src/work/jacint/preflow_push_hl.hh
changeset 109 fc5982b39e10
parent 108 0351b00fd283
child 110 3c53698842dd
     1.1 --- a/src/work/jacint/preflow_push_hl.hh	Fri Feb 20 22:01:02 2004 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,320 +0,0 @@
     1.4 -/*
     1.5 -preflow_push_hl.hh
     1.6 -by jacint. 
     1.7 -Runs the highest label variant of the preflow push algorithm with 
     1.8 -running time O(n^2\sqrt(m)). 
     1.9 -
    1.10 -Member functions:
    1.11 -
    1.12 -void run() : runs the algorithm
    1.13 -
    1.14 - The following functions should be used after run() was already run.
    1.15 -
    1.16 -T maxflow() : returns the value of a maximum flow
    1.17 -
    1.18 -T flowonedge(edge_iterator e) : for a fixed maximum flow x it returns x(e) 
    1.19 -
    1.20 -edge_property_vector<graph_type, T> allflow() : returns the fixed maximum flow x
    1.21 -
    1.22 -node_property_vector<graph_type, bool> mincut() : returns a 
    1.23 -     characteristic vector of a minimum cut. (An empty level 
    1.24 -     in the algorithm gives a minimum cut.)
    1.25 -*/
    1.26 -
    1.27 -#ifndef PREFLOW_PUSH_HL_HH
    1.28 -#define PREFLOW_PUSH_HL_HH
    1.29 -
    1.30 -#include <algorithm>
    1.31 -#include <vector>
    1.32 -#include <stack>
    1.33 -
    1.34 -#include <marci_graph_traits.hh>
    1.35 -#include <marci_property_vector.hh>
    1.36 -#include <reverse_bfs.hh>
    1.37 -
    1.38 -namespace hugo {
    1.39 -
    1.40 -  template <typename graph_type, typename T>
    1.41 -  class preflow_push_hl {
    1.42 -    
    1.43 -    typedef typename graph_traits<graph_type>::node_iterator node_iterator;
    1.44 -    typedef typename graph_traits<graph_type>::edge_iterator edge_iterator;
    1.45 -    typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
    1.46 -    typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
    1.47 -    typedef typename graph_traits<graph_type>::in_edge_iterator in_edge_iterator;
    1.48 -    typedef typename graph_traits<graph_type>::each_edge_iterator each_edge_iterator;
    1.49 -    
    1.50 -
    1.51 -    graph_type& G;
    1.52 -    node_iterator s;
    1.53 -    node_iterator t;
    1.54 -    edge_property_vector<graph_type, T> flow;
    1.55 -    edge_property_vector<graph_type, T>& capacity; 
    1.56 -    T value;
    1.57 -    node_property_vector<graph_type, bool> mincutvector;
    1.58 -
    1.59 -   
    1.60 -  public:
    1.61 -
    1.62 -    preflow_push_hl(graph_type& _G, node_iterator _s, node_iterator _t, edge_property_vector<graph_type, T>& _capacity) : G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity), mincutvector(_G, true) { }
    1.63 -
    1.64 -
    1.65 -
    1.66 -
    1.67 -    /*
    1.68 -      The run() function runs the highest label preflow-push, 
    1.69 -      running time: O(n^2\sqrt(m))
    1.70 -    */
    1.71 -    void run() {
    1.72 - 
    1.73 -      node_property_vector<graph_type, int> level(G);         //level of node
    1.74 -      node_property_vector<graph_type, T> excess(G);          //excess of node
    1.75 -            
    1.76 -      int n=number_of(G.first_node());                        //number of nodes 
    1.77 -      int b=n; 
    1.78 -      /*b is a bound on the highest level of an active node. In the beginning it is at most n-2.*/
    1.79 -
    1.80 -      std::vector<std::stack<node_iterator> > stack(2*n-1);    //Stack of the active nodes in level i.
