lemon/bits/variant.h
author deba
Thu, 11 Jan 2007 21:22:39 +0000
changeset 2340 03c71d754990
parent 2177 416a7030b7e3
child 2386 81b47fc5c444
permissions -rw-r--r--
Make Hao-Orlin epsilon-safe
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_BITS_VARIANT_H
    20 #define LEMON_BITS_VARIANT_H
    21 
    22 #include <lemon/error.h>
    23 
    24 /// \file
    25 /// \brief Variant types
    26 
    27 namespace lemon {
    28 
    29   namespace _variant_bits {
    30   
    31     template <int left, int right>
    32     struct CTMax {
    33       static const int value = left < right ? right : left;
    34     };
    35 
    36   }
    37 
    38 
    39   /// \brief Simple Variant type for two types
    40   ///
    41   /// Simple Variant type for two types. The Variant type is a type
    42   /// safe union. The C++ has strong limitations for using unions, by
    43   /// example we can not store type with non default constructor or
    44   /// destructor in an union. This class always knowns the current
    45   /// state of the variant and it cares for the proper construction
    46   /// and destruction.
    47   template <typename _First, typename _Second>
    48   class BiVariant {
    49   public:
    50 
    51     /// \brief The \c First type.
    52     typedef _First First;
    53     /// \brief The \c Second type.
    54     typedef _Second Second;
    55 
    56     struct WrongStateError : public lemon::LogicError {
    57     public:
    58       virtual const char* what() const throw() {
    59         return "lemon::BiVariant::WrongStateError";
    60       }
    61     };
    62 
    63     /// \brief Constructor
    64     ///
    65     /// This constructor initalizes to the default value of the \c First
    66     /// type.
    67     BiVariant() {
    68       flag = true;
    69       new(reinterpret_cast<First*>(data)) First();
    70     }
    71 
    72     /// \brief Constructor
    73     ///
    74     /// This constructor initalizes to the given value of the \c First
    75     /// type.
    76     BiVariant(const First& first) {
    77       flag = true;
    78       new(reinterpret_cast<First*>(data)) First(first);
    79     }
    80 
    81     /// \brief Constructor
    82     ///
    83     /// This constructor initalizes to the given value of the \c
    84     /// Second type.
    85     BiVariant(const Second& second) {
    86       flag = false;
    87       new(reinterpret_cast<Second*>(data)) Second(second);
    88     }
    89 
    90     /// \brief Copy constructor
    91     ///
    92     /// Copy constructor
    93     BiVariant(const BiVariant& bivariant) {
    94       flag = bivariant.flag;
    95       if (flag) {
    96         new(reinterpret_cast<First*>(data)) First(bivariant.first());      
    97       } else {
    98         new(reinterpret_cast<Second*>(data)) Second(bivariant.second());      
    99       }
   100     }
   101 
   102     /// \brief Destrcutor
   103     ///
   104     /// Destructor
   105     ~BiVariant() {
   106       destroy();
   107     }
   108 
   109     /// \brief Set to the default value of the \c First type.
   110     ///
   111     /// This function sets the variant to the default value of the \c
   112     /// First type.
   113     BiVariant& setFirst() {
   114       destroy();
   115       flag = true;
   116       new(reinterpret_cast<First*>(data)) First();   
   117       return *this;
   118     }
   119 
   120     /// \brief Set to the given value of the \c First type.
   121     ///
   122     /// This function sets the variant to the given value of the \c
   123     /// First type.
   124     BiVariant& setFirst(const First& first) {
   125       destroy();
   126       flag = true;
   127       new(reinterpret_cast<First*>(data)) First(first);   
   128       return *this;
   129     }
   130 
   131     /// \brief Set to the default value of the \c Second type.
   132     ///
   133     /// This function sets the variant to the default value of the \c
   134     /// Second type.
   135     BiVariant& setSecond() {
   136       destroy();
   137       flag = false;
   138       new(reinterpret_cast<Second*>(data)) Second();   
   139       return *this;
   140     }
   141 
   142     /// \brief Set to the given value of the \c Second type.
   143     ///
   144     /// This function sets the variant to the given value of the \c
   145     /// Second type.
