Dijkstra, bin_heap, fib_heap added to the doc.
6 #include <list_graph.h>
12 class string_int_map : public map<string,int> {
14 int get(const string &s) {
15 // Bocs, ez igy gaaaany, de nem volt kedvem utananezni, hogy
16 // hogy is mukodik ez a map :)
22 void set(const string &s, int i) {
28 // Egy olyan "map", ami nem tud semmit, csak a typedef-eket.
29 // Valami elegansabb megoldas kene a Kruskalban...
31 template <typename K, typename V>
40 typedef ListGraph::Node Node;
41 typedef ListGraph::Edge Edge;
42 typedef ListGraph::NodeIt NodeIt;
43 typedef ListGraph::EdgeIt EdgeIt;
54 Edge e1 = G.addEdge(s, v1);
55 Edge e2 = G.addEdge(s, v2);
56 Edge e3 = G.addEdge(v1, v2);
57 Edge e4 = G.addEdge(v2, v1);
58 Edge e5 = G.addEdge(v1, v3);
59 Edge e6 = G.addEdge(v3, v2);
60 Edge e7 = G.addEdge(v2, v4);
61 Edge e8 = G.addEdge(v4, v3);
62 Edge e9 = G.addEdge(v3, t);
63 Edge e10 = G.addEdge(v4, t);
65 typedef ListGraph::EdgeMap<double> ECostMap;
66 typedef ListGraph::EdgeMap<bool> EBoolMap;
68 ECostMap edge_cost_map(G, 2);
71 typedef MinCostTreeKruskal<ListGraph, ECostMap, EBoolMap> MCTK;
73 MCTK mctk(G, edge_cost_map, tree_map);
74 double k0lts = mctk.run();
76 cout << "Uniform 2-es koltseggel: " << k0lts << endl;
78 // Max koltsegu fa szamitasa elore megrendezett koltseg vektorbol:
79 typedef MinCostTreeKruskal<ListGraph, DummyMap<Edge,int>, EBoolMap> MCTK2;
80 MCTK2 mctk2(G, DummyMap<Edge,int>(), tree_map);
81 MCTK2::EdgeCostVector ecv;
82 ecv.push_back(make_pair(e1, 10));
83 ecv.push_back(make_pair(e2, 9));
84 ecv.push_back(make_pair(e3, 8));
85 ecv.push_back(make_pair(e4, 7));
86 ecv.push_back(make_pair(e5, 6));
87 ecv.push_back(make_pair(e6, 5));
88 ecv.push_back(make_pair(e7, 4));
89 ecv.push_back(make_pair(e8, 3));
90 ecv.push_back(make_pair(e9, 2));
91 ecv.push_back(make_pair(e10, 1));
93 k0lts = mctk2.run(ecv);
94 cout << "Max koltsegu fa elore megrendezett koltseg vektorbol: 31 = "