src/work/marci/experiment/edmonds_karp.h
author ladanyi
Tue, 05 Apr 2005 22:37:19 +0000
changeset 1308 0274efa2222f
parent 921 818510fa3d99
permissions -rw-r--r--
Applied the changes which somehow vanished during my last merge. Thanks goes
to Marci for noticing this. In detail:
- added amsmath and amssymb latex packages for latex documentation
- src/demo is also scanned for doxygen input files
     1 // -*- c++ -*-
     2 #ifndef LEMON_EDMONDS_KARP_H
     3 #define LEMON_EDMONDS_KARP_H
     4 
     5 #include <algorithm>
     6 #include <list>
     7 #include <iterator>
     8 
     9 #include <bfs_iterator.h>
    10 #include <invalid.h>
    11 
    12 namespace lemon {
    13 
    14   template<typename Graph, typename Number, typename FlowMap, typename CapacityMap>
    15   class ResGraph {
    16   public:
    17     typedef typename Graph::Node Node;
    18     typedef typename Graph::NodeIt NodeIt;
    19   private:
    20     typedef typename Graph::SymEdgeIt OldSymEdgeIt;
    21     const Graph& G;
    22     FlowMap& flow;
    23     const CapacityMap& capacity;
    24   public:
    25     ResGraph(const Graph& _G, FlowMap& _flow, 
    26 	     const CapacityMap& _capacity) : 
    27       G(_G), flow(_flow), capacity(_capacity) { }
    28 
    29     class Edge; 
    30     class OutEdgeIt; 
    31     friend class Edge; 
    32     friend class OutEdgeIt; 
    33 
    34     class Edge {
    35       friend class ResGraph<Graph, Number, FlowMap, CapacityMap>;
    36     protected:
    37       const ResGraph<Graph, Number, FlowMap, CapacityMap>* resG;
    38       OldSymEdgeIt sym;
    39     public:
    40       Edge() { } 
    41       //Edge(const Edge& e) : resG(e.resG), sym(e.sym) { }
    42       Number free() const { 
    43 	if (resG->G.aNode(sym)==resG->G.source(sym)) { 
    44 	  return (resG->capacity.get(sym)-resG->flow.get(sym)); 
    45 	} else { 
    46 	  return (resG->flow.get(sym)); 
    47 	}
    48       }
    49       bool valid() const { return sym.valid(); }
    50       void augment(Number a) const {
    51 	if (resG->G.aNode(sym)==resG->G.source(sym)) { 
    52 	  resG->flow.set(sym, resG->flow.get(sym)+a);
    53 	  //resG->flow[sym]+=a;
    54 	} else { 
    55 	  resG->flow.set(sym, resG->flow.get(sym)-a);
    56 	  //resG->flow[sym]-=a;
    57 	}
    58       }
    59     };
    60 
    61     class OutEdgeIt : public Edge {
    62       friend class ResGraph<Graph, Number, FlowMap, CapacityMap>;
    63     public:
    64       OutEdgeIt() { }
    65       //OutEdgeIt(const OutEdgeIt& e) { resG=e.resG; sym=e.sym; }
    66     private:
    67       OutEdgeIt(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _resG, Node v) { 
    68       	resG=&_resG;
    69 	sym=resG->G.template first<OldSymEdgeIt>(v);
    70 	while( sym.valid() && !(free()>0) ) { ++sym; }
    71       }
    72     public:
    73       OutEdgeIt& operator++() { 
    74 	++sym; 
    75 	while( sym.valid() && !(free()>0) ) { ++sym; }
    76 	return *this; 
    77       }
    78     };
    79 
    80     void /*getF*/first(OutEdgeIt& e, Node v) const { 
    81       e=OutEdgeIt(*this, v); 
    82     }
    83     void /*getF*/first(NodeIt& v) const { G./*getF*/first(v); }
    84     
    85     template< typename It >
    86     It first() const { 
    87       It e;      
    88       /*getF*/first(e);
    89       return e; 
    90     }
    91 
    92     template< typename It >
    93     It first(Node v) const { 
    94       It e;
    95       /*getF*/first(e, v);
    96       return e; 
    97     }
    98 
    99     Node source(Edge e) const { return G.aNode(e.sym); }
   100     Node target(Edge e) const { return G.bNode(e.sym); }
   101 
   102     Node aNode(OutEdgeIt e) const { return G.aNode(e.sym); }
   103     Node bNode(OutEdgeIt e) const { return G.bNode(e.sym); }
   104 
   105     int id(Node v) const { return G.id(v); }
   106 
   107     template <typename S>
   108     class NodeMap {
   109       typename Graph::NodeMap<S> node_map; 
   110     public:
   111       NodeMap(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _G) : node_map(_G.G) { }
   112       NodeMap(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _G, S a) : node_map(_G.G, a) { }
   113       void set(Node nit, S a) { node_map.set(nit, a); }
   114       S get(Node nit) const { return node_map.get(nit); }
   115       S& operator[](Node nit) { return node_map[nit]; } 
   116       const S& operator[](Node nit) const { return node_map[nit]; } 
   117     };
   118 
   119   };
   120 
   121 
   122   template<typename Graph, typename Number, typename FlowMap, typename CapacityMap>
   123   class ResGraph2 {
   124   public:
   125     typedef typename Graph::Node Node;
   126     typedef typename Graph::NodeIt NodeIt;
   127   private:
   128     //typedef typename Graph::SymEdgeIt OldSymEdgeIt;
   129     typedef typename Graph::OutEdgeIt OldOutEdgeIt;
   130     typedef typename Graph::InEdgeIt OldInEdgeIt;
   131     
   132     const Graph& G;
   133     FlowMap& flow;
   134     const CapacityMap& capacity;
   135   public:
   136     ResGraph2(const Graph& _G, FlowMap& _flow, 
   137 	     const CapacityMap& _capacity) : 
   138       G(_G), flow(_flow), capacity(_capacity) { }
   139 
   140     class Edge; 
   141     class OutEdgeIt; 
   142     friend class Edge; 
   143     friend class OutEdgeIt; 
   144 
   145     class Edge {
   146       friend class ResGraph2<Graph, Number, FlowMap, CapacityMap>;
   147     protected:
   148       const ResGraph2<Graph, Number, FlowMap, CapacityMap>* resG;
   149       //OldSymEdgeIt sym;
   150       OldOutEdgeIt out;
   151       OldInEdgeIt in;
   152       bool out_or_in; //true, iff out
   153     public:
   154       Edge() : out_or_in(true) { } 
   155       Number free() const { 