   146     BiVariant& setSecond(const Second& second) {
   147       destroy();
   148       flag = false;
   149       new(reinterpret_cast<Second*>(data)) Second(second);   
   150       return *this;
   151     }
   152 
   153     /// \brief Operator form of the \c setFirst()
   154     BiVariant& operator=(const First& first) {
   155       return setFirst(first);
   156     }
   157 
   158     /// \brief Operator form of the \c setSecond()
   159     BiVariant& operator=(const Second& second) {
   160       return setSecond(second);
   161     }
   162 
   163     /// \brief Assign operator
   164     BiVariant& operator=(const BiVariant& bivariant) {
   165       if (this == &bivariant) return *this;
   166       destroy();
   167       flag = bivariant.flag;
   168       if (flag) {
   169         new(reinterpret_cast<First*>(data)) First(bivariant.first());      
   170       } else {
   171         new(reinterpret_cast<Second*>(data)) Second(bivariant.second());      
   172       }
   173       return *this;
   174     }
   175 
   176     /// \brief Reference to the value
   177     ///
   178     /// Reference to the value of the \c First type.
   179     /// \pre The BiVariant should store value of \c First type.
   180     First& first() {
   181       LEMON_ASSERT(flag, WrongStateError());
   182       return *reinterpret_cast<First*>(data); 
   183     }
   184 
   185     /// \brief Const reference to the value
   186     ///
   187     /// Const reference to the value of the \c First type.
   188     /// \pre The BiVariant should store value of \c First type.
   189     const First& first() const { 
   190       LEMON_ASSERT(flag, WrongStateError());
   191       return *reinterpret_cast<const First*>(data); 
   192     }
   193 
   194     /// \brief Operator form of the \c first()
   195     operator First&() { return first(); }
   196     /// \brief Operator form of the const \c first()
   197     operator const First&() const { return first(); }
   198 
   199     /// \brief Reference to the value
   200     ///
   201     /// Reference to the value of the \c Second type.
   202     /// \pre The BiVariant should store value of \c Second type.
   203     Second& second() { 
   204       LEMON_ASSERT(!flag, WrongStateError());
   205       return *reinterpret_cast<Second*>(data); 
   206     }
   207 
   208     /// \brief Const reference to the value
   209     ///
   210     /// Const reference to the value of the \c Second type.
   211     /// \pre The BiVariant should store value of \c Second type.
   212     const Second& second() const { 
   213       LEMON_ASSERT(!flag, WrongStateError());
   214       return *reinterpret_cast<const Second*>(data); 
   215     }
   216 
   217     /// \brief Operator form of the \c second()
   218     operator Second&() { return second(); }
   219     /// \brief Operator form of the const \c second()
   220     operator const Second&() const { return second(); }
   221 
   222     /// \brief %True when the variant is in the first state
   223     ///
   224     /// %True when the variant stores value of the \c First type.
   225     bool firstState() const { return flag; }
   226 
   227     /// \brief %True when the variant is in the second state
   228     ///
   229     /// %True when the variant stores value of the \c Second type.
