Added 'src/demo/Makefile.am'.
2 * src/lemon/smart_graph.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Combinatorial Optimization Research Group, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_SMART_GRAPH_H
18 #define LEMON_SMART_GRAPH_H
22 ///\brief SmartGraph and SymSmartGraph classes.
27 #include <lemon/invalid.h>
29 #include <lemon/array_map.h>
30 #include <lemon/sym_map.h>
32 #include <lemon/map_registry.h>
34 #include <lemon/map_defines.h>
38 /// \addtogroup graphs
40 // class SymSmartGraph;
42 ///A smart graph class.
44 ///This is a simple and fast graph implementation.
45 ///It is also quite memory efficient, but at the price
46 ///that <b> it does not support node and edge deletion</b>.
48 ///the \ref skeleton::ExtendableGraph "ExtendableGraph" concept.
49 ///\sa skeleton::ExtendableGraph.
51 ///\todo Some member functions could be \c static.
53 ///\todo A possibly useful functionality: a function saveState() would
54 ///give back a data sturcture X and then the function restoreState(X)
55 ///would remove the nodes and edges added after the call of saveState().
56 ///Of course it should be used as a stack. (Maybe X is not necessary.)
58 ///\author Alpar Juttner
63 int first_in,first_out;
64 NodeT() : first_in(-1), first_out(-1) {}
68 int head, tail, next_in, next_out;
69 //FIXME: is this necessary?
70 EdgeT() : next_in(-1), next_out(-1) {}
73 std::vector<NodeT> nodes;
75 std::vector<EdgeT> edges;
80 typedef SmartGraph Graph;
90 // Create map registries.
91 CREATE_MAP_REGISTRIES;
92 // Create node and edge maps.
93 CREATE_MAPS(ArrayMap);
97 SmartGraph() : nodes(), edges() { }
98 SmartGraph(const SmartGraph &_g) : nodes(_g.nodes), edges(_g.edges) { }
101 int nodeNum() const { return nodes.size(); }
103 int edgeNum() const { return edges.size(); }
109 int maxNodeId() const { return nodes.size()-1; }
114 int maxEdgeId() const { return edges.size()-1; }
116 Node tail(Edge e) const { return edges[e.n].tail; }
117 Node head(Edge e) const { return edges[e.n].head; }
119 NodeIt& first(NodeIt& v) const {
120 v=NodeIt(*this); return v; }
121 EdgeIt& first(EdgeIt& e) const {
122 e=EdgeIt(*this); return e; }
123 OutEdgeIt& first(OutEdgeIt& e, const Node v) const {
124 e=OutEdgeIt(*this,v); return e; }
125 InEdgeIt& first(InEdgeIt& e, const Node v) const {
126 e=InEdgeIt(*this,v); return e; }
130 /// The ID of a valid Node is a nonnegative integer not greater than
131 /// \ref maxNodeId(). The range of the ID's is not surely continuous
132 /// and the greatest node ID can be actually less then \ref maxNodeId().
134 /// The ID of the \ref INVALID node is -1.
135 ///\return The ID of the node \c v.
136 static int id(Node v) { return v.n; }
139 /// The ID of a valid Edge is a nonnegative integer not greater than
140 /// \ref maxEdgeId(). The range of the ID's is not surely continuous
141 /// and the greatest edge ID can be actually less then \ref maxEdgeId().
143 /// The ID of the \ref INVALID edge is -1.
144 ///\return The ID of the edge \c e.
145 static int id(Edge e) { return e.n; }
148 Node n; n.n=nodes.size();
149 nodes.push_back(NodeT()); //FIXME: Hmmm...
156 Edge addEdge(Node u, Node v) {
157 Edge e; e.n=edges.size(); edges.push_back(EdgeT()); //FIXME: Hmmm...
158 edges[e.n].tail=u.n; edges[e.n].head=v.n;
159 edges[e.n].next_out=nodes[u.n].first_out;
160 edges[e.n].next_in=nodes[v.n].first_in;
161 nodes[u.n].first_out=nodes[v.n].first_in=e.n;
168 /// Finds an edge between two nodes.
170 /// Finds an edge from node \c u to node \c v.
172 /// If \c prev is \ref INVALID (this is the default value), then
173 /// It finds the first edge from \c u to \c v. Otherwise it looks for
174 /// the next edge from \c u to \c v after \c prev.
175 /// \return The found edge or INVALID if there is no such an edge.