   156 	if (out_or_in) { 
   157 	  return (resG->capacity.get(out)-resG->flow.get(out)); 
   158 	} else { 
   159 	  return (resG->flow.get(in)); 
   160 	}
   161       }
   162       bool valid() const { 
   163 	return out_or_in && out.valid() || in.valid(); }
   164       void augment(Number a) const {
   165 	if (out_or_in) { 
   166 	  resG->flow.set(out, resG->flow.get(out)+a);
   167 	} else { 
   168 	  resG->flow.set(in, resG->flow.get(in)-a);
   169 	}
   170       }
   171     };
   172 
   173     class OutEdgeIt : public Edge {
   174       friend class ResGraph2<Graph, Number, FlowMap, CapacityMap>;
   175     public:
   176       OutEdgeIt() { }
   177     private:
   178       OutEdgeIt(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _resG, Node v) { 
   179       	resG=&_resG;
   180 	out=resG->G.template first<OldOutEdgeIt>(v);
   181 	while( out.valid() && !(free()>0) ) { ++out; }
   182 	if (!out.valid()) {
   183 	  out_or_in=0;
   184 	  in=resG->G.template first<OldInEdgeIt>(v);
   185 	  while( in.valid() && !(free()>0) ) { ++in; }
   186 	}
   187       }
   188     public:
   189       OutEdgeIt& operator++() { 
   190 	if (out_or_in) {
   191 	  Node v=resG->G.aNode(out);
   192 	  ++out;
   193 	  while( out.valid() && !(free()>0) ) { ++out; }
   194 	  if (!out.valid()) {
   195 	    out_or_in=0;
   196 	    in=resG->G.template first<OldInEdgeIt>(v);
   197 	    while( in.valid() && !(free()>0) ) { ++in; }
   198 	  }
   199 	} else {
   200 	  ++in;
   201 	  while( in.valid() && !(free()>0) ) { ++in; } 
   202 	}
   203 	return *this; 
   204       }
   205     };
   206 
   207     void /*getF*/first(OutEdgeIt& e, Node v) const { 
   208       e=OutEdgeIt(*this, v); 
   209     }
   210     void /*getF*/first(NodeIt& v) const { G./*getF*/first(v); }
   211     
   212     template< typename It >
   213     It first() const { 
   214       It e;
   215       /*getF*/first(e);
   216       return e; 
   217     }
   218 
   219     template< typename It >
   220     It first(Node v) const { 
   221       It e;
   222       /*getF*/first(e, v);
   223       return e; 
   224     }
   225 
   226     Node source(Edge e) const { 
   227       return ((e.out_or_in) ? G.aNode(e.out) : G.aNode(e.in)); }
   228     Node target(Edge e) const { 
   229       return ((e.out_or_in) ? G.bNode(e.out) : G.bNode(e.in)); }
   230 
   231     Node aNode(OutEdgeIt e) const { 
   232       return ((e.out_or_in) ? G.aNode(e.out) : G.aNode(e.in)); }
   233     Node bNode(OutEdgeIt e) const { 
   234       return ((e.out_or_in) ? G.bNode(e.out) : G.bNode(e.in)); }
   235 
   236     int id(Node v) const { return G.id(v); }
   237 
   238     template <typename S>
   239     class NodeMap {
   240       typename Graph::NodeMap<S> node_map; 
   241     public:
   242       NodeMap(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _G) : node_map(_G.G) { }
   243       NodeMap(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _G, S a) : node_map(_G.G, a) { }
   244       void set(Node nit, S a) { node_map.set(nit, a); }
   245       S get(Node nit) const { return node_map.get(nit); }
   246     };
   247   };
   248 
   249 
   250   template <typename GraphWrapper, typename Number, typename FlowMap, typename CapacityMap>
   251   class MaxFlow {
   252   protected:
   253     typedef GraphWrapper GW;
   254     typedef typename GW::Node Node;
   255     typedef typename GW::Edge Edge;
   256     typedef typename GW::EdgeIt EdgeIt;
   257     typedef typename GW::OutEdgeIt OutEdgeIt;
   258     typedef typename GW::InEdgeIt InEdgeIt;
   259     //const Graph* G;
   260     GW gw;
   261     Node s;
   262     Node t;
   263     FlowMap* flow;
   264     const CapacityMap* capacity;
   265     typedef ResGraphWrapper<GW, Number, FlowMap, CapacityMap > ResGW;
   266     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
   267     typedef typename ResGW::Edge ResGWEdge;
   268   public:
   269 
   270     MaxFlow(const GW& _gw, Node _s, Node _t, FlowMap& _flow, const CapacityMap& _capacity) : 
   271       gw(_gw), s(_s), t(_t), flow(&_flow), capacity(&_capacity) { }
   272 
   273     bool augmentOnShortestPath() {
   274       ResGW res_graph(gw, *flow, *capacity);
   275       bool _augment=false;
   276       
   277       typedef typename ResGW::NodeMap<bool> ReachedMap;
   278       BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
   279       bfs.pushAndSetReached(s);
   280 	
   281       typename ResGW::NodeMap<ResGWEdge> pred(res_graph); 
   282       pred.set(s, INVALID);
   283       
   284       typename ResGW::NodeMap<Number> free(res_graph);
   285 	
   286       //searching for augmenting path
   287       while ( !bfs.finished() ) { 
   288 	ResGWOutEdgeIt e=bfs;
   289 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   290 	  Node v=res_graph.source(e);
   291 	  Node w=res_graph.target(e);
   292 	  pred.set(w, e);
   293 	  if (res_graph.valid(pred.get(v))) {
   294 	    free.set(w, std::min(free.get(v), res_graph.resCap(e)));
   295 	  } else {
   296 	    free.set(w, res_graph.resCap(e)); 
   297 	  }
   298 	  if (res_graph.target(e)==t) { _augment=true; break; }
   299 	}
   300 	
   301 	++bfs;
   302       } //end of searching augmenting path
   303 
   304       if (_augment) {
   305 	Node n=t;
   306 	Number augment_value=free.get(t);
   307 	while (res_graph.valid(pred.get(n))) { 
   308 	  ResGWEdge e=pred.get(n);
   309 	  res_graph.augment(e, augment_value); 
   310 	  n=res_graph.source(e);
   311 	}
   312       }
   313 
   314       return _augment;
   315     }
   316 
   317     template<typename MapGraphWrapper> 
   318     class DistanceMap {
   319     protected:
   320       MapGraphWrapper gw;
   321       typename MapGraphWrapper::NodeMap<int> dist; 
   322     public:
   323       DistanceMap(MapGraphWrapper& _gw) : gw(_gw), dist(_gw, _gw.nodeNum()) { }
   324       void set(const typename MapGraphWrapper::Node& n, int a) { dist[n]=a; }
   325       int get(const typename MapGraphWrapper::Node& n) const { return dist[n]; }
   326       bool get(const typename MapGraphWrapper::Edge& e) const { 
   327 	return (dist.get(gw.source(e))<dist.get(gw.target(e))); 
   328       }
   329     };
   330 
   331     template<typename MutableGraph> bool augmentOnBlockingFlow() {      
   332       typedef MutableGraph MG;
   333       bool _augment=false;
   334 
   335       ResGW res_graph(gw, *flow, *capacity);
   336 
   337       typedef typename ResGW::NodeMap<bool> ReachedMap;
   338       BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
   339 
   340       bfs.pushAndSetReached(s);
   341       //typename ResGW::NodeMap<int> dist(res_graph); //filled up with 0's
   342       DistanceMap<ResGW> dist(res_graph);
   343       while ( !bfs.finished() ) { 
   344 	ResGWOutEdgeIt e=bfs;
   345 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   346 	  dist.set(res_graph.target(e), dist.get(res_graph.source(e))+1);
   347 	}
   348 	++bfs;
   349       } //computing distances from s in the residual graph
   350 
   351       MG F;
   352       typedef SubGraphWrapper<ResGW, DistanceMap<ResGW> > FilterResGW;
   353       FilterResGW filter_res_graph(res_graph, dist);
   354       typename ResGW::NodeMap<typename MG::Node> res_graph_to_F(res_graph);
   355       {
   356 	typename ResGW::NodeIt n;
   357 	for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
   358 	  res_graph_to_F.set(n, F.addNode());
   359 	}
   360       }
   361 
   362       typename MG::Node sF=res_graph_to_F.get(s);
   363       typename MG::Node tF=res_graph_to_F.get(t);
   364       typename MG::EdgeMap<ResGWEdge> original_edge(F);
   365       typename MG::EdgeMap<Number> residual_capacity(F);
   366 
   367       //Making F to the graph containing the edges of the residual graph 
   368       //which are in some shortest paths
   369       {
   370 	typename FilterResGW::EdgeIt e;
   371 	for(filter_res_graph.first(e); filter_res_graph.valid(e); filter_res_graph.next(e)) {
   372 	  //if (dist.get(res_graph.target(e))==dist.get(res_graph.source(e))+1) {
   373 	  typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.source(e)), res_graph_to_F.get(res_graph.target(e)));
   374 	  original_edge.update();
   375 	  original_edge.set(f, e);
   376 	  residual_capacity.update();
   377 	  residual_capacity.set(f, res_graph.resCap(e));
   378 	  //} 
   379 	}
   380       }
   381 
   382       bool __augment=true;
   383 
   384       while (__augment) {
   385 	__augment=false;
   386 	//computing blocking flow with dfs
   387 	typedef typename TrivGraphWrapper<MG>::NodeMap<bool> BlockingReachedMap;
   388 	DfsIterator5< TrivGraphWrapper<MG>, BlockingReachedMap > dfs(F);
   389 	typename MG::NodeMap<typename MG::Edge> pred(F);
   390 	pred.set(sF, INVALID);
   391 	//invalid iterators for sources
   392 
   393 	typename MG::NodeMap<Number> free(F);
   394 
   395 	dfs.pushAndSetReached(sF);      
   396 	while (!dfs.finished()) {
   397 	  ++dfs;
   398 	  if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
   399 	    if (dfs.isBNodeNewlyReached()) {
   400 	      typename MG::Node v=F.aNode(dfs);
   401 	      typename MG::Node w=F.bNode(dfs);
   402 	      pred.set(w, dfs);
   403 	      if (F.valid(pred.get(v))) {
   404 		free.set(w, std::min(free.get(v), residual_capacity.get(dfs)));
   405 	      } else {
   406 		free.set(w, residual_capacity.get(dfs)); 
   407 	      }
   408 	      if (w==tF) { 
   409 		__augment=true; 
   410 		_augment=true;
   411 		break; 
   412 	      }
   413 	      
   414 	    } else {
   415 	      F.erase(/*typename MG::OutEdgeIt*/(dfs));
   416 	    }
   417 	  } 
   418 	}
   419 
   420 	if (__augment) {
   421 	  typename MG::Node n=tF;
   422 	  Number augment_value=free.get(tF);
   423 	  while (F.valid(pred.get(n))) { 
   424 	    typename MG::Edge e=pred.get(n);
   425 	    res_graph.augment(original_edge.get(e), augment_value); 
   426 	    n=F.source(e);
   427 	    if (residual_capacity.get(e)==augment_value) 
   428 	      F.erase(e); 
   429 	    else 
   430 	      residual_capacity.set(e, residual_capacity.get(e)-augment_value);
   431 	  }
   432 	}
   433 	
   434       }
   435             
   436       return _augment;
   437     }
   438 
   439     template<typename MutableGraph> bool augmentOnBlockingFlow1() {      
   440       typedef MutableGraph MG;
   441       bool _augment=false;
   442 
   443       ResGW res_graph(gw, *flow, *capacity);
   444 
   445       //bfs for distances on the residual graph
   446       typedef typename ResGW::NodeMap<bool> ReachedMap;
   447       BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
   448       bfs.pushAndSetReached(s);
   449       typename ResGW::NodeMap<int> dist(res_graph); //filled up with 0's
   450 
   451       //F will contain the physical copy of the residual graph
   452       //with the set of edges which are on shortest paths
   453       MG F;
   454       typename ResGW::NodeMap<typename MG::Node> res_graph_to_F(res_graph);
   455       {
   456 	typename ResGW::NodeIt n;
   457 	for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
   458 	  res_graph_to_F.set(n, F.addNode());
   459 	}
   460       }
   461 
   462       typename MG::Node sF=res_graph_to_F.get(s);
   463       typename MG::Node tF=res_graph_to_F.get(t);
   464       typename MG::EdgeMap<ResGWEdge> original_edge(F);
   465       typename MG::EdgeMap<Number> residual_capacity(F);
   466 
   467       while ( !bfs.finished() ) { 
   468 	ResGWOutEdgeIt e=bfs;
   469 	if (res_graph.valid(e)) {
   470 	  if (bfs.isBNodeNewlyReached()) {
