lemon/planarity.h
author kpeter
Fri, 29 Feb 2008 15:55:39 +0000
changeset 2587 061be2e64eca
parent 2508 c86db0f7f917
child 2598 71f4bd3a9ae8
permissions -rw-r--r--
External flow and potential maps can be used in MinCostMaxFlow.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_PLANARITY_H
    20 #define LEMON_PLANARITY_H
    21 
    22 /// \ingroup planar
    23 /// \file
    24 /// \brief Planarity checking, embedding, drawing and coloring
    25 
    26 #include <vector>
    27 #include <list>
    28 
    29 #include <lemon/dfs.h>
    30 #include <lemon/bfs.h>
    31 #include <lemon/radix_sort.h>
    32 #include <lemon/maps.h>
    33 #include <lemon/path.h>
    34 #include <lemon/iterable_maps.h>
    35 #include <lemon/edge_set.h>
    36 #include <lemon/bucket_heap.h>
    37 #include <lemon/ugraph_adaptor.h>
    38 #include <lemon/color.h>
    39 
    40 
    41 namespace lemon {
    42 
    43   namespace _planarity_bits {
    44 
    45     template <typename UGraph>
    46     struct PlanarityVisitor : DfsVisitor<UGraph> {
    47 
    48       typedef typename UGraph::Node Node;
    49       typedef typename UGraph::Edge Edge;
    50 
    51       typedef typename UGraph::template NodeMap<Edge> PredMap;
    52 
    53       typedef typename UGraph::template UEdgeMap<bool> TreeMap;
    54 
    55       typedef typename UGraph::template NodeMap<int> OrderMap;
    56       typedef std::vector<Node> OrderList;
    57 
    58       typedef typename UGraph::template NodeMap<int> LowMap;
    59       typedef typename UGraph::template NodeMap<int> AncestorMap;
    60 
    61       PlanarityVisitor(const UGraph& ugraph,
    62 		       PredMap& pred_map, TreeMap& tree_map,
    63 		       OrderMap& order_map, OrderList& order_list,
    64 		       AncestorMap& ancestor_map, LowMap& low_map)
    65 	: _ugraph(ugraph), _pred_map(pred_map), _tree_map(tree_map),
    66 	  _order_map(order_map), _order_list(order_list),
    67 	  _ancestor_map(ancestor_map), _low_map(low_map) {}
    68       
    69       void reach(const Node& node) {
    70 	_order_map[node] = _order_list.size();
    71 	_low_map[node] = _order_list.size();
    72 	_ancestor_map[node] = _order_list.size();
    73 	_order_list.push_back(node);
    74       }
    75 
    76       void discover(const Edge& edge) {
    77 	Node source = _ugraph.source(edge);
    78 	Node target = _ugraph.target(edge);
    79 
    80 	_tree_map[edge] = true;
    81 	_pred_map[target] = edge;
    82       }
    83 
    84       void examine(const Edge& edge) {
    85 	Node source = _ugraph.source(edge);
    86 	Node target = _ugraph.target(edge);
    87 	
    88 	if (_order_map[target] < _order_map[source] && !_tree_map[edge]) {
    89 	  if (_low_map[source] > _order_map[target]) {
    90 	    _low_map[source] = _order_map[target];
    91 	  }
    92 	  if (_ancestor_map[source] > _order_map[target]) {
    93 	    _ancestor_map[source] = _order_map[target];
    94 	  }
    95 	}
    96       }
    97 
    98       void backtrack(const Edge& edge) {
    99 	Node source = _ugraph.source(edge);
   100 	Node target = _ugraph.target(edge);
   101 
   102 	if (_low_map[source] > _low_map[target]) {
   103 	  _low_map[source] = _low_map[target];
   104 	}
   105       }
   106 
   107       const UGraph& _ugraph;
   108       PredMap& _pred_map;
   109       TreeMap& _tree_map;
   110       OrderMap& _order_map;
   111       OrderList& _order_list;
   112       AncestorMap& _ancestor_map;
   113       LowMap& _low_map;
   114     };
   115 
   116     template <typename UGraph, bool embedding = true>
   117     struct NodeDataNode {
   118       int prev, next;
   119       int visited;
   120       typename UGraph::Edge first;
   121       bool inverted;
   122     };
   123 
   124     template <typename UGraph>
   125     struct NodeDataNode<UGraph, false> {
   126       int prev, next;
   127       int visited;
   128     };
   129 
   130     template <typename UGraph>
   131     struct ChildListNode {
   132       typedef typename UGraph::Node Node;
   133       Node first;
   134       Node prev, next;
   135     };
   136 
   137     template <typename UGraph>
   138     struct EdgeListNode {
   139       typename UGraph::Edge prev, next;
   140     };
   141 
   142   }
   143 
   144   /// \ingroup planar
   145   ///
   146   /// \brief Planarity checking of an undirected simple graph
   147   ///
   148   /// This class implements the Boyer-Myrvold algorithm for planarity
   149   /// checking of an undirected graph. This class is a simplified
   150   /// version of the PlanarEmbedding algorithm class, and it does
   151   /// provide neither embedding nor kuratowski subdivisons.