   230     bool secondState() const { return !flag; }
   231 
   232   private:
   233 
   234     void destroy() {
   235       if (flag) {
   236         reinterpret_cast<First*>(data)->~First();
   237       } else {
   238         reinterpret_cast<Second*>(data)->~Second();
   239       }
   240     }
   241     
   242     char data[_variant_bits::CTMax<sizeof(First), sizeof(Second)>::value];
   243     bool flag;
   244   };
   245 
   246   namespace _variant_bits {
   247     
   248     template <int _idx, typename _TypeMap>
   249     struct Memory {
   250 
   251       typedef typename _TypeMap::template Map<_idx>::Type Current;
   252 
   253       static void destroy(int index, char* place) {
   254         if (index == _idx) {
   255           reinterpret_cast<Current*>(place)->~Current();
   256         } else {
   257           Memory<_idx - 1, _TypeMap>::destroy(index, place);
   258         }
   259       }
   260 
   261       static void copy(int index, char* to, const char* from) {
   262         if (index == _idx) {
   263           new (reinterpret_cast<Current*>(to))
   264             Current(reinterpret_cast<const Current*>(from));
   265         } else {
   266           Memory<_idx - 1, _TypeMap>::copy(index, to, from);
   267         }
   268       }
   269 
   270     };
   271 
   272     template <typename _TypeMap>
   273     struct Memory<-1, _TypeMap> {
   274 
   275       static void destroy(int, char*) {
   276         LEMON_ASSERT(false, "Wrong Variant Index.");
   277       }
   278 
   279       static void copy(int, char*, const char*) {
   280         LEMON_ASSERT(false, "Wrong Variant Index.");
   281       }
   282     };
   283 
   284     template <int _idx, typename _TypeMap>
   285     struct Size {
   286       static const int value = 
   287       CTMax<sizeof(typename _TypeMap::template Map<_idx>::Type), 
   288             Size<_idx - 1, _TypeMap>::value>::value;
   289     };
   290 
   291     template <typename _TypeMap>
   292     struct Size<0, _TypeMap> {
   293       static const int value = 
   294       sizeof(typename _TypeMap::template Map<0>::Type);
   295     };
   296 
   297   }
   298 
   299   /// \brief Variant type
   300   ///
   301   /// Simple Variant type. The Variant type is a type safe union. The
   302   /// C++ has strong limitations for using unions, by example we
   303   /// cannot store type with non default constructor or destructor in
   304   /// a union. This class always knowns the current state of the
   305   /// variant and it cares for the proper construction and
   306   /// destruction.
   307   ///
   308   /// \param _num The number of the types which can be stored in the
   309   /// variant type.
   310   /// \param _TypeMap This class describes the types of the Variant. The
   311   /// _TypeMap::Map<index>::Type should be a valid type for each index 
   312   /// in the range {0, 1, ..., _num - 1}. The \c VariantTypeMap is helper
   313   /// class to define such type mappings up to 10 types.
   314   ///
   315   /// And the usage of the class:
   316   ///\code
   317   /// typedef Variant<3, VariantTypeMap<int, std::string, double> > MyVariant;
   318   /// MyVariant var;
   319   /// var.set<0>(12);
   320   /// std::cout << var.get<0>() << std::endl;
   321   /// var.set<1>("alpha");
   322   /// std::cout << var.get<1>() << std::endl;
   323   /// var.set<2>(0.75);
   324   /// std::cout << var.get<2>() << std::endl;
   325   ///\endcode
   326   ///
   327   /// The result of course:
   328   ///\code
   329   /// 12
   330   /// alpha
   331   /// 0.75
   332   ///\endcode
   333   template <int _num, typename _TypeMap>
   334   class Variant {
   335   public:
   336 
   337     static const int num = _num;
   338 
   339     typedef _TypeMap TypeMap;
   340 
   341     struct WrongStateError : public lemon::LogicError {
   342     public:
   343       virtual const char* what() const throw() {
   344         return "lemon::Variant::WrongStateError";
   345       }
   346     };
   347 
   348     /// \brief Constructor
   349     ///
   350     /// This constructor initalizes to the default value of the \c type
   351     /// with 0 index.
   352     Variant() {
   353       flag = 0;
   354       new(reinterpret_cast<typename TypeMap::template Map<0>::Type*>(data)) 
   355         typename TypeMap::template Map<0>::Type();
   356     }
   357 
   358 
   359     /// \brief Copy constructor
   360     ///
   361     /// Copy constructor
   362     Variant(const Variant& variant) {
   363       flag = variant.flag;
   364       _variant_bits::Memory<num - 1, TypeMap>::copy(flag, data, variant.data);
   365     }
   366 
   367     /// \brief Assign operator
   368     ///
   369     /// Assign operator
   370     Variant& operator=(const Variant& variant) {
   371       if (this == &variant) return *this;
   372       _variant_bits::Memory<num - 1, TypeMap>::
   373         destroy(flag, data);
   374       flag = variant.flag;
   375       _variant_bits::Memory<num - 1, TypeMap>::
   376         copy(flag, data, variant.data);
   377       return *this;
   378     }
   379 
   380     /// \brief Destrcutor
   381     ///
   382     /// Destructor
   383     ~Variant() {
   384       _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
   385     }
   386 
   387     /// \brief Set to the default value of the type with \c _idx index.