   471 	    dist.set(res_graph.target(e), dist.get(res_graph.source(e))+1);
   472 	    typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.source(e)), res_graph_to_F.get(res_graph.target(e)));
   473 	    original_edge.update();
   474 	    original_edge.set(f, e);
   475 	    residual_capacity.update();
   476 	    residual_capacity.set(f, res_graph.resCap(e));
   477 	  } else {
   478 	    if (dist.get(res_graph.target(e))==(dist.get(res_graph.source(e))+1)) {
   479 	      typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.source(e)), res_graph_to_F.get(res_graph.target(e)));
   480 	      original_edge.update();
   481 	      original_edge.set(f, e);
   482 	      residual_capacity.update();
   483 	      residual_capacity.set(f, res_graph.resCap(e));
   484 	    }
   485 	  }
   486 	}
   487 	++bfs;
   488       } //computing distances from s in the residual graph
   489 
   490       bool __augment=true;
   491 
   492       while (__augment) {
   493 	__augment=false;
   494 	//computing blocking flow with dfs
   495 	typedef typename TrivGraphWrapper<MG>::NodeMap<bool> BlockingReachedMap;
   496 	DfsIterator5< TrivGraphWrapper<MG>, BlockingReachedMap > dfs(F);
   497 	typename MG::NodeMap<typename MG::Edge> pred(F);
   498 	pred.set(sF, INVALID);
   499 	//invalid iterators for sources
   500 
   501 	typename MG::NodeMap<Number> free(F);
   502 
   503 	dfs.pushAndSetReached(sF);      
   504 	while (!dfs.finished()) {
   505 	  ++dfs;
   506 	  if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
   507 	    if (dfs.isBNodeNewlyReached()) {
   508 	      typename MG::Node v=F.aNode(dfs);
   509 	      typename MG::Node w=F.bNode(dfs);
   510 	      pred.set(w, dfs);
   511 	      if (F.valid(pred.get(v))) {
   512 		free.set(w, std::min(free.get(v), residual_capacity.get(dfs)));
   513 	      } else {
   514 		free.set(w, residual_capacity.get(dfs)); 
   515 	      }
   516 	      if (w==tF) { 
   517 		__augment=true; 
   518 		_augment=true;
   519 		break; 
   520 	      }
   521 	      
   522 	    } else {
   523 	      F.erase(/*typename MG::OutEdgeIt*/(dfs));
   524 	    }
   525 	  } 
   526 	}
   527 
   528 	if (__augment) {
   529 	  typename MG::Node n=tF;
   530 	  Number augment_value=free.get(tF);
   531 	  while (F.valid(pred.get(n))) { 
   532 	    typename MG::Edge e=pred.get(n);
   533 	    res_graph.augment(original_edge.get(e), augment_value); 
   534 	    n=F.source(e);
   535 	    if (residual_capacity.get(e)==augment_value) 
   536 	      F.erase(e); 
   537 	    else 
   538 	      residual_capacity.set(e, residual_capacity.get(e)-augment_value);
   539 	  }
   540 	}
   541 	
   542       }
   543             
   544       return _augment;
   545     }
   546 
   547     bool augmentOnBlockingFlow2() {
   548       bool _augment=false;
   549 
   550       ResGW res_graph(gw, *flow, *capacity);
   551 
   552       typedef typename ResGW::NodeMap<bool> ReachedMap;
   553       BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
   554 
   555       bfs.pushAndSetReached(s);
   556       DistanceMap<ResGW> dist(res_graph);
   557       while ( !bfs.finished() ) { 
   558  	ResGWOutEdgeIt e=bfs;
   559  	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   560  	  dist.set(res_graph.target(e), dist.get(res_graph.source(e))+1);
   561  	}
   562 	++bfs;
   563       } //computing distances from s in the residual graph
   564 
   565       //Subgraph containing the edges on some shortest paths
   566       typedef SubGraphWrapper<ResGW, DistanceMap<ResGW> > FilterResGW;
   567       FilterResGW filter_res_graph(res_graph, dist);
   568 
   569       //Subgraph, which is able to delete edges which are already 
   570       //met by the dfs
   571       typename FilterResGW::NodeMap<typename FilterResGW::OutEdgeIt> 
   572  	first_out_edges(filter_res_graph);
   573       typename FilterResGW::NodeIt v;
   574       for(filter_res_graph.first(v); filter_res_graph.valid(v); 
   575  	  filter_res_graph.next(v)) 
   576       {
   577  	typename FilterResGW::OutEdgeIt e;
   578  	filter_res_graph.first(e, v);
   579  	first_out_edges.set(v, e);
   580       }
   581       typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
   582 	NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
   583       ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
   584 
   585       bool __augment=true;
   586 
   587       while (__augment) {
   588 
   589  	__augment=false;
   590  	//computing blocking flow with dfs
   591 	typedef typename ErasingResGW::NodeMap<bool> BlockingReachedMap;
   592  	DfsIterator5< ErasingResGW, BlockingReachedMap > 
   593  	  dfs(erasing_res_graph);
   594  	typename ErasingResGW::NodeMap<typename ErasingResGW::OutEdgeIt> 
   595  	  pred(erasing_res_graph); 
   596  	pred.set(s, INVALID);
   597  	//invalid iterators for sources
   598 
   599  	typename ErasingResGW::NodeMap<Number> free(erasing_res_graph);
   600 
   601  	dfs.pushAndSetReached(s);
   602  	while (!dfs.finished()) {
   603  	  ++dfs;
   604  	  if (erasing_res_graph.valid(
   605  		/*typename ErasingResGW::OutEdgeIt*/(dfs))) 
   606  	  { 
   607  	    if (dfs.isBNodeNewlyReached()) {
   608 	  
   609  	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
   610  	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
   611 
   612  	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
   613  	      if (erasing_res_graph.valid(pred.get(v))) {
   614  		free.set(w, std::min(free.get(v), res_graph.resCap(dfs)));
   615  	      } else {
   616  		free.set(w, res_graph.resCap(dfs)); 
   617  	      }
   618 	      
   619  	      if (w==t) { 
   620  		__augment=true; 
   621  		_augment=true;
   622  		break; 
   623  	      }
   624 	    } else {
   625 	      erasing_res_graph.erase(dfs);
   626 	    }
   627 	  }
   628 	}	
