src/work/jacint/preflow_hl3.h
author alpar
Fri, 20 Feb 2004 22:01:02 +0000
changeset 108 0351b00fd283
parent 101 d2ac583ed195
child 109 fc5982b39e10
permissions -rw-r--r--
Dynamic Maps added.
     1 // -*- C++ -*-
     2 /*
     3 preflow_hl3.h
     4 by jacint. 
     5 Runs the highest label variant of the preflow push algorithm with 
     6 running time O(n^2\sqrt(m)), with the felszippantos 'empty level' 
     7 and with the two-phase heuristic: if there is no active node of
     8 level at most n, then we go into phase 1, do a bfs
     9 from s, and flow the excess back to s.
    10 
    11 In phase 1 we shift everything downwards by n.
    12 
    13 'A' is a parameter for the empty_level heuristic
    14 
    15 Member functions:
    16 
    17 void run() : runs the algorithm
    18 
    19  The following functions should be used after run() was already run.
    20 
    21 T maxflow() : returns the value of a maximum flow
    22 
    23 T flowonedge(EdgeIt e) : for a fixed maximum flow x it returns x(e) 
    24 
    25 FlowMap allflow() : returns the fixed maximum flow x
    26 
    27 void mincut(CutMap& M) : sets M to the characteristic vector of a 
    28      minimum cut. M should be a map of bools initialized to false.
    29 
    30 void min_mincut(CutMap& M) : sets M to the characteristic vector of the 
    31      minimum min cut. M should be a map of bools initialized to false.
    32 
    33 void max_mincut(CutMap& M) : sets M to the characteristic vector of the 
    34      maximum min cut. M should be a map of bools initialized to false.
    35 
    36 */
    37 
    38 #ifndef PREFLOW_HL3_H
    39 #define PREFLOW_HL3_H
    40 
    41 #define A 1
    42 
    43 #include <vector>
    44 #include <stack>
    45 #include <queue>
    46 
    47 namespace hugo {
    48 
    49   template <typename Graph, typename T, 
    50     typename FlowMap=typename Graph::EdgeMap<T>, typename CapMap=typename Graph::EdgeMap<T>, 
    51     typename IntMap=typename Graph::NodeMap<int>, typename TMap=typename Graph::NodeMap<T> >
    52   class preflow_hl3 {
    53     
    54     typedef typename Graph::NodeIt NodeIt;
    55     typedef typename Graph::EdgeIt EdgeIt;
    56     typedef typename Graph::EachNodeIt EachNodeIt;
    57     typedef typename Graph::OutEdgeIt OutEdgeIt;
    58     typedef typename Graph::InEdgeIt InEdgeIt;
    59     
    60     Graph& G;
    61     NodeIt s;
    62     NodeIt t;
    63     FlowMap flow;
    64     CapMap& capacity;  
    65     T value;
    66     
    67   public:
    68 
    69     preflow_hl3(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity) :
    70       G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity) { }
    71 
    72 
    73     void run() {
    74  
    75       bool phase=0;
    76       int n=G.nodeNum(); 
    77       int b=n-2; 
    78       /*
    79 	b is a bound on the highest level of the stack. 
    80 	In the beginning it is at most n-2.
    81       */
    82 
    83       IntMap level(G,n);      
    84       TMap excess(G); 
    85       
    86       std::vector<int> numb(n);    
    87       /*
    88 	The number of nodes on level i < n. It is
    89 	initialized to n+1, because of the reverse_bfs-part.
    90 	Needed only in phase 0.
    91       */
    92 
    93       std::vector<std::stack<NodeIt> > stack(n);    
    94       //Stack of the active nodes in level i < n.
    95       //We use it in both phases.
    96 
    97 
    98       /*Reverse_bfs from t, to find the starting level.*/
    99       level.set(t,0);
   100       std::queue<NodeIt> bfs_queue;
   101       bfs_queue.push(t);
   102 
   103       while (!bfs_queue.empty()) {
   104 
   105 	NodeIt v=bfs_queue.front();	
   106 	bfs_queue.pop();
   107 	int l=level.get(v)+1;
   108 
   109 	for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
   110 	  NodeIt w=G.tail(e);
   111 	  if ( level.get(w) == n ) {
   112 	    bfs_queue.push(w);
   113 	    ++numb[l];
   114 	    level.set(w, l);
   115 	  }
   116 	}
   117       }
   118       
   119       level.set(s,n);
   120 
   121 
   122 
   123       /* Starting flow. It is everywhere 0 at the moment. */     
   124       for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) 
   125 	{
   126 	  T c=capacity.get(e);
   127 	  if ( c == 0 ) continue;
   128 	  NodeIt w=G.head(e);
   129 	  if ( level.get(w) < n ) {	  
   130 	    if ( excess.get(w) == 0 && w!=t ) stack[level.get(w)].push(w); 
   131 	    flow.set(e, c); 
   132 	    excess.set(w, excess.get(w)+c);
