.1388 +      while (node != root) {
  1.1389 +	Edge edge = edge_lists[node_data[order_map[node]].first].next;
  1.1390 +	st.push_back(edge);
  1.1391 +	node = _ugraph.target(edge);
  1.1392 +      }
  1.1393 +      
  1.1394 +      while (true) {
  1.1395 +	Edge edge = st.back();
  1.1396 +	if (type_map[_ugraph.target(edge)] == LOWX ||
  1.1397 +	    type_map[_ugraph.target(edge)] == HIGHX) {
  1.1398 +	  break;
  1.1399 +	}
  1.1400 +	if (type_map[_ugraph.target(edge)] == 2) {
  1.1401 +	  type_map[_ugraph.target(edge)] = 3;
  1.1402 +	  
  1.1403 +	  edge = edge_lists[_ugraph.oppositeEdge(edge)].next;
  1.1404 +	  st.push_back(edge);
  1.1405 +	} else {
  1.1406 +	  st.pop_back();
  1.1407 +	  edge = edge_lists[edge].next;
  1.1408 +	  
  1.1409 +	  while (_ugraph.oppositeEdge(edge) == st.back()) {
  1.1410 +	    edge = st.back();
  1.1411 +	    st.pop_back();
  1.1412 +	    edge = edge_lists[edge].next;
  1.1413 +	  }
  1.1414 +	  st.push_back(edge);
  1.1415 +	}
  1.1416 +      }
  1.1417 +      
  1.1418 +      for (int i = 0; i < int(st.size()); ++i) {
  1.1419 +	if (type_map[_ugraph.target(st[i])] != LOWY &&
  1.1420 +	    type_map[_ugraph.target(st[i])] != HIGHY) {
  1.1421 +	  for (; i < int(st.size()); ++i) {
  1.1422 +	    ipath.push_back(st[i]);
  1.1423 +	  }
  1.1424 +	}
  1.1425 +      }
  1.1426 +    }
  1.1427 +
  1.1428 +    void setInternalFlags(std::vector<Edge>& ipath, TypeMap& type_map) {
  1.1429 +      for (int i = 1; i < int(ipath.size()); ++i) {
  1.1430 +	type_map[_ugraph.source(ipath[i])] = INTERNAL;
  1.1431 +      }
  1.1432 +    }
  1.1433 +
  1.1434 +    void findPilePath(std::vector<Edge>& ppath,
  1.1435 +		      Node root, TypeMap& type_map, OrderMap& order_map, 
  1.1436 +		      NodeData& node_data, EdgeLists& edge_lists) {
  1.1437 +      std::vector<Edge> st;
  1.1438 +
  1.1439 +      st.push_back(_ugraph.oppositeEdge(node_data[order_map[root]].first));
  1.1440 +      st.push_back(node_data[order_map[root]].first);
  1.1441 +      
  1.1442 +      while (st.size() > 1) {
  1.1443 +	Edge edge = st.back();
  1.1444 +	if (type_map[_ugraph.target(edge)] == INTERNAL) {
  1.1445 +	  break;
  1.1446 +	}
  1.1447 +	if (type_map[_ugraph.target(edge)] == 3) {
  1.1448 +	  type_map[_ugraph.target(edge)] = 4;
  1.1449 +	  
  1.1450 +	  edge = edge_lists[_ugraph.oppositeEdge(edge)].next;
  1.1451 +	  st.push_back(edge);
  1.1452 +	} else {
  1.1453 +	  st.pop_back();
  1.1454 +	  edge = edge_lists[edge].next;
  1.1455 +	  
  1.1456 +	  while (!st.empty() && _ugraph.oppositeEdge(edge) == st.back()) {
  1.1457 +	    edge = st.back();
  1.1458 +	    st.pop_back();
  1.1459 +	    edge = edge_lists[edge].next;
  1.1460 +	  }
  1.1461 +	  st.push_back(edge);
  1.1462 +	}
  1.1463 +      }
  1.1464 +      
  1.1465 +      for (int i = 1; i < int(st.size()); ++i) {
  1.1466 +	ppath.push_back(st[i]);
  1.1467 +      }
  1.1468 +    }
  1.1469 +
  1.1470 +
  1.1471 +    int markExternalPath(Node node, OrderMap& order_map,
  1.1472 +			 ChildLists& child_lists, PredMap& pred_map,
  1.1473 +			 AncestorMap& ancestor_map, LowMap& low_map) {
  1.1474 +      int lp = lowPoint(node, order_map, child_lists,
  1.1475 +			ancestor_map, low_map);
  1.1476 +      
  1.1477 +      if (ancestor_map[node] != lp) {
  1.1478 +	node = child_lists[node].first;
  1.1479 +	_kuratowski[pred_map[node]] = true;
  1.1480 +
  1.1481 +	while (ancestor_map[node] != lp) {
