src/work/jacint/preflow_hl2.h
author alpar
Fri, 20 Feb 2004 22:01:02 +0000
changeset 108 0351b00fd283
parent 101 d2ac583ed195
child 109 fc5982b39e10
permissions -rw-r--r--
Dynamic Maps added.
     1 // -*- C++ -*-
     2 /*
     3 preflow_hl2.h
     4 by jacint. 
     5 Runs the highest label variant of the preflow push algorithm with 
     6 running time O(n^2\sqrt(m)), with the 'empty level' and with the 
     7 heuristic that the bound b on the active nodes is not increased 
     8 only when b=0, when we put b=2*n-2.
     9 
    10 'A' is a parameter for the empty_level heuristic
    11 
    12 Member functions:
    13 
    14 void run() : runs the algorithm
    15 
    16  The following functions should be used after run() was already run.
    17 
    18 T maxflow() : returns the value of a maximum flow
    19 
    20 T flowonedge(EdgeIt e) : for a fixed maximum flow x it returns x(e) 
    21 
    22 FlowMap allflow() : returns the fixed maximum flow x
    23 
    24 void mincut(CutMap& M) : sets M to the characteristic vector of a 
    25      minimum cut. M should be a map of bools initialized to false.
    26 
    27 void min_mincut(CutMap& M) : sets M to the characteristic vector of the 
    28      minimum min cut. M should be a map of bools initialized to false.
    29 
    30 void max_mincut(CutMap& M) : sets M to the characteristic vector of the 
    31      maximum min cut. M should be a map of bools initialized to false.
    32 
    33 */
    34 
    35 #ifndef PREFLOW_HL2_H
    36 #define PREFLOW_HL2_H
    37 
    38 #define A 1
    39 
    40 #include <vector>
    41 #include <stack>
    42 #include <queue>
    43 
    44 namespace hugo {
    45 
    46   template <typename Graph, typename T, 
    47     typename FlowMap=typename Graph::EdgeMap<T>, typename CapMap=typename Graph::EdgeMap<T>, 
    48     typename IntMap=typename Graph::NodeMap<int>, typename TMap=typename Graph::NodeMap<T> >
    49   class preflow_hl2 {
    50     
    51     typedef typename Graph::NodeIt NodeIt;
    52     typedef typename Graph::EdgeIt EdgeIt;
    53     typedef typename Graph::EachNodeIt EachNodeIt;
    54     typedef typename Graph::OutEdgeIt OutEdgeIt;
    55     typedef typename Graph::InEdgeIt InEdgeIt;
    56     
    57     Graph& G;
    58     NodeIt s;
    59     NodeIt t;
    60     FlowMap flow;
    61     CapMap& capacity;  
    62     T value;
    63     
    64   public:
    65 
    66     preflow_hl2(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity) :
    67       G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity) { }
    68 
    69 
    70     void run() {
    71  
    72       bool no_end=true;
    73       int n=G.nodeNum(); 
    74       int b=n-2; 
    75       /*
    76 	b is a bound on the highest level of an active node. 
    77 	In the beginning it is at most n-2.
    78       */
    79 
    80       IntMap level(G,n);      
    81       TMap excess(G); 
    82       
    83       std::vector<int> numb(n);    
    84       /*
    85 	The number of nodes on level i < n. It is
    86 	initialized to n+1, because of the reverse_bfs-part.
    87       */
    88 
    89       std::vector<std::stack<NodeIt> > stack(2*n-1);    
    90       //Stack of the active nodes in level i.