    1.81 -
    1.82 -
    1.83 -
    1.84 -
    1.85 -      /*Reverse_bfs from t, to find the starting level.*/
    1.86 -
    1.87 -      reverse_bfs<list_graph> bfs(G, t);
    1.88 -      bfs.run();
    1.89 -      for(each_node_iterator v=G.first_node(); v.valid(); ++v) {
    1.90 -	level.put(v, bfs.dist(v)); 
    1.91 -	//std::cout << "the level of " << v << " is " << bfs.dist(v);
    1.92 -      }
    1.93 -
    1.94 -      /*The level of s is fixed to n*/ 
    1.95 -      level.put(s,n);
    1.96 -
    1.97 -
    1.98 -
    1.99 -
   1.100 -
   1.101 -      /* Starting flow. It is everywhere 0 at the moment. */
   1.102 -     
   1.103 -      for(out_edge_iterator i=G.first_out_edge(s); i.valid(); ++i) 
   1.104 -	{
   1.105 -	  node_iterator w=G.head(i);
   1.106 -	  flow.put(i, capacity.get(i)); 
   1.107 -	  stack[bfs.dist(w)].push(w); 
   1.108 -	  excess.put(w, capacity.get(i));
   1.109 -	}
   1.110 -
   1.111 -
   1.112 -      /* 
   1.113 -	 End of preprocessing 
   1.114 -      */
   1.115 -
   1.116 -
   1.117 -
   1.118 -      /*
   1.119 -	Push/relabel on the highest level active nodes.
   1.120 -      */
   1.121 -	
   1.122 -      /*While there exists active node.*/
   1.123 -      while (b) { 
   1.124 -
   1.125 -	/*We decrease the bound if there is no active node of level b.*/
   1.126 -	if (stack[b].empty()) {
   1.127 -	  --b;
   1.128 -	} else {
   1.129 -
   1.130 -	  node_iterator w=stack[b].top();    //w is the highest label active node.
   1.131 -	  stack[b].pop();                    //We delete w from the stack.
   1.132 -	
   1.133 -	  int newlevel=2*n-2;                   //In newlevel we maintain the next level of w.
   1.134 -	
   1.135 -	  for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) {
   1.136 -	    node_iterator v=G.head(e);
   1.137 -	    /*e is the edge wv.*/
   1.138 -
   1.139 -	    if (flow.get(e)<capacity.get(e)) {              
   1.140 -	      /*e is an edge of the residual graph */
   1.141 -
   1.142 -	      if(level.get(w)==level.get(v)+1) {      
   1.143 -		/*Push is allowed now*/
   1.144 -
   1.145 -		if (capacity.get(e)-flow.get(e) > excess.get(w)) {       
   1.146 -		  /*A nonsaturating push.*/
   1.147 -		  
   1.148 -		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   1.149 -		  /*v becomes active.*/
   1.150 -		  
   1.151 -		  flow.put(e, flow.get(e)+excess.get(w));
   1.152 -		  excess.put(v, excess.get(v)+excess.get(w));
   1.153 -		  excess.put(w,0);
   1.154 -		  //std::cout << w << " " << v <<" elore elen nonsat pump "  << std::endl;
   1.155 -		  break; 
   1.156 -		} else { 
   1.157 -		  /*A saturating push.*/
   1.158 -
   1.159 -		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   1.160 -		  /*v becomes active.*/
   1.161 -
   1.162 -		  excess.put(v, excess.get(v)+capacity.get(e)-flow.get(e));
   1.163 -		  excess.put(w, excess.get(w)-capacity.get(e)+flow.get(e));
   1.164 -		  flow.put(e, capacity.get(e));
   1.165 -		  //std::cout << w<<" " <<v<<" elore elen sat pump "   << std::endl;
   1.166 -		  if (excess.get(w)==0) break;
   1.167 -		  /*If w is not active any more, then we go on to the next node.*/
   1.168 -		  
   1.169 -		} // if (capacity.get(e)-flow.get(e) > excess.get(w))
   1.170 -	      } // if(level.get(w)==level.get(v)+1)
   1.171 -	    
   1.172 -	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
   1.173 -	    
   1.174 -	    } //if (flow.get(e)<capacity.get(e))
   1.175 -	 
   1.176 -	  } //for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) 
   1.177 -	  
   1.178 -
   1.179 -
   1.180 -	  for(in_edge_iterator e=G.first_in_edge(w); e.valid(); ++e) {
   1.181 -	    node_iterator v=G.tail(e);
   1.182 -	    /*e is the edge vw.*/
   1.183 -
   1.184 -	    if (excess.get(w)==0) break;
   1.185 -	    /*It may happen, that w became inactive in the first for cycle.*/		
   1.186 -	    if(flow.get(e)>0) {             
   1.187 -	      /*e is an edge of the residual graph */
   1.188 -