  1.1482 +	  for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
  1.1483 +	    Node tnode = _ugraph.target(e); 
  1.1484 +	    if (order_map[tnode] > order_map[node] && low_map[tnode] == lp) {
  1.1485 +	      node = tnode;
  1.1486 +	      _kuratowski[e] = true;
  1.1487 +	      break;
  1.1488 +	    }
  1.1489 +	  }
  1.1490 +	}
  1.1491 +      }
  1.1492 +
  1.1493 +      for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
  1.1494 +	if (order_map[_ugraph.target(e)] == lp) {
  1.1495 +	  _kuratowski[e] = true;
  1.1496 +	  break;
  1.1497 +	}
  1.1498 +      }
  1.1499 +      
  1.1500 +      return lp;
  1.1501 +    }
  1.1502 +
  1.1503 +    void markPertinentPath(Node node, OrderMap& order_map, 
  1.1504 +			   NodeData& node_data, EdgeLists& edge_lists,
  1.1505 +			   EmbedEdge& embed_edge, MergeRoots& merge_roots) {
  1.1506 +      while (embed_edge[node] == INVALID) {
  1.1507 +	int n = merge_roots[node].front();
  1.1508 +	Edge edge = node_data[n].first;
  1.1509 +
  1.1510 +	_kuratowski.set(edge, true);
  1.1511 +	
  1.1512 +	Node pred = node;
  1.1513 +	node = _ugraph.target(edge);
  1.1514 +	while (!pertinent(node, embed_edge, merge_roots)) {
  1.1515 +	  edge = node_data[order_map[node]].first;
  1.1516 +	  if (_ugraph.target(edge) == pred) {
  1.1517 +	    edge = edge_lists[edge].next;
  1.1518 +	  }
  1.1519 +	  _kuratowski.set(edge, true);
  1.1520 +	  pred = node;
  1.1521 +	  node = _ugraph.target(edge);
  1.1522 +	}
  1.1523 +      }
  1.1524 +      _kuratowski.set(embed_edge[node], true);
  1.1525 +    } 
  1.1526 +
  1.1527 +    void markPredPath(Node node, Node snode, PredMap& pred_map) {
  1.1528 +      while (node != snode) {
  1.1529 +	_kuratowski.set(pred_map[node], true);
  1.1530 +	node = _ugraph.source(pred_map[node]);
  1.1531 +      }
  1.1532 +    }
  1.1533 +
  1.1534 +    void markFacePath(Node ynode, Node xnode, 
  1.1535 +		      OrderMap& order_map, NodeData& node_data) {
  1.1536 +      Edge edge = node_data[order_map[ynode]].first;
  1.1537 +      Node node = _ugraph.target(edge);
  1.1538 +      _kuratowski.set(edge, true);
  1.1539 +	
  1.1540 +      while (node != xnode) {
  1.1541 +	edge = node_data[order_map[node]].first;
  1.1542 +	_kuratowski.set(edge, true);
  1.1543 +	node = _ugraph.target(edge);
  1.1544 +      }
  1.1545 +    }
  1.1546 +
  1.1547 +    void markInternalPath(std::vector<Edge>& path) {
  1.1548 +      for (int i = 0; i < int(path.size()); ++i) {
  1.1549 +	_kuratowski.set(path[i], true);
  1.1550 +      }
  1.1551 +    }
  1.1552 +
  1.1553 +    void markPilePath(std::vector<Edge>& path) {
  1.1554 +      for (int i = 0; i < int(path.size()); ++i) {
  1.1555 +	_kuratowski.set(path[i], true);
  1.1556 +      }
  1.1557 +    }
  1.1558 +
  1.1559 +    void isolateKuratowski(Edge edge, NodeData& node_data, 
  1.1560 +			   EdgeLists& edge_lists, FlipMap& flip_map,
  1.1561 +			   OrderMap& order_map, OrderList& order_list, 
  1.1562 +			   PredMap& pred_map, ChildLists& child_lists,
  1.1563 +			   AncestorMap& ancestor_map, LowMap& low_map, 
  1.1564 +			   EmbedEdge& embed_edge, MergeRoots& merge_roots) {
  1.1565 +
  1.1566 +      Node root = _ugraph.source(edge);
  1.1567 +      Node enode = _ugraph.target(edge);
  1.1568 +
  1.1569 +      int rorder = order_map[root];
  1.1570 +
  1.1571 +      TypeMap type_map(_ugraph, 0);
  1.1572 +
  1.1573 +      int rn = findComponentRoot(root, enode, child_lists, 