   629 
   630  	if (__augment) {
   631  	  typename ErasingResGW::Node n=t;
   632  	  Number augment_value=free.get(n);
   633  	  while (erasing_res_graph.valid(pred.get(n))) { 
   634  	    typename ErasingResGW::OutEdgeIt e=pred.get(n);
   635  	    res_graph.augment(e, augment_value);
   636  	    n=erasing_res_graph.source(e);
   637  	    if (res_graph.resCap(e)==0)
   638  	      erasing_res_graph.erase(e);
   639  	  }
   640  	}
   641       
   642       } //while (__augment) 
   643             
   644       return _augment;
   645     }
   646 
   647 //     bool augmentOnBlockingFlow2() {
   648 //       bool _augment=false;
   649 
   650 //       //typedef ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> EAugGraph;
   651 //       typedef FilterGraphWrapper< ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> > EAugGraph;
   652 //       typedef typename EAugGraph::OutEdgeIt EAugOutEdgeIt;
   653 //       typedef typename EAugGraph::Edge EAugEdge;
   654 
   655 //       EAugGraph res_graph(*G, *flow, *capacity);
   656 
   657 //       //typedef typename EAugGraph::NodeMap<bool> ReachedMap;
   658 //       BfsIterator5< 
   659 // 	ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>, 
   660 // 	/*typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt,*/ 
   661 // 	ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<bool> > bfs(res_graph);
   662       
   663 //       bfs.pushAndSetReached(s);
   664 
   665 //       typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::
   666 // 	NodeMap<int>& dist=res_graph.dist;
   667 
   668 //       while ( !bfs.finished() ) {
   669 // 	typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt e=bfs;
   670 // 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   671 // 	  dist.set(res_graph.target(e), dist.get(res_graph.source(e))+1);
   672 // 	}
   673 // 	++bfs;	
   674 //       } //computing distances from s in the residual graph
   675 
   676 //       bool __augment=true;
   677 
   678 //       while (__augment) {
   679 
   680 // 	__augment=false;
   681 // 	//computing blocking flow with dfs
   682 // 	typedef typename EAugGraph::NodeMap<bool> BlockingReachedMap;
   683 // 	DfsIterator5< EAugGraph/*, EAugOutEdgeIt*/, BlockingReachedMap > 
   684 // 	  dfs(res_graph);
   685 // 	typename EAugGraph::NodeMap<EAugEdge> pred(res_graph); 
   686 // 	pred.set(s, EAugEdge(INVALID));
   687 // 	//invalid iterators for sources
   688 
   689 // 	typename EAugGraph::NodeMap<Number> free(res_graph);
   690 
   691 // 	dfs.pushAndSetReached(s);
   692 // 	while (!dfs.finished()) {
   693 // 	  ++dfs;
   694 // 	  if (res_graph.valid(EAugOutEdgeIt(dfs))) { 
   695 // 	    if (dfs.isBNodeNewlyReached()) {
   696 	  
   697 // 	      typename EAugGraph::Node v=res_graph.aNode(dfs);
   698 // 	      typename EAugGraph::Node w=res_graph.bNode(dfs);
   699 
   700 // 	      pred.set(w, EAugOutEdgeIt(dfs));
   701 // 	      if (res_graph.valid(pred.get(v))) {
   702 // 		free.set(w, std::min(free.get(v), res_graph.free(dfs)));
   703 // 	      } else {
   704 // 		free.set(w, res_graph.free(dfs)); 
   705 // 	      }
   706 	      
   707 // 	      if (w==t) { 
   708 // 		__augment=true; 
   709 // 		_augment=true;
   710 // 		break; 
   711 // 	      }
   712 // 	    } else {
   713 // 	      res_graph.erase(dfs);
   714 // 	    }
   715 // 	  } 
   716 
   717 // 	}
   718 
   719 // 	if (__augment) {
   720 // 	  typename EAugGraph::Node n=t;
   721 // 	  Number augment_value=free.get(t);
   722 // 	  while (res_graph.valid(pred.get(n))) { 
   723 // 	    EAugEdge e=pred.get(n);
   724 // 	    res_graph.augment(e, augment_value);
   725 // 	    n=res_graph.source(e);
   726 // 	    if (res_graph.free(e)==0)
   727 // 	      res_graph.erase(e);
   728 // 	  }
   729 // 	}
   730       
   731 //       }
   732             
   733 //       return _augment;
   734 //     }
   735 
   736     void run() {
   737       //int num_of_augmentations=0;
   738       while (augmentOnShortestPath()) { 
   739 	//while (augmentOnBlockingFlow<MutableGraph>()) { 
   740 	//std::cout << ++num_of_augmentations << " ";
   741 	//std::cout<<std::endl;
   742       } 
   743     }
   744 
   745     template<typename MutableGraph> void run() {
   746       //int num_of_augmentations=0;
   747       //while (augmentOnShortestPath()) { 
   748 	while (augmentOnBlockingFlow<MutableGraph>()) { 
   749 	//std::cout << ++num_of_augmentations << " ";
   750 	//std::cout<<std::endl;
   751       } 
   752     }
   753 
   754     Number flowValue() { 
   755       Number a=0;
   756       OutEdgeIt e;
   757       for(gw.first(e, s); gw.valid(e); gw.next(e)) {
   758 	a+=flow->get(e);
   759       }
   760       return a;
   761     }
   762 
   763   };
   764 
   765 
   766 //   template <typename Graph, typename Number, typename FlowMap, typename CapacityMap>
   767 //   class MaxMatching {
   768 //   public:
   769 //     typedef typename Graph::Node Node;
   770 //     typedef typename Graph::NodeIt NodeIt;
   771 //     typedef typename Graph::Edge Edge;
   772 //     typedef typename Graph::EdgeIt EdgeIt;
   773 //     typedef typename Graph::OutEdgeIt OutEdgeIt;
   774 //     typedef typename Graph::InEdgeIt InEdgeIt;
   775 
   776 //     typedef typename Graph::NodeMap<bool> SMap;
   777 //     typedef typename Graph::NodeMap<bool> TMap;
   778 //   private:
   779 //     const Graph* G;
   780 //     SMap* S;
   781 //     TMap* T;
   782 //     //Node s;
   783 //     //Node t;
   784 //     FlowMap* flow;
   785 //     const CapacityMap* capacity;
   786 //     typedef ResGraphWrapper<Graph, Number, FlowMap, CapacityMap > AugGraph;
   787 //     typedef typename AugGraph::OutEdgeIt AugOutEdgeIt;
   788 //     typedef typename AugGraph::Edge AugEdge;
   789 //     typename Graph::NodeMap<int> used; //0