   1.189 -	      if(level.get(w)==level.get(v)+1) {  
   1.190 -		/*Push is allowed now*/
   1.191 -		
   1.192 -		if (flow.get(e) > excess.get(w)) { 
   1.193 -		  /*A nonsaturating push.*/
   1.194 -		  
   1.195 -		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   1.196 -		  /*v becomes active.*/
   1.197 -
   1.198 -		  flow.put(e, flow.get(e)-excess.get(w));
   1.199 -		  excess.put(v, excess.get(v)+excess.get(w));
   1.200 -		  excess.put(w,0);
   1.201 -		  //std::cout << v << " " << w << " vissza elen nonsat pump "     << std::endl;
   1.202 -		  break; 
   1.203 -		} else {                                               
   1.204 -		  /*A saturating push.*/
   1.205 -		  
   1.206 -		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   1.207 -		  /*v becomes active.*/
   1.208 -		  
   1.209 -		  excess.put(v, excess.get(v)+flow.get(e));
   1.210 -		  excess.put(w, excess.get(w)-flow.get(e));
   1.211 -		  flow.put(e,0);
   1.212 -		  //std::cout << v <<" " << w << " vissza elen sat pump "     << std::endl;
   1.213 -		  if (excess.get(w)==0) { break;}
   1.214 -		} //if (flow.get(e) > excess.get(v)) 
   1.215 -	      } //if(level.get(w)==level.get(v)+1)
   1.216 -	      
   1.217 -	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
   1.218 -	      
   1.219 -
   1.220 -	    } //if (flow.get(e)>0)
   1.221 -
   1.222 -	  } //for
   1.223 -
   1.224 -
   1.225 -	  if (excess.get(w)>0) {
   1.226 -	    level.put(w,++newlevel);
   1.227 -	    stack[newlevel].push(w);
   1.228 -	    b=newlevel;
   1.229 -	    //std::cout << "The new level of " << w << " is "<< newlevel <<std::endl; 
   1.230 -	  }
   1.231 -
   1.232 -
   1.233 -	} //else
   1.234 -       
   1.235 -      } //while(b)
   1.236 -
   1.237 -      value = excess.get(t);
   1.238 -      /*Max flow value.*/
   1.239 -
   1.240 -
   1.241 -
   1.242 -
   1.243 -    } //void run()
   1.244 -
   1.245 -
   1.246 -
   1.247 -
   1.248 -
   1.249 -    /*
   1.250 -      Returns the maximum value of a flow.
   1.251 -     */
   1.252 -
   1.253 -    T maxflow() {
   1.254 -      return value;
   1.255 -    }
   1.256 -
   1.257 -
   1.258 -
   1.259 -    /*
   1.260 -      For the maximum flow x found by the algorithm, it returns the flow value on edge e, i.e. x(e). 
   1.261 -    */
   1.262 -
   1.263 -    T flowonedge(edge_iterator e) {
   1.264 -      return flow.get(e);
   1.265 -    }
   1.266 -
   1.267 -
   1.268 -
   1.269 -    /*
   1.270 -      Returns the maximum flow x found by the algorithm.
   1.271 -    */
   1.272 -
   1.273 -    edge_property_vector<graph_type, T> allflow() {
   1.274 -      return flow;
   1.275 -    }
   1.276 -
   1.277 -
   1.278 -
   1.279 -    /*
   1.280 -      Returns a minimum cut by using a reverse bfs from t in the residual graph.
   1.281 -    */
   1.282 -    
   1.283 -    node_property_vector<graph_type, bool> mincut() {
   1.284 -    
   1.285 -      std::queue<node_iterator> queue;
   1.286 -      
   1.287 -      mincutvector.put(t,false);      
   1.288 -      queue.push(t);
   1.289 -
   1.290 -      while (!queue.empty()) {
   1.291 -        node_iterator w=queue.front();
   1.292 -	queue.pop();
   1.293 -
   1.294 -	for(in_edge_iterator e=G.first_in_edge(w) ; e.valid(); ++e) {
   1.295 -	  node_iterator v=G.tail(e);
   1.296 -	  if (mincutvector.get(v) && flow.get(e) < capacity.get(e) ) {
   1.297 -	    queue.push(v);
   1.298 -	    mincutvector.put(v, false);
   1.299 -	  }
   1.300 -	} // for
   1.301 -
   1.302 -	for(out_edge_iterator e=G.first_out_edge(w) ; e.valid(); ++e) {
   1.303 -	  node_iterator v=G.head(e);
   1.304 -	  if (mincutvector.get(v) && flow.get(e) > 0 ) {
   1.305 -	    queue.push(v);
   1.306 -	    mincutvector.put(v, false);
   1.307 -	  }
   1.308 -	} // for
   1.309 -
   1.310 -      }
   1.311 -
   1.312 -      return mincutvector;
   1.313 -    
   1.314 -    }
   1.315 -
   1.316 -
   1.317 -  };
   1.318 -}//namespace hugo
   1.319 -#endif 
   1.320 -
   1.321 -
   1.322 -
   1.323 -