  1.1574 +				 order_map, order_list);
  1.1575 +
  1.1576 +      Node xnode = order_list[node_data[rn].next];
  1.1577 +      Node ynode = order_list[node_data[rn].prev];
  1.1578 +
  1.1579 +      // Minor-A
  1.1580 +      {
  1.1581 +	while (!merge_roots[xnode].empty() || !merge_roots[ynode].empty()) {
  1.1582 +	  
  1.1583 +	  if (!merge_roots[xnode].empty()) {
  1.1584 +	    root = xnode;
  1.1585 +	    rn = merge_roots[xnode].front();
  1.1586 +	  } else {
  1.1587 +	    root = ynode;
  1.1588 +	    rn = merge_roots[ynode].front();
  1.1589 +	  }
  1.1590 +	  
  1.1591 +	  xnode = order_list[node_data[rn].next];
  1.1592 +	  ynode = order_list[node_data[rn].prev];
  1.1593 +	}
  1.1594 +	
  1.1595 +	if (root != _ugraph.source(edge)) {
  1.1596 +	  orientComponent(root, rn, order_map, pred_map, 
  1.1597 +			  node_data, edge_lists, flip_map, type_map);
  1.1598 +	  markFacePath(root, root, order_map, node_data);
  1.1599 +	  int xlp = markExternalPath(xnode, order_map, child_lists, 
  1.1600 +				     pred_map, ancestor_map, low_map);
  1.1601 +	  int ylp = markExternalPath(ynode, order_map, child_lists, 
  1.1602 +				     pred_map, ancestor_map, low_map);
  1.1603 +	  markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1.1604 +	  Node lwnode = findPertinent(ynode, order_map, node_data,
  1.1605 +				     embed_edge, merge_roots);
  1.1606 +	  
  1.1607 +	  markPertinentPath(lwnode, order_map, node_data, edge_lists,
  1.1608 +			    embed_edge, merge_roots);
  1.1609 +	  
  1.1610 +	  return;
  1.1611 +	}
  1.1612 +      }
  1.1613 +      
  1.1614 +      orientComponent(root, rn, order_map, pred_map, 
  1.1615 +		      node_data, edge_lists, flip_map, type_map);
  1.1616 +
  1.1617 +      Node wnode = findPertinent(ynode, order_map, node_data,
  1.1618 +				 embed_edge, merge_roots);
  1.1619 +      setFaceFlags(root, wnode, ynode, xnode, order_map, node_data, type_map);
  1.1620 +
  1.1621 +      
  1.1622 +      //Minor-B
  1.1623 +      if (!merge_roots[wnode].empty()) {
  1.1624 +	int cn = merge_roots[wnode].back();
  1.1625 +	Node rep = order_list[cn - order_list.size()];
  1.1626 +	if (low_map[rep] < rorder) {
  1.1627 +	  markFacePath(root, root, order_map, node_data);
  1.1628 +	  int xlp = markExternalPath(xnode, order_map, child_lists, 
  1.1629 +				     pred_map, ancestor_map, low_map);
  1.1630 +	  int ylp = markExternalPath(ynode, order_map, child_lists, 
  1.1631 +				     pred_map, ancestor_map, low_map);
  1.1632 +
  1.1633 +	  Node lwnode, lznode;
  1.1634 +	  markCommonPath(wnode, rorder, lwnode, lznode, order_list, 
  1.1635 +			 order_map, node_data, edge_lists, embed_edge, 
  1.1636 +			 merge_roots, child_lists, ancestor_map, low_map);
  1.1637 +	  	  
  1.1638 +	  markPertinentPath(lwnode, order_map, node_data, edge_lists,
  1.1639 +			    embed_edge, merge_roots);
  1.1640 +	  int zlp = markExternalPath(lznode, order_map, child_lists, 
  1.1641 +				     pred_map, ancestor_map, low_map);
  1.1642 +
  1.1643 +	  int minlp = xlp < ylp ? xlp : ylp;
  1.1644 +	  if (zlp < minlp) minlp = zlp;
  1.1645 +
  1.1646 +	  int maxlp = xlp > ylp ? xlp : ylp;
  1.1647 +	  if (zlp > maxlp) maxlp = zlp;
  1.1648 +	  
  1.1649 +	  markPredPath(order_list[maxlp], order_list[minlp], pred_map);
  1.1650 +	  
  1.1651 +	  return;
  1.1652 +	}
  1.1653 +      }
  1.1654 +
  1.1655 +      Node pxnode, pynode;