   388     ///
   389     /// This function sets the variant to the default value of the
   390     /// type with \c _idx index.
   391     template <int _idx>
   392     Variant& set() {
   393       _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
   394       flag = _idx;
   395       new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data)) 
   396         typename TypeMap::template Map<_idx>::Type();
   397       return *this;
   398     }
   399 
   400     /// \brief Set to the given value of the type with \c _idx index.
   401     ///
   402     /// This function sets the variant to the given value of the type
   403     /// with \c _idx index.
   404     template <int _idx>
   405     Variant& set(const typename _TypeMap::template Map<_idx>::Type& init) {
   406       _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
   407       flag = _idx;
   408       new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data)) 
   409         typename TypeMap::template Map<_idx>::Type(init);
   410       return *this;
   411     }
   412 
   413     /// \brief Gets the current value of the type with \c _idx index.
   414     ///
   415     /// Gets the current value of the type with \c _idx index.
   416     template <int _idx>
   417     const typename TypeMap::template Map<_idx>::Type& get() const {
   418       LEMON_ASSERT(_idx == flag, "Wrong Variant Index.");
   419       return *reinterpret_cast<const typename TypeMap::
   420         template Map<_idx>::Type*>(data); 
   421     }
   422 
   423     /// \brief Gets the current value of the type with \c _idx index.
   424     ///
   425     /// Gets the current value of the type with \c _idx index.
   426     template <int _idx>
   427     typename _TypeMap::template Map<_idx>::Type& get() {
   428       LEMON_ASSERT(_idx == flag, "Wrong Variant Index.");
   429       return *reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>
   430         (data); 
   431     }
   432 
   433     /// \brief Returns the current state of the variant.
   434     ///
   435     /// Returns the current state of the variant.
   436     int state() const {
   437       return flag;
   438     }
   439 
   440   private:
   441     
   442     char data[_variant_bits::Size<num - 1, TypeMap>::value];
   443     int flag;
   444   };
   445 
   446   namespace _variant_bits {
   447 
   448     template <int _index, typename _List>
   449     struct Get {
   450       typedef typename Get<_index - 1, typename _List::Next>::Type Type;
   451     };
   452 
   453     template <typename _List>
   454     struct Get<0, _List> {
   455       typedef typename _List::Type Type;
   456     };
   457 
   458     struct List {};
   459     
   460     template <typename _Type, typename _List>
   461     struct Insert {
   462       typedef _List Next;
   463       typedef _Type Type;
   464     };
   465 
   466     template <int _idx, typename _T0, typename _T1, typename _T2, 
   467               typename _T3, typename _T5, typename _T4, typename _T6,
   468               typename _T7, typename _T8, typename _T9>
   469     struct Mapper {
   470       typedef List L10;
   471       typedef Insert<_T9, L10> L9;
   472       typedef Insert<_T8, L9> L8;
   473       typedef Insert<_T7, L8> L7;
   474       typedef Insert<_T6, L7> L6;
   475       typedef Insert<_T5, L6> L5;
   476       typedef Insert<_T4, L5> L4;
   477       typedef Insert<_T3, L4> L3;
   478       typedef Insert<_T2, L3> L2;
   479       typedef Insert<_T1, L2> L1;
   480       typedef Insert<_T0, L1> L0;
   481       typedef typename Get<_idx, L0>::Type Type;
   482     };
   483     
   484   }
   485 
   486   /// \brief Helper class for Variant
   487   ///
   488   /// Helper class to define type mappings for Variant. This class
   489   /// converts the template parameters to be mappable by integer.
   490   /// \see Variant
   491   template <
   492     typename _T0, 
   493     typename _T1 = void, typename _T2 = void, typename _T3 = void,
   494     typename _T5 = void, typename _T4 = void, typename _T6 = void,
   495     typename _T7 = void, typename _T8 = void, typename _T9 = void>
   496   struct VariantTypeMap {
   497     template <int _idx>
   498     struct Map {
   499       typedef typename _variant_bits::
   500       Mapper<_idx, _T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7, _T8, _T9>::Type
   501       Type;
   502     };
   503   };
   504   
   505 }
   506 
   507 
   508 #endif