src/lemon/xy.h
author alpar
Tue, 15 Feb 2005 14:56:54 +0000
changeset 1147 014054ffd9d2
parent 1083 8043b93e5973
child 1164 80bb73097736
permissions -rw-r--r--
Make Makefile.am up-to-date (as usual).
     1 /* -*- C++ -*-
     2  * src/lemon/xy.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_XY_H
    18 #define LEMON_XY_H
    19 
    20 #include <iostream>
    21 
    22 ///\ingroup misc
    23 ///\file
    24 ///\brief A simple two dimensional vector and a bounding box implementation 
    25 ///
    26 /// The class \ref lemon::xy "xy" implements
    27 ///a two dimensional vector with the usual
    28 /// operations.
    29 ///
    30 /// The class \ref lemon::BoundingBox "BoundingBox" can be used to determine
    31 /// the rectangular bounding box a set of \ref lemon::xy "xy"'s.
    32 ///
    33 ///\author Attila Bernath
    34 
    35 
    36 namespace lemon {
    37 
    38   /// \addtogroup misc
    39   /// @{
    40 
    41   /// A two dimensional vector (plainvector) implementation
    42 
    43   /// A two dimensional vector (plainvector) implementation
    44   ///with the usual vector
    45   /// operators.
    46   ///
    47   ///\author Attila Bernath
    48   template<typename T>
    49     class xy {
    50 
    51     public:
    52 
    53       typedef T Value;
    54 
    55       T x,y;     
    56       
    57       ///Default constructor: both coordinates become 0
    58       xy() : x(0), y(0) {}
    59 
    60       ///Constructing the instance from coordinates
    61       xy(T a, T b) : x(a), y(b) { }
    62 
    63 
    64       ///Conversion constructor
    65       template<class TT> xy(const xy<TT> &p) : x(p.x), y(p.y) {}
    66 
    67       ///Gives back the square of the norm of the vector
    68       T normSquare(){
    69 	return x*x+y*y;
    70       };
    71   
    72       ///Increments the left hand side by u
    73       xy<T>& operator +=(const xy<T>& u){
    74 	x += u.x;
    75 	y += u.y;
    76 	return *this;
    77       };
    78   
    79       ///Decrements the left hand side by u
    80       xy<T>& operator -=(const xy<T>& u){
    81 	x -= u.x;
    82 	y -= u.y;
    83 	return *this;
    84       };
    85 
    86       ///Multiplying the left hand side with a scalar
    87       xy<T>& operator *=(const T &u){
    88 	x *= u;
    89 	y *= u;
    90 	return *this;
    91       };
    92 
    93       ///Dividing the left hand side by a scalar
    94       xy<T>& operator /=(const T &u){
    95 	x /= u;
    96 	y /= u;
    97 	return *this;
    98       };
    99   
   100       ///Returns the scalar product of two vectors
   101       T operator *(const xy<T>& u){
   102 	return x*u.x+y*u.y;
   103       };
   104   
   105       ///Returns the sum of two vectors
   106       xy<T> operator+(const xy<T> &u) const {
   107 	xy<T> b=*this;
   108 	return b+=u;
   109       };
   110 
   111       ///Returns the neg of the vectors
   112       xy<T> operator-() const {
   113 	xy<T> b=*this;
   114 	b.x=-b.x; b.y=-b.y;
   115 	return b;
   116       };
   117 
   118       ///Returns the difference of two vectors
   119       xy<T> operator-(const xy<T> &u) const {
   120 	xy<T> b=*this;
   121 	return b-=u;
   122       };
   123 
   124       ///Returns a vector multiplied by a scalar
   125       xy<T> operator*(const T &u) const {
   126 	xy<T> b=*this;
   127 	return b*=u;
   128       };
   129 
   130       ///Returns a vector divided by a scalar
   131       xy<T> operator/(const T &u) const {
   132 	xy<T> b=*this;
   133 	return b/=u;
   134       };
   135 
   136       ///Testing equality
   137       bool operator==(const xy<T> &u){
   138 	return (x==u.x) && (y==u.y);
   139       };
   140 
   141       ///Testing inequality
   142       bool operator!=(xy u){
   143 	return  (x!=u.x) || (y!=u.y);
   144       };
   145 
   146     };
   147 
   148   ///Returns a vector multiplied by a scalar
   149 
   150   ///Returns a vector multiplied by a scalar
   151   ///\relates xy
   152   template<typename T> xy<T> operator*(const T &u,const xy<T> &x) {
   153     return x*u;
   154   };
   155 
   156   ///Read a plainvector from a stream
   157 
   158   ///Read a plainvector from a stream
   159   ///\relates xy
   160   ///
   161   template<typename T>
   162   inline
   163   std::istream& operator>>(std::istream &is, xy<T> &z)
   164   {
   165 
   166     is >> z.x >> z.y;
   167     return is;
   168   }
   169 
   170   ///Write a plainvector to a stream
   171 
   172   ///Write a plainvector to a stream
   173   ///\relates xy
   174   ///
   175   template<typename T>
   176   inline
   177   std::ostream& operator<<(std::ostream &os, xy<T> z)
   178   {
   179     os << "(" << z.x << ", " << z.y << ")";
   180     return os;
   181   }
   182 
   183 
   184   /// A class to calculate or store the bounding box of plainvectors.