   133 	  }
   134 	}
   135 
   136       /* 
   137 	 End of preprocessing 
   138       */
   139 
   140 
   141 
   142       /*
   143 	Push/relabel on the highest level active nodes.
   144       */	
   145       /*While there exists an active node.*/
   146       while ( true ) {
   147 
   148 	if ( b == 0 ) {
   149 	  if ( phase ) break; 
   150 	  phase=1;
   151 
   152 	  level.set(s,0);
   153 
   154 	  std::queue<NodeIt> bfs_queue;
   155 	  bfs_queue.push(s);
   156 	  
   157 	  while (!bfs_queue.empty()) {
   158 	    
   159 	    NodeIt v=bfs_queue.front();	
   160 	    bfs_queue.pop();
   161 	    int l=level.get(v)+1;
   162 
   163 	    for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
   164 	      if ( capacity.get(e) == flow.get(e) ) continue;
   165 	      NodeIt u=G.tail(e);
   166 	      if ( level.get(u) == n ) { 
   167 		bfs_queue.push(u);
   168 		level.set(u, l);
   169 		if ( excess.get(u) > 0 ) stack[l].push(u);
   170 	      }
   171 	    }
   172 
   173 	    for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) {
   174 	      if ( 0 == flow.get(e) ) continue;
   175 	      NodeIt u=G.head(e);
   176 	      if ( level.get(u) == n ) { 
   177 		bfs_queue.push(u);
   178 		level.set(u, l);
   179 		if ( excess.get(u) > 0 ) stack[l].push(u);
   180 	      }
   181 	    }
   182 	  }
   183 
   184 	  b=n-2;
   185 	}
   186 
   187 	if ( stack[b].empty() ) --b;
   188 	else {
   189 	  
   190 	  NodeIt w=stack[b].top();        //w is a highest label active node.
   191 	  stack[b].pop();           
   192 	  int lev=level.get(w);
   193 	  int exc=excess.get(w);
   194 	  int newlevel=n;                 //In newlevel we bound the next level of w.
   195 	  
   196 	  for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
   197 	    
   198 	    if ( flow.get(e) == capacity.get(e) ) continue; 
   199 	    NodeIt v=G.head(e);            
   200 	    //e=wv	    
   201 	    
   202 	    if( lev > level.get(v) ) {      
   203 	      /*Push is allowed now*/
   204 	      
   205 	      if ( excess.get(v)==0 && v !=t && v!=s ) 
   206 		stack[level.get(v)].push(v); 
   207 	      /*v becomes active.*/
   208 	      
   209 	      int cap=capacity.get(e);
   210 	      int flo=flow.get(e);
   211 	      int remcap=cap-flo;
   212 	      
   213 	      if ( remcap >= exc ) {       
   214 		/*A nonsaturating push.*/
   215 		
   216 		flow.set(e, flo+exc);
   217 		excess.set(v, excess.get(v)+exc);
   218 		exc=0;
   219 		break; 
   220 		
   221 	      } else { 
   222 		/*A saturating push.*/
   223 		
   224 		flow.set(e, cap );
   225 		excess.set(v, excess.get(v)+remcap);
   226 		exc-=remcap;
   227 	      }
   228 	    } else if ( newlevel > level.get(v) ) newlevel = level.get(v);
   229 	    
   230 	  } //for out edges wv 
   231 	
   232 	
   233 	if ( exc > 0 ) {	
   234 	  for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
   235 	    
   236 	    if( flow.get(e) == 0 ) continue; 
   237 	    NodeIt v=G.tail(e);  
   238 	    //e=vw
   239 	    
   240 	    if( lev > level.get(v) ) {  
   241 	      /*Push is allowed now*/
   242 	      
   243 	      if ( excess.get(v)==0 && v !=t && v!=s ) 
   244 		stack[level.get(v)].push(v); 
   245 	      /*v becomes active.*/
   246 	      
   247 	      int flo=flow.get(e);
   248 	      
   249 	      if ( flo >= exc ) { 
   250 		/*A nonsaturating push.*/
   251 		
   252 		flow.set(e, flo-exc);
   253 		excess.set(v, excess.get(v)+exc);
   254 		exc=0;
   255 		break; 
   256 	      } else {                                               
   257 		/*A saturating push.*/
   258 		
   259 		excess.set(v, excess.get(v)+flo);
   260 		exc-=flo;
   261 		flow.set(e,0);
   262 	      }  
   263 	    } else if ( newlevel > level.get(v) ) newlevel = level.get(v);
   264 	    
   265 	  } //for in edges vw
   266 	  
   267 	} // if w still has excess after the out edge for cycle
   268 	
   269 	excess.set(w, exc);
   270 	  
   271 
   272 	/*
   273 	  Relabel
   274 	*/
   275 	
   276 	if ( exc > 0 ) {
   277 	  //now 'lev' is the old level of w
   278 	
   279 	  if ( phase ) {
   280 	    level.set(w,++newlevel);
   281 	    stack[newlevel].push(w);
   282 	    b=newlevel;
   283 	  } else {
   284 
   285 	    if ( newlevel >= n-2 || --numb[lev] == 0 ) {
   286 	      