  1.1656 +      std::vector<Edge> ipath;
  1.1657 +      findInternalPath(ipath, wnode, root, type_map, order_map,
  1.1658 +		       node_data, edge_lists);
  1.1659 +      setInternalFlags(ipath, type_map);
  1.1660 +      pynode = _ugraph.source(ipath.front());
  1.1661 +      pxnode = _ugraph.target(ipath.back());
  1.1662 +
  1.1663 +      wnode = findPertinent(pynode, order_map, node_data,
  1.1664 +			    embed_edge, merge_roots);
  1.1665 +      
  1.1666 +      // Minor-C
  1.1667 +      {
  1.1668 +	if (type_map[_ugraph.source(ipath.front())] == HIGHY) {
  1.1669 +	  if (type_map[_ugraph.target(ipath.back())] == HIGHX) {
  1.1670 +	    markFacePath(xnode, pxnode, order_map, node_data);
  1.1671 +	  }
  1.1672 +	  markFacePath(root, xnode, order_map, node_data);
  1.1673 +	  markPertinentPath(wnode, order_map, node_data, edge_lists,
  1.1674 +			    embed_edge, merge_roots);
  1.1675 +	  markInternalPath(ipath);
  1.1676 +	  int xlp = markExternalPath(xnode, order_map, child_lists, 
  1.1677 +				     pred_map, ancestor_map, low_map);
  1.1678 +	  int ylp = markExternalPath(ynode, order_map, child_lists, 
  1.1679 +				     pred_map, ancestor_map, low_map);
  1.1680 +	  markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1.1681 +	  return;
  1.1682 +	}
  1.1683 +
  1.1684 +	if (type_map[_ugraph.target(ipath.back())] == HIGHX) {
  1.1685 +	  markFacePath(ynode, root, order_map, node_data);
  1.1686 +	  markPertinentPath(wnode, order_map, node_data, edge_lists,
  1.1687 +			    embed_edge, merge_roots);
  1.1688 +	  markInternalPath(ipath);
  1.1689 +	  int xlp = markExternalPath(xnode, order_map, child_lists, 
  1.1690 +				     pred_map, ancestor_map, low_map);
  1.1691 +	  int ylp = markExternalPath(ynode, order_map, child_lists, 
  1.1692 +				     pred_map, ancestor_map, low_map);
  1.1693 +	  markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1.1694 +	  return;
  1.1695 +	}
  1.1696 +      }
  1.1697 +
  1.1698 +      std::vector<Edge> ppath;
  1.1699 +      findPilePath(ppath, root, type_map, order_map, node_data, edge_lists);
  1.1700 +      
  1.1701 +      // Minor-D
  1.1702 +      if (!ppath.empty()) {
  1.1703 +	markFacePath(ynode, xnode, order_map, node_data);
  1.1704 +	markPertinentPath(wnode, order_map, node_data, edge_lists,
  1.1705 +			  embed_edge, merge_roots);
  1.1706 +	markPilePath(ppath);
  1.1707 +	markInternalPath(ipath);
  1.1708 +	int xlp = markExternalPath(xnode, order_map, child_lists, 
  1.1709 +				   pred_map, ancestor_map, low_map);
  1.1710 +	int ylp = markExternalPath(ynode, order_map, child_lists, 
  1.1711 +				   pred_map, ancestor_map, low_map);
  1.1712 +	markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1.1713 +	return;
  1.1714 +      }
  1.1715 +
  1.1716 +      // Minor-E*
  1.1717 +      {
  1.1718 +
  1.1719 +	if (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
  1.1720 +	  Node znode = findExternal(pynode, rorder, order_map, 
  1.1721 +				    child_lists, ancestor_map,
  1.1722 +				    low_map, node_data);
  1.1723 +	  
  1.1724 +	  if (type_map[znode] == LOWY) {
  1.1725 +	    markFacePath(root, xnode, order_map, node_data);
  1.1726 +	    markPertinentPath(wnode, order_map, node_data, edge_lists,
  1.1727 +			      embed_edge, merge_roots);
  1.1728 +	    markInternalPath(ipath);
  1.1729 +	    int xlp = markExternalPath(xnode, order_map, child_lists, 
  1.1730 +				       pred_map, ancestor_map, low_map);