   790 
   791 //   public:
   792 //     MaxMatching(const Graph& _G, SMap& _S, TMap& _T, FlowMap& _flow, const CapacityMap& _capacity) : 
   793 //       G(&_G), S(&_S), T(&_T), flow(&_flow), capacity(&_capacity), used(_G) { }
   794 //     bool augmentOnShortestPath() {
   795 //       AugGraph res_graph(*G, *flow, *capacity);
   796 //       bool _augment=false;
   797       
   798 //       typedef typename AugGraph::NodeMap<bool> ReachedMap;
   799 //       BfsIterator5< AugGraph, /*AugOutEdgeIt,*/ ReachedMap > bfs(res_graph);
   800 //       typename AugGraph::NodeMap<AugEdge> pred(res_graph); 
   801 //       for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
   802 // 	if ((S->get(s)) && (used.get(s)<1) ) {
   803 // 	  //Number u=0;
   804 // 	  //for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
   805 // 	  //u+=flow->get(e);
   806 // 	  //if (u<1) {
   807 // 	    bfs.pushAndSetReached(s);
   808 // 	    pred.set(s, AugEdge(INVALID));
   809 // 	    //}
   810 // 	}
   811 //       }
   812       
   813 //       typename AugGraph::NodeMap<Number> free(res_graph);
   814 	
   815 //       Node n;
   816 //       //searching for augmenting path
   817 //       while ( !bfs.finished() ) { 
   818 // 	AugOutEdgeIt e=bfs;
   819 // 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   820 // 	  Node v=res_graph.source(e);
   821 // 	  Node w=res_graph.target(e);
   822 // 	  pred.set(w, e);
   823 // 	  if (res_graph.valid(pred.get(v))) {
   824 // 	    free.set(w, std::min(free.get(v), res_graph.free(e)));
   825 // 	  } else {
   826 // 	    free.set(w, res_graph.free(e)); 
   827 // 	  }
   828 // 	  n=res_graph.target(e);
   829 // 	  if (T->get(n) && (used.get(n)<1) ) { 
   830 // 	    //Number u=0;
   831 // 	    //for(InEdgeIt f=G->template first<InEdgeIt>(n); G->valid(f); G->next(f))
   832 // 	    //u+=flow->get(f);
   833 // 	    //if (u<1) {
   834 // 	      _augment=true; 
   835 // 	      break; 
   836 // 	      //}
   837 // 	  }
   838 // 	}
   839 	
   840 // 	++bfs;
   841 //       } //end of searching augmenting path
   842 
   843 //       if (_augment) {
   844 // 	//Node n=t;
   845 // 	used.set(n, 1); //mind2 vegen jav
   846 // 	Number augment_value=free.get(n);
   847 // 	while (res_graph.valid(pred.get(n))) { 
   848 // 	  AugEdge e=pred.get(n);
   849 // 	  res_graph.augment(e, augment_value); 
   850 // 	  n=res_graph.source(e);
   851 // 	}
   852 // 	used.set(n, 1); //mind2 vegen jav
   853 //       }
   854 
   855 //       return _augment;
   856 //     }
   857 
   858 // //     template<typename MutableGraph> bool augmentOnBlockingFlow() {      
   859 // //       bool _augment=false;
   860 
   861 // //       AugGraph res_graph(*G, *flow, *capacity);
   862 
   863 // //       typedef typename AugGraph::NodeMap<bool> ReachedMap;
   864 // //       BfsIterator4< AugGraph, AugOutEdgeIt, ReachedMap > bfs(res_graph);
   865 
   866 
   867 
   868 
   869 
   870 // //       //typename AugGraph::NodeMap<AugEdge> pred(res_graph); 
   871 // //       for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
   872 // // 	if (S->get(s)) {
   873 // // 	  Number u=0;
   874 // // 	  for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
   875 // // 	    u+=flow->get(e);
   876 // // 	  if (u<1) {
   877 // // 	    bfs.pushAndSetReached(s);
   878 // // 	    //pred.set(s, AugEdge(INVALID));
   879 // // 	  }
   880 // // 	}
   881 // //       }
   882 
   883 
   884 
   885 
   886 // //       //bfs.pushAndSetReached(s);
   887 // //       typename AugGraph::NodeMap<int> dist(res_graph); //filled up with 0's
   888 // //       while ( !bfs.finished() ) { 
   889 // // 	AugOutEdgeIt e=bfs;
   890 // // 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   891 // // 	  dist.set(res_graph.target(e), dist.get(res_graph.source(e))+1);
   892 // // 	}
   893 	
   894 // // 	++bfs;
   895 // //       } //computing distances from s in the residual graph
   896 
   897 // //       MutableGraph F;
   898 // //       typename AugGraph::NodeMap<typename MutableGraph::Node> 
   899 // // 	res_graph_to_F(res_graph);
   900 // //       for(typename AugGraph::NodeIt n=res_graph.template first<typename AugGraph::NodeIt>(); res_graph.valid(n); res_graph.next(n)) {
   901 // // 	res_graph_to_F.set(n, F.addNode());
   902 // //       }
   903       
   904 // //       typename MutableGraph::Node sF=res_graph_to_F.get(s);
   905 // //       typename MutableGraph::Node tF=res_graph_to_F.get(t);
   906 
   907 // //       typename MutableGraph::EdgeMap<AugEdge> original_edge(F);
   908 // //       typename MutableGraph::EdgeMap<Number> residual_capacity(F);
   909 
   910 // //       //Making F to the graph containing the edges of the residual graph 
   911 // //       //which are in some shortest paths
   912 // //       for(typename AugGraph::EdgeIt e=res_graph.template first<typename AugGraph::EdgeIt>(); res_graph.valid(e); res_graph.next(e)) {
   913 // // 	if (dist.get(res_graph.target(e))==dist.get(res_graph.source(e))+1) {
   914 // // 	  typename MutableGraph::Edge f=F.addEdge(res_graph_to_F.get(res_graph.source(e)), res_graph_to_F.get(res_graph.target(e)));
   915 // // 	  original_edge.update();
   916 // // 	  original_edge.set(f, e);
   917 // // 	  residual_capacity.update();
   918 // // 	  residual_capacity.set(f, res_graph.free(e));
   919 // // 	} 
   920 // //       }
   921 
   922 // //       bool __augment=true;
   923 
   924 // //       while (__augment) {
   925 // // 	__augment=false;
   926 // // 	//computing blocking flow with dfs
   927 // // 	typedef typename MutableGraph::NodeMap<bool> BlockingReachedMap;
   928 // // 	DfsIterator4< MutableGraph, typename MutableGraph::OutEdgeIt, BlockingReachedMap > dfs(F);
   929 // // 	typename MutableGraph::NodeMap<typename MutableGraph::Edge> pred(F);