    91 
    92 
    93       /*Reverse_bfs from t, to find the starting level.*/
    94       level.set(t,0);
    95       std::queue<NodeIt> bfs_queue;
    96       bfs_queue.push(t);
    97 
    98       while (!bfs_queue.empty()) {
    99 
   100 	NodeIt v=bfs_queue.front();	
   101 	bfs_queue.pop();
   102 	int l=level.get(v)+1;
   103 
   104 	for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
   105 	  NodeIt w=G.tail(e);
   106 	  if ( level.get(w) == n ) {
   107 	    bfs_queue.push(w);
   108 	    ++numb[l];
   109 	    level.set(w, l);
   110 	  }
   111 	}
   112       }
   113       
   114       level.set(s,n);
   115 
   116 
   117 
   118       /* Starting flow. It is everywhere 0 at the moment. */     
   119       for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) 
   120 	{
   121 	  T c=capacity.get(e);
   122 	  if ( c == 0 ) continue;
   123 	  NodeIt w=G.head(e);
   124 	  if ( w!=s ) {	  
   125 	    if ( excess.get(w) == 0 && w!=t ) stack[level.get(w)].push(w); 
   126 	    flow.set(e, c); 
   127 	    excess.set(w, excess.get(w)+c);
   128 	  }
   129 	}
   130 
   131       /* 
   132 	 End of preprocessing 
   133       */
   134 
   135 
   136 
   137       /*
   138 	Push/relabel on the highest level active nodes.
   139       */	
   140       /*While there exists an active node.*/
   141       while (b) { 
   142 	if ( stack[b].empty() ) {
   143 	  if ( b==1 ) {
   144 	    if ( !no_end ) break; 
   145 	    else {
   146 	      b=2*n-2;
   147 	      no_end=false;
   148 	    }
   149 	  } 
   150 	  --b;
   151 	} else {
   152 	  
   153 	  no_end=true;
   154 	  
   155 	  NodeIt w=stack[b].top();        //w is a highest label active node.
   156 	  stack[b].pop();           
   157 	  int lev=level.get(w);
   158 	  int exc=excess.get(w);
   159 	  int newlevel=2*n;      //In newlevel we bound the next level of w.
   160 	  
   161 	  //  if ( level.get(w) < n ) { //Nem tudom ez mukodik-e
   162 	  for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
   163 	    
   164 	    if ( flow.get(e) == capacity.get(e) ) continue; 
   165 	    NodeIt v=G.head(e);            
   166 	    //e=wv	    
   167 	    
   168 	    if( lev > level.get(v) ) {      
   169 	      /*Push is allowed now*/
   170 	      
   171 	      if ( excess.get(v)==0 && v != s && v !=t ) 
   172 		stack[level.get(v)].push(v); 
   173 	      /*v becomes active.*/
   174 	      
   175 	      int cap=capacity.get(e);
   176 	      int flo=flow.get(e);
   177 	      int remcap=cap-flo;
   178 	      
   179 	      if ( remcap >= exc ) {       
   180 		/*A nonsaturating push.*/
   181 		
   182 		flow.set(e, flo+exc);
   183 		excess.set(v, excess.get(v)+exc);
   184 		exc=0;
   185 		break; 
   186 		
   187 	      } else { 
   188 		/*A saturating push.*/
   189 		
   190 		flow.set(e, cap );
   191 		excess.set(v, excess.get(v)+remcap);
   192 		exc-=remcap;
   193 	      }
   194 	    } else if ( newlevel > level.get(v) ) newlevel = level.get(v);
   195 	    
   196 	  } //for out edges wv 
   197 	
   198 	
   199 	if ( exc > 0 ) {	
   200 	  for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
   201 	    
   202 	    if( flow.get(e) == 0 ) continue; 
   203 	    NodeIt v=G.tail(e);  
   204 	    //e=vw
   205 	    
   206 	    if( lev > level.get(v) ) {  
   207 	      /*Push is allowed now*/
   208 	      
   209 	      if ( excess.get(v)==0 && v != s && v !=t) 
   210 		stack[level.get(v)].push(v); 
   211 	      /*v becomes active.*/
   212 	      
   213 	      int flo=flow.get(e);
   214 	      
   215 	      if ( flo >= exc ) { 
   216 		/*A nonsaturating push.*/
   217 		
   218 		flow.set(e, flo-exc);
   219 		excess.set(v, excess.get(v)+exc);
   220 		exc=0;
   221 		break; 
   222 	      } else {                                               
   223 		/*A saturating push.*/
   224 		
   225 		excess.set(v, excess.get(v)+flo);
   226 		exc-=flo;
   227 		flow.set(e,0);
   228 	      }  
   229 	    } else if ( newlevel > level.get(v) ) newlevel = level.get(v);
   230 	    
   231 	  } //for in edges vw
   232 	  
   233 	} // if w still has excess after the out edge for cycle
   234 	 
   235 	  excess.set(w, exc);
   236 	  
   237 
   238 	  /*
   239 	    Relabel
   240 	  */
   241 	  
   242 	  if ( exc > 0 ) {
   243 	    //now 'lev' is the old level of w
   244 	    level.set(w,++newlevel);
   245 	    
   246 	    if ( lev < n ) {
   247 	      --numb[lev];
   248 
   249 	      if ( !numb[lev] && lev < A*n ) {  //If the level of w gets empty. 