176 Edge findEdge(Node u,Node v, Edge prev = INVALID)
178 int e = (prev.n==-1)? nodes[u.n].first_out : edges[prev.n].next_out;
179 while(e!=-1 && edges[e].tail!=v.n) e = edges[e].next_out;
192 friend class SmartGraph;
193 template <typename T> friend class NodeMap;
196 friend class OutEdgeIt;
197 friend class InEdgeIt;
198 friend class SymEdge;
202 friend int SmartGraph::id(Node v);
206 Node (Invalid) { n=-1; }
207 bool operator==(const Node i) const {return n==i.n;}
208 bool operator!=(const Node i) const {return n!=i.n;}
209 bool operator<(const Node i) const {return n<i.n;}
211 // operator bool() { return n!=-1; }
214 class NodeIt : public Node {
216 friend class SmartGraph;
218 NodeIt() : Node() { }
219 NodeIt(const SmartGraph& _G,Node n) : Node(n), G(&_G) { }
220 NodeIt(Invalid i) : Node(i) { }
221 NodeIt(const SmartGraph& _G) : Node(_G.nodes.size()?0:-1), G(&_G) { }
222 NodeIt &operator++() {
223 n=(n+2)%(G->nodes.size()+1)-1;
227 // operator bool() { return Node::operator bool(); }
231 friend class SmartGraph;
232 template <typename T> friend class EdgeMap;
234 friend class SymSmartGraph;
240 friend int SmartGraph::id(Edge e);
243 /// An Edge with id \c n.
246 Edge (Invalid) { n=-1; }
247 bool operator==(const Edge i) const {return n==i.n;}
248 bool operator!=(const Edge i) const {return n!=i.n;}
249 bool operator<(const Edge i) const {return n<i.n;}
251 // operator bool() { return n!=-1; }
253 ///Set the edge to that have ID \c ID.
254 void setToId(int id) { n=id; }
257 class EdgeIt : public Edge {
259 friend class SmartGraph;
261 EdgeIt(const SmartGraph& _G) : Edge(_G.edges.size()-1), G(&_G) { }
262 EdgeIt(const SmartGraph& _G, Edge e) : Edge(e), G(&_G) { }
263 EdgeIt (Invalid i) : Edge(i) { }
264 EdgeIt() : Edge() { }
265 EdgeIt &operator++() { --n; return *this; }
267 // operator bool() { return Edge::operator bool(); }
270 class OutEdgeIt : public Edge {
272 friend class SmartGraph;
274 OutEdgeIt() : Edge() { }
275 OutEdgeIt(const SmartGraph& _G, Edge e) : Edge(e), G(&_G) { }
276 OutEdgeIt (Invalid i) : Edge(i) { }
278 OutEdgeIt(const SmartGraph& _G,const Node v)
279 : Edge(_G.nodes[v.n].first_out), G(&_G) {}
280 OutEdgeIt &operator++() { n=G->edges[n].next_out; return *this; }
282 // operator bool() { return Edge::operator bool(); }
285 class InEdgeIt : public Edge {
287 friend class SmartGraph;
289 InEdgeIt() : Edge() { }
290 InEdgeIt(const SmartGraph& _G, Edge e) : Edge(e), G(&_G) { }
291 InEdgeIt (Invalid i) : Edge(i) { }
292 InEdgeIt(const SmartGraph& _G,Node v)
293 : Edge(_G.nodes[v.n].first_in), G(&_G) { }
294 InEdgeIt &operator++() { n=G->edges[n].next_in; return *this; }
296 // operator bool() { return Edge::operator bool(); }
301 ///Graph for bidirectional edges.
303 ///The purpose of this graph structure is to handle graphs
304 ///having bidirectional edges. Here the function \c addEdge(u,v) adds a pair
305 ///of oppositely directed edges.
306 ///There is a new edge map type called
307 ///\ref SymSmartGraph::SymEdgeMap "SymEdgeMap"
308 ///that complements this
310 ///storing shared values for the edge pairs. The usual
311 ///\ref Graph::EdgeMap "EdgeMap"
315 ///The oppositely directed edge can also be obtained easily
316 ///using \ref opposite.
317 ///\warning It shares the similarity with \ref SmartGraph that
318 ///it is not possible to delete edges or nodes from the graph.
321 class SymSmartGraph : public SmartGraph
324 typedef SymSmartGraph Graph;
326 // Create symmetric map registry.
327 CREATE_SYM_EDGE_MAP_REGISTRY;
328 // Create symmetric edge map.
329 CREATE_SYM_EDGE_MAP(ArrayMap);
332 SymSmartGraph() : SmartGraph() { }
333 SymSmartGraph(const SmartGraph &_g) : SmartGraph(_g) { }
334 ///Adds a pair of oppositely directed edges to the graph.
335 Edge addEdge(Node u, Node v)
337 Edge e = SmartGraph::addEdge(u,v);
338 Edge f = SmartGraph::addEdge(v,u);
339 sym_edge_maps.add(e);
340 sym_edge_maps.add(f);
344 ///The oppositely directed edge.
346 ///Returns the oppositely directed
347 ///pair of the edge \c e.
348 static Edge opposite(Edge e)
351 f.n = e.n - 2*(e.n%2) + 1;
364 #endif //LEMON_SMART_GRAPH_H