   152   template <typename UGraph>
   153   class PlanarityChecking {
   154   private:
   155     
   156     UGRAPH_TYPEDEFS(typename UGraph);
   157       
   158     const UGraph& _ugraph;
   159 
   160   private:
   161 
   162     typedef typename UGraph::template NodeMap<Edge> PredMap;
   163     
   164     typedef typename UGraph::template UEdgeMap<bool> TreeMap;
   165 
   166     typedef typename UGraph::template NodeMap<int> OrderMap;
   167     typedef std::vector<Node> OrderList;
   168 
   169     typedef typename UGraph::template NodeMap<int> LowMap;
   170     typedef typename UGraph::template NodeMap<int> AncestorMap;
   171 
   172     typedef _planarity_bits::NodeDataNode<UGraph> NodeDataNode;
   173     typedef std::vector<NodeDataNode> NodeData;
   174     
   175     typedef _planarity_bits::ChildListNode<UGraph> ChildListNode;
   176     typedef typename UGraph::template NodeMap<ChildListNode> ChildLists;
   177 
   178     typedef typename UGraph::template NodeMap<std::list<int> > MergeRoots;
   179  
   180     typedef typename UGraph::template NodeMap<bool> EmbedEdge;
   181 
   182   public:
   183 
   184     /// \brief Constructor
   185     ///
   186     /// \warining The graph should be simple, i.e. parallel and loop edge
   187     /// free.
   188     PlanarityChecking(const UGraph& ugraph) : _ugraph(ugraph) {}
   189 
   190     /// \brief Runs the algorithm.
   191     ///
   192     /// Runs the algorithm.  
   193     /// \return %True when the graph is planar.
   194     bool run() {
   195       typedef _planarity_bits::PlanarityVisitor<UGraph> Visitor;
   196 
   197       PredMap pred_map(_ugraph, INVALID);
   198       TreeMap tree_map(_ugraph, false);
   199 
   200       OrderMap order_map(_ugraph, -1);
   201       OrderList order_list;
   202 
   203       AncestorMap ancestor_map(_ugraph, -1);
   204       LowMap low_map(_ugraph, -1);
   205 
   206       Visitor visitor(_ugraph, pred_map, tree_map,
   207 		      order_map, order_list, ancestor_map, low_map);
   208       DfsVisit<UGraph, Visitor> visit(_ugraph, visitor);
   209       visit.run();
   210 
   211       ChildLists child_lists(_ugraph);
   212       createChildLists(tree_map, order_map, low_map, child_lists);
   213 
   214       NodeData node_data(2 * order_list.size());
   215       
   216       EmbedEdge embed_edge(_ugraph, false);
   217 
   218       MergeRoots merge_roots(_ugraph);
   219       
   220       for (int i = order_list.size() - 1; i >= 0; --i) {
   221 
   222 	Node node = order_list[i];
   223 
   224 	Node source = node;
   225 	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   226 	  Node target = _ugraph.target(e);
   227 	  
   228 	  if (order_map[source] < order_map[target] && tree_map[e]) {
   229 	    initFace(target, node_data, order_map, order_list);
   230 	  }
   231 	}
   232 	
   233 	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   234 	  Node target = _ugraph.target(e);
   235 	  
   236 	  if (order_map[source] < order_map[target] && !tree_map[e]) {
   237 	    embed_edge[target] = true;
   238 	    walkUp(target, source, i, pred_map, low_