   930 // // 	pred.set(sF, typename MutableGraph::Edge(INVALID));
   931 // // 	//invalid iterators for sources
   932 
   933 // // 	typename MutableGraph::NodeMap<Number> free(F);
   934 
   935 // // 	dfs.pushAndSetReached(sF);      
   936 // // 	while (!dfs.finished()) {
   937 // // 	  ++dfs;
   938 // // 	  if (F.valid(typename MutableGraph::OutEdgeIt(dfs))) {
   939 // // 	    if (dfs.isBNodeNewlyReached()) {
   940 // // 	      typename MutableGraph::Node v=F.aNode(dfs);
   941 // // 	      typename MutableGraph::Node w=F.bNode(dfs);
   942 // // 	      pred.set(w, dfs);
   943 // // 	      if (F.valid(pred.get(v))) {
   944 // // 		free.set(w, std::min(free.get(v), residual_capacity.get(dfs)));
   945 // // 	      } else {
   946 // // 		free.set(w, residual_capacity.get(dfs)); 
   947 // // 	      }
   948 // // 	      if (w==tF) { 
   949 // // 		__augment=true; 
   950 // // 		_augment=true;
   951 // // 		break; 
   952 // // 	      }
   953 	      
   954 // // 	    } else {
   955 // // 	      F.erase(typename MutableGraph::OutEdgeIt(dfs));
   956 // // 	    }
   957 // // 	  } 
   958 // // 	}
   959 
   960 // // 	if (__augment) {
   961 // // 	  typename MutableGraph::Node n=tF;
   962 // // 	  Number augment_value=free.get(tF);
   963 // // 	  while (F.valid(pred.get(n))) { 
   964 // // 	    typename MutableGraph::Edge e=pred.get(n);
   965 // // 	    res_graph.augment(original_edge.get(e), augment_value); 
   966 // // 	    n=F.source(e);
   967 // // 	    if (residual_capacity.get(e)==augment_value) 
   968 // // 	      F.erase(e); 
   969 // // 	    else 
   970 // // 	      residual_capacity.set(e, residual_capacity.get(e)-augment_value);
   971 // // 	  }
   972 // // 	}
   973 	
   974 // //       }
   975             
   976 // //       return _augment;
   977 // //     }
   978 //     bool augmentOnBlockingFlow2() {
   979 //       bool _augment=false;
   980 
   981 //       //typedef ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> EAugGraph;
   982 //       typedef FilterGraphWrapper< ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> > EAugGraph;
   983 //       typedef typename EAugGraph::OutEdgeIt EAugOutEdgeIt;
   984 //       typedef typename EAugGraph::Edge EAugEdge;
   985 
   986 //       EAugGraph res_graph(*G, *flow, *capacity);
   987 
   988 //       //typedef typename EAugGraph::NodeMap<bool> ReachedMap;
   989 //       BfsIterator5< 
   990 // 	ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>, 
   991 // 	/*typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt,*/ 
   992 // 	ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<bool> > bfs(res_graph);
   993 
   994 
   995 //       //typename AugGraph::NodeMap<AugEdge> pred(res_graph); 
   996 //       for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
   997 // 	if (S->get(s)) {
   998 // 	  Number u=0;
   999 // 	  for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
  1000 // 	    u+=flow->get(e);
  1001 // 	  if (u<1) {
  1002 // 	    bfs.pushAndSetReached(s);
  1003 // 	    //pred.set(s, AugEdge(INVALID));
  1004 // 	  }
  1005 // 	}
  1006 //       }
  1007 
  1008       
  1009 //       //bfs.pushAndSetReached(s);
  1010 
  1011 //       typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::
  1012 // 	NodeMap<int>& dist=res_graph.dist;
  1013 
  1014 //       while ( !bfs.finished() ) {
  1015 // 	typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt e=bfs;
  1016 // 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
  1017 // 	  dist.set(res_graph.target(e), dist.get(res_graph.source(e))+1);
  1018 // 	}
  1019 // 	++bfs;	
  1020 //       } //computing distances from s in the residual graph
  1021 
  1022 //       bool __augment=true;
  1023 
  1024 //       while (__augment) {
  1025 
  1026 // 	__augment=false;
  1027 // 	//computing blocking flow with dfs
  1028 // 	typedef typename EAugGraph::NodeMap<bool> BlockingReachedMap;
  1029 // 	DfsIterator5< EAugGraph/*, EAugOutEdgeIt*/, BlockingReachedMap > 
  1030 // 	  dfs(res_graph);
  1031 // 	typename EAugGraph::NodeMap<EAugEdge> pred(res_graph, INVALID); 
  1032 // 	//pred.set(s, EAugEdge(INVALID));
  1033 // 	//invalid iterators for sources
  1034 
  1035 // 	typename EAugGraph::NodeMap<Number> free(res_graph);
  1036 
  1037 
  1038 // 	//typename AugGraph::NodeMap<AugEdge> pred(res_graph); 
  1039 //       for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
  1040 // 	if (S->get(s)) {
  1041 // 	  Number u=0;
  1042 // 	  for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
  1043 // 	    u+=flow->get(e);
  1044 // 	  if (u<1) {
  1045 // 	    dfs.pushAndSetReached(s);
  1046 // 	    //pred.set(s, AugEdge(INVALID));
  1047 // 	  }
  1048 // 	}
  1049 //       }
  1050 
  1051 
  1052 
  1053 //       //dfs.pushAndSetReached(s);
  1054 //       typename EAugGraph::Node n;
  1055 // 	while (!dfs.finished()) {
  1056 // 	  ++dfs;
  1057 // 	  if (res_graph.valid(EAugOutEdgeIt(dfs))) { 
  1058 // 	    if (dfs.isBNodeNewlyReached()) {
  1059 	  
  1060 // 	      typename EAugGraph::Node v=res_graph.aNode(dfs);
  1061 // 	      typename EAugGraph::Node w=res_graph.bNode(dfs);
  1062 
  1063 // 	      pred.set(w, EAugOutEdgeIt(dfs));
  1064 // 	      if (res_graph.valid(pred.get(v))) {
  1065 // 		free.set(w, std::min(free.get(v), res_graph.free(dfs)));
  1066 // 	      } else {
  1067 // 		free.set(w, res_graph.free(dfs)); 
  1068 // 	      }
  1069 	     
  1070 // 	      n=w;
  1071 // 	      if (T->get(w)) {
  1072 // 		Number u=0;
  1073 // 		for(InEdgeIt f=G->template first<InEdgeIt>(n); G->valid(f); G->next(f))
  1074 // 		  u+=flow->get(f);
  1075 // 		if (u<1) {
  1076 // 		  __augment=true; 
  1077 // 		  _augment=true;
  1078 // 		  break; 
  1079 // 		}
  1080 // 	      }
  1081 // 	    } else {
  1082 // 	      res_graph.erase(dfs);