   250 		
   251 		for (EachNodeIt v=G.template first<EachNodeIt>(); v.valid() ; ++v) {
   252 		  if (level.get(v) > lev && level.get(v) < n ) level.set(v,n);  
   253 		}
   254 		for (int i=lev+1 ; i!=n ; ++i) numb[i]=0; 
   255 		if ( newlevel < n ) newlevel=n; 
   256 	      } else { 
   257 		if ( newlevel < n ) ++numb[newlevel]; 
   258 	      }
   259 	    } 
   260 	    
   261 	    stack[newlevel].push(w);
   262 
   263 	  }
   264 
   265 	} // if stack[b] is nonempty
   266 
   267       } // while(b)
   268 
   269 
   270       value = excess.get(t);
   271       /*Max flow value.*/
   272 
   273 
   274     } //void run()
   275 
   276 
   277 
   278 
   279 
   280     /*
   281       Returns the maximum value of a flow.
   282      */
   283 
   284     T maxflow() {
   285       return value;
   286     }
   287 
   288 
   289 
   290     /*
   291       For the maximum flow x found by the algorithm, it returns the flow value on Edge e, i.e. x(e). 
   292     */
   293 
   294     T flowonedge(EdgeIt e) {
   295       return flow.get(e);
   296     }
   297 
   298 
   299 
   300     /*
   301       Returns the maximum flow x found by the algorithm.
   302     */
   303 
   304     FlowMap allflow() {
   305       return flow;
   306     }
   307 
   308 
   309 
   310 
   311     /*
   312       Returns the minimum min cut, by a bfs from s in the residual graph.
   313     */
   314     
   315     template<typename CutMap>
   316     void mincut(CutMap& M) {
   317     
   318       std::queue<NodeIt> queue;
   319       
   320       M.set(s,true);      
   321       queue.push(s);
   322 
   323       while (!queue.empty()) {
   324         NodeIt w=queue.front();
   325 	queue.pop();
   326 
   327 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
   328 	  NodeIt v=G.head(e);
   329 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
   330 	    queue.push(v);
   331 	    M.set(v, true);
   332 	  }
   333 	} 
   334 
   335 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
   336 	  NodeIt v=G.tail(e);
   337 	  if (!M.get(v) && flow.get(e) > 0 ) {
   338 	    queue.push(v);
   339 	    M.set(v, true);
   340 	  }
   341 	} 
   342 
   343       }
   344 
   345     }
   346 
   347 
   348 
   349     /*
   350       Returns the maximum min cut, by a reverse bfs 
   351       from t in the residual graph.
   352     */
   353     
   354     template<typename CutMap>
   355     void max_mincut(CutMap& M) {
   356     
   357       std::queue<NodeIt> queue;
   358       
   359       M.set(t,true);        
   360       queue.push(t);
   361 
   362       while (!queue.empty()) {
   363         NodeIt w=queue.front();
   364 	queue.pop();
   365 
   366 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
   367 	  NodeIt v=G.tail(e);
   368 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
   369 	    queue.push(v);
   370 	    M.set(v, true);
   371 	  }
   372 	}
   373 
   374 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
   375 	  NodeIt v=G.head(e);
   376 	  if (!M.get(v) && flow.get(e) > 0 ) {
   377 	    queue.push(v);
   378 	    M.set(v, true);
   379 	  }
   380 	}
   381       }
   382 
   383       for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) {
   384 	M.set(v, !M.get(v));
   385       }
   386 
   387     }
   388 
   389 
   390 
   391     template<typename CutMap>
   392     void min_mincut(CutMap& M) {
   393       mincut(M);
   394     }
   395 
   396 
   397 
   398   };
   399 }//namespace hugo
   400 #endif 
   401 
   402 
   403 
   404