   185 
   186   /// A class to calculate or store the bounding box of plainvectors.
   187   ///
   188   ///\author Attila Bernath
   189   template<typename T>
   190     class BoundingBox {
   191       xy<T> bottom_left, top_right;
   192       bool _empty;
   193     public:
   194       
   195       ///Default constructor: an empty bounding box
   196       BoundingBox() { _empty = true; }
   197 
   198       ///Constructing the instance from one point
   199       BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; }
   200 
   201       ///Is there any point added
   202       bool empty() const {
   203 	return _empty;
   204       }
   205 
   206       ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined) 
   207       xy<T> bottomLeft() const {
   208 	return bottom_left;
   209       };
   210 
   211       ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined) 
   212       xy<T> topRight() const {
   213 	return top_right;
   214       };
   215 
   216       ///Gives back the bottom right corner (if the bounding box is empty, then the return value is not defined) 
   217       xy<T> bottomRight() const {
   218 	return xy<T>(top_right.x,bottom_left.y);
   219       };
   220 
   221       ///Gives back the top left corner (if the bounding box is empty, then the return value is not defined) 
   222       xy<T> topLeft() const {
   223 	return xy<T>(bottom_left.x,top_right.y);
   224       };
   225 
   226       ///Gives back the bottom of the box (if the bounding box is empty, then the return value is not defined) 
   227       T bottom() const {
   228 	return bottom_left.y;
   229       };
   230 
   231       ///Gives back the top of the box (if the bounding box is empty, then the return value is not defined) 
   232       T top() const {
   233 	return top_right.y;
   234       };
   235 
   236       ///Gives back the left side of the box (if the bounding box is empty, then the return value is not defined) 
   237       T left() const {
   238 	return bottom_left.x;
   239       };
   240 
   241       ///Gives back the right side of the box (if the bounding box is empty, then the return value is not defined) 
   242       T right() const {
   243 	return top_right.x;
   244       };
   245 
   246       ///Gives back the height of the box (if the bounding box is empty, then the return value is not defined) 
   247       T height() const {
   248 	return top_right.y-bottom_left.y;
   249       };
   250 
   251       ///Gives back the width of the box (if the bounding box is empty, then the return value is not defined) 
   252       T width() const {
   253 	return top_right.x-bottom_left.x;
   254       };
   255 
   256       ///Checks whether a point is inside a bounding box
   257       bool inside(const xy<T>& u){
   258 	if (_empty)
   259 	  return false;
   260 	else{
   261 	  return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
   262 		  (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
   263 	}
   264       }
   265   
   266       ///Increments a bounding box with a point
   267       BoundingBox& operator +=(const xy<T>& u){
   268 	if (_empty){
   269 	  bottom_left=top_right=u;
   270 	  _empty = false;
   271 	}
   272 	else{
   273 	  if (bottom_left.x > u.x) bottom_left.x = u.x;
   274 	  if (bottom_left.y > u.y) bottom_left.y = u.y;
   275 	  if (top_right.x < u.x) top_right.x = u.x;
   276 	  if (top_right.y < u.y) top_right.y = u.y;
   277 	}
   278 	return *this;
   279       };
   280   
   281       ///Sums a bounding box and a point
   282       BoundingBox operator +(const xy<T>& u){
   283 	BoundingBox b = *this;
   284 	return b += u;
   285       };
   286 
   287       ///Increments a bounding box with an other bounding box
   288       BoundingBox& operator +=(const BoundingBox &u){
   289 	if ( !u.empty() ){
   290 	  *this += u.bottomLeft();
   291 	  *this += u.topRight();
   292 	}
   293 	return *this;
   294       };
   295   
   296       ///Sums two bounding boxes
   297       BoundingBox operator +(const BoundingBox& u){
   298 	BoundingBox b = *this;
   299 	return b += u;
   300       };
   301 
   302     };//class Boundingbox
   303 
   304 
   305   /// @}
   306 
   307 
   308 } //namespace lemon
   309 
   310 #endif //LEMON_XY_H