  1083 // 	    }
  1084 // 	  } 
  1085 
  1086 // 	}
  1087 
  1088 // 	if (__augment) {
  1089 // 	  // typename EAugGraph::Node n=t;
  1090 // 	  Number augment_value=free.get(n);
  1091 // 	  while (res_graph.valid(pred.get(n))) { 
  1092 // 	    EAugEdge e=pred.get(n);
  1093 // 	    res_graph.augment(e, augment_value);
  1094 // 	    n=res_graph.source(e);
  1095 // 	    if (res_graph.free(e)==0)
  1096 // 	      res_graph.erase(e);
  1097 // 	  }
  1098 // 	}
  1099       
  1100 //       }
  1101             
  1102 //       return _augment;
  1103 //     }
  1104 //     void run() {
  1105 //       //int num_of_augmentations=0;
  1106 //       while (augmentOnShortestPath()) { 
  1107 // 	//while (augmentOnBlockingFlow<MutableGraph>()) { 
  1108 // 	//std::cout << ++num_of_augmentations << " ";
  1109 // 	//std::cout<<std::endl;
  1110 //       } 
  1111 //     }
  1112 // //     template<typename MutableGraph> void run() {
  1113 // //       //int num_of_augmentations=0;
  1114 // //       //while (augmentOnShortestPath()) { 
  1115 // // 	while (augmentOnBlockingFlow<MutableGraph>()) { 
  1116 // // 	//std::cout << ++num_of_augmentations << " ";
  1117 // // 	//std::cout<<std::endl;
  1118 // //       } 
  1119 // //     } 
  1120 //     Number flowValue() { 
  1121 //       Number a=0;
  1122 //       EdgeIt e;
  1123 //       for(G->/*getF*/first(e); G->valid(e); G->next(e)) {
  1124 // 	a+=flow->get(e);
  1125 //       }
  1126 //       return a;
  1127 //     }
  1128 //   };
  1129 
  1130 
  1131 
  1132 
  1133 
  1134   
  1135 // //   template <typename Graph, typename Number, typename FlowMap, typename CapacityMap>
  1136 // //   class MaxFlow2 {
  1137 // //   public:
  1138 // //     typedef typename Graph::Node Node;
  1139 // //     typedef typename Graph::Edge Edge;
  1140 // //     typedef typename Graph::EdgeIt EdgeIt;
  1141 // //     typedef typename Graph::OutEdgeIt OutEdgeIt;
  1142 // //     typedef typename Graph::InEdgeIt InEdgeIt;
  1143 // //   private:
  1144 // //     const Graph& G;
  1145 // //     std::list<Node>& S;
  1146 // //     std::list<Node>& T;
  1147 // //     FlowMap& flow;
  1148 // //     const CapacityMap& capacity;
  1149 // //     typedef ResGraphWrapper<Graph, Number, FlowMap, CapacityMap > AugGraph;
  1150 // //     typedef typename AugGraph::OutEdgeIt AugOutEdgeIt;
  1151 // //     typedef typename AugGraph::Edge AugEdge;
  1152 // //     typename Graph::NodeMap<bool> SMap;
  1153 // //     typename Graph::NodeMap<bool> TMap;
  1154 // //   public:
  1155 // //     MaxFlow2(const Graph& _G, std::list<Node>& _S, std::list<Node>& _T, FlowMap& _flow, const CapacityMap& _capacity) : G(_G), S(_S), T(_T), flow(_flow), capacity(_capacity), SMap(_G), TMap(_G) { 
  1156 // //       for(typename std::list<Node>::const_iterator i=S.begin(); 
  1157 // // 	  i!=S.end(); ++i) { 
  1158 // // 	SMap.set(*i, true); 
  1159 // //       }
  1160 // //       for (typename std::list<Node>::const_iterator i=T.begin(); 
  1161 // // 	   i!=T.end(); ++i) { 
  1162 // // 	TMap.set(*i, true); 
  1163 // //       }
  1164 // //     }
  1165 // //     bool augment() {
  1166 // //       AugGraph res_graph(G, flow, capacity);
  1167 // //       bool _augment=false;
  1168 // //       Node reached_t_node;
  1169       
  1170 // //       typedef typename AugGraph::NodeMap<bool> ReachedMap;
  1171 // //       BfsIterator4< AugGraph, AugOutEdgeIt, ReachedMap > bfs(res_graph);
  1172 // //       for(typename std::list<Node>::const_iterator i=S.begin(); 
  1173 // // 	  i!=S.end(); ++i) {
  1174 // // 	bfs.pushAndSetReached(*i);
  1175 // //       }
  1176 // //       //bfs.pushAndSetReached(s);
  1177 	
  1178 // //       typename AugGraph::NodeMap<AugEdge> pred(res_graph); 
  1179 // //       //filled up with invalid iterators
  1180       
  1181 // //       typename AugGraph::NodeMap<Number> free(res_graph);
  1182 	
  1183 // //       //searching for augmenting path
  1184 // //       while ( !bfs.finished() ) { 
  1185 // // 	AugOutEdgeIt e=/*AugOutEdgeIt*/(bfs);
  1186 // // 	if (e.valid() && bfs.isBNodeNewlyReached()) {
  1187 // // 	  Node v=res_graph.source(e);
  1188 // // 	  Node w=res_graph.target(e);
  1189 // // 	  pred.set(w, e);
  1190 // // 	  if (pred.get(v).valid()) {
  1191 // // 	    free.set(w, std::min(free.get(v), e.free()));
  1192 // // 	  } else {
  1193 // // 	    free.set(w, e.free()); 
  1194 // // 	  }
  1195 // // 	  if (TMap.get(res_graph.target(e))) { 
  1196 // // 	    _augment=true; 
  1197 // // 	    reached_t_node=res_graph.target(e);
  1198 // // 	    break; 
  1199 // // 	  }
  1200 // // 	}
  1201 	
  1202 // // 	++bfs;
  1203 // //       } //end of searching augmenting path
  1204 
  1205 // //       if (_augment) {
  1206 // // 	Node n=reached_t_node;
  1207 // // 	Number augment_value=free.get(reached_t_node);
  1208 // // 	while (pred.get(n).valid()) { 
  1209 // // 	  AugEdge e=pred.get(n);
  1210 // // 	  e.augment(augment_value); 
  1211 // // 	  n=res_graph.source(e);
  1212 // // 	}
  1213 // //       }
  1214 
  1215 // //       return _augment;
  1216 // //     }
  1217 // //     void run() {
  1218 // //       while (augment()) { } 
  1219 // //     }
  1220 // //     Number flowValue() { 
  1221 // //       Number a=0;
  1222 // //       for(typename std::list<Node>::const_iterator i=S.begin(); 
  1223 // // 	  i!=S.end(); ++i) { 
  1224 // // 	for(OutEdgeIt e=G.template first<OutEdgeIt>(*i); e.valid(); ++e) {
  1225 // // 	  a+=flow.get(e);
  1226 // // 	}
  1227 // // 	for(InEdgeIt e=G.template first<InEdgeIt>(*i); e.valid(); ++e) {
  1228 // // 	  a-=flow.get(e);
  1229 // // 	}
  1230 // //       }
  1231 // //       return a;
  1232 // //     }
  1233 // //   };
  1234 
  1235 
  1236 } // namespace lemon
  1237 
  1238 #endif //LEMON_EDMONDS_KARP_H