   287 	      level.set(w,n);
   288 	      
   289 	      if ( newlevel < n ) {
   290 		
   291 		std::queue<NodeIt> bfs_queue;
   292 		bfs_queue.push(w);
   293 
   294 		while (!bfs_queue.empty()) {
   295 
   296 		  NodeIt v=bfs_queue.front();	
   297 		  bfs_queue.pop();
   298 
   299 		  for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) {
   300 		    if ( capacity.get(e) == flow.get(e) ) continue;
   301 		    NodeIt u=G.head(e);
   302 		    if ( level.get(u) < n ) { 
   303 		      bfs_queue.push(u);
   304 		      --numb[level.get(u)];
   305 		      level.set(u, n);
   306 		    }
   307 		  }
   308 
   309 		  for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
   310 		    if ( 0 == flow.get(e) ) continue;
   311 		    NodeIt u=G.tail(e);
   312 		    if ( level.get(u) < n ) { 
   313 		      bfs_queue.push(u);
   314 		      --numb[level.get(u)];
   315 		      level.set(u, n);
   316 		    }
   317 		  }
   318 		}
   319 	      }
   320 	      b=n-1;
   321 
   322 	    } else {
   323 	      level.set(w,++newlevel);
   324 	      stack[newlevel].push(w);
   325 	      ++numb[newlevel];
   326 	      b=newlevel;
   327 	    }
   328 	  }
   329 	}
   330 
   331  
   332 	
   333 	} // if stack[b] is nonempty
   334 	
   335       } // while(true)
   336 
   337 
   338       value = excess.get(t);
   339       /*Max flow value.*/
   340 
   341 
   342     } //void run()
   343 
   344 
   345 
   346 
   347 
   348     /*
   349       Returns the maximum value of a flow.
   350      */
   351 
   352     T maxflow() {
   353       return value;
   354     }
   355 
   356 
   357 
   358     /*
   359       For the maximum flow x found by the algorithm, it returns the flow value on Edge e, i.e. x(e). 
   360     */
   361 
   362     T flowonedge(EdgeIt e) {
   363       return flow.get(e);
   364     }
   365 
   366 
   367 
   368     /*
   369       Returns the maximum flow x found by the algorithm.
   370     */
   371 
   372     FlowMap allflow() {
   373       return flow;
   374     }
   375 
   376 
   377 
   378 
   379     /*
   380       Returns the minimum min cut, by a bfs from s in the residual graph.
   381     */
   382     
   383     template<typename CutMap>
   384     void mincut(CutMap& M) {
   385     
   386       std::queue<NodeIt> queue;
   387       
   388       M.set(s,true);      
   389       queue.push(s);
   390 
   391       while (!queue.empty()) {
   392         NodeIt w=queue.front();
   393 	queue.pop();
   394 
   395 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
   396 	  NodeIt v=G.head(e);
   397 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
   398 	    queue.push(v);
   399 	    M.set(v, true);
   400 	  }
   401 	} 
   402 
   403 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
   404 	  NodeIt v=G.tail(e);
   405 	  if (!M.get(v) && flow.get(e) > 0 ) {
   406 	    queue.push(v);
   407 	    M.set(v, true);
   408 	  }
   409 	} 
   410 
   411       }
   412 
   413     }
   414 
   415 
   416 
   417     /*
   418       Returns the maximum min cut, by a reverse bfs 
   419       from t in the residual graph.
   420     */
   421     
   422     template<typename CutMap>
   423     void max_mincut(CutMap& M) {
   424     
   425       std::queue<NodeIt> queue;
   426       
   427       M.set(t,true);        
   428       queue.push(t);
   429 
   430       while (!queue.empty()) {
   431         NodeIt w=queue.front();
   432 	queue.pop();
   433 
   434 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
   435 	  NodeIt v=G.tail(e);
   436 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
   437 	    queue.push(v);
   438 	    M.set(v, true);
   439 	  }
   440 	}
   441 
   442 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
   443 	  NodeIt v=G.head(e);
   444 	  if (!M.get(v) && flow.get(e) > 0 ) {
   445 	    queue.push(v);
   446 	    M.set(v, true);
   447 	  }
   448 	}
   449       }
   450 
   451       for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) {
   452 	M.set(v, !M.get(v));
   453       }
   454 
   455     }
   456 
   457 
   458 
   459     template<typename CutMap>
   460     void min_mincut(CutMap& M) {
   461       mincut(M);
   462     }
   463 
   464 
   465 
   466   };
   467 }//namespace hugo
   468 #endif 
   469 
   470 
   471 
   472