  1.1731 +	    int zlp = markExternalPath(znode, order_map, child_lists, 
  1.1732 +				       pred_map, ancestor_map, low_map);
  1.1733 +	    markPredPath(root, order_list[xlp < zlp ? xlp : zlp], pred_map);
  1.1734 +	  } else {
  1.1735 +	    markFacePath(ynode, root, order_map, node_data);
  1.1736 +	    markPertinentPath(wnode, order_map, node_data, edge_lists,
  1.1737 +			      embed_edge, merge_roots);
  1.1738 +	    markInternalPath(ipath);
  1.1739 +	    int ylp = markExternalPath(ynode, order_map, child_lists, 
  1.1740 +				       pred_map, ancestor_map, low_map);
  1.1741 +	    int zlp = markExternalPath(znode, order_map, child_lists, 
  1.1742 +				       pred_map, ancestor_map, low_map);
  1.1743 +	    markPredPath(root, order_list[ylp < zlp ? ylp : zlp], pred_map);
  1.1744 +	  }
  1.1745 +	  return;
  1.1746 +	}
  1.1747 +
  1.1748 +	int xlp = markExternalPath(xnode, order_map, child_lists, 
  1.1749 +				   pred_map, ancestor_map, low_map);
  1.1750 +	int ylp = markExternalPath(ynode, order_map, child_lists, 
  1.1751 +				   pred_map, ancestor_map, low_map);
  1.1752 +	int wlp = markExternalPath(wnode, order_map, child_lists, 
  1.1753 +				   pred_map, ancestor_map, low_map);
  1.1754 +
  1.1755 +	if (wlp > xlp && wlp > ylp) {
  1.1756 +	  markFacePath(root, root, order_map, node_data);
  1.1757 +	  markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1.1758 +	  return;
  1.1759 +	}
  1.1760 +
  1.1761 +	markInternalPath(ipath);
  1.1762 +	markPertinentPath(wnode, order_map, node_data, edge_lists,
  1.1763 +			  embed_edge, merge_roots);
  1.1764 +
  1.1765 +	if (xlp > ylp && xlp > wlp) {
  1.1766 +	  markFacePath(root, pynode, order_map, node_data);
  1.1767 +	  markFacePath(wnode, xnode, order_map, node_data);
  1.1768 +	  markPredPath(root, order_list[ylp < wlp ? ylp : wlp], pred_map);
  1.1769 +	  return;
  1.1770 +	}
  1.1771 +
  1.1772 +	if (ylp > xlp && ylp > wlp) {
  1.1773 +	  markFacePath(pxnode, root, order_map, node_data);
  1.1774 +	  markFacePath(ynode, wnode, order_map, node_data);
  1.1775 +	  markPredPath(root, order_list[xlp < wlp ? xlp : wlp], pred_map);
  1.1776 +	  return;
  1.1777 +	}
  1.1778 +
  1.1779 +	if (pynode != ynode) {
  1.1780 +	  markFacePath(pxnode, wnode, order_map, node_data);
  1.1781 +
  1.1782 +	  int minlp = xlp < ylp ? xlp : ylp;
  1.1783 +	  if (wlp < minlp) minlp = wlp;
  1.1784 +
  1.1785 +	  int maxlp = xlp > ylp ? xlp : ylp;
  1.1786 +	  if (wlp > maxlp) maxlp = wlp;
  1.1787 +	  
  1.1788 +	  markPredPath(order_list[maxlp], order_list[minlp], pred_map);
  1.1789 +	  return;
  1.1790 +	}
  1.1791 +
  1.1792 +	if (pxnode != xnode) {
  1.1793 +	  markFacePath(wnode, pynode, order_map, node_data);
  1.1794 +
  1.1795 +	  int minlp = xlp < ylp ? xlp : ylp;
  1.1796 +	  if (wlp < minlp) minlp = wlp;
  1.1797 +
  1.1798 +	  int maxlp = xlp > ylp ? xlp : ylp;
  1.1799 +	  if (wlp > maxlp) maxlp = wlp;
  1.1800 +	  
  1.1801 +	  markPredPath(order_list[maxlp], order_list[minlp], pred_map);
  1.1802 +	  return;
  1.1803 +	}
  1.1804 +
  1.1805 +	markFacePath(root, root, order_map, node_data);
  1.1806 +	int minlp = xlp < ylp ? xlp : ylp;
  1.1807 +	if (wlp < minlp) minlp = wlp;
  1.1808 +	markPredPath(root, order_list[minlp], pred_map);
  1.1809 +	return;
  1.1810 +      }
  1.1811 +      
  1.1812 +    }
  1.1813 +
  1.1814 +  };
  1.1815 +
  1.1816 +}
  1.1817 +
  1.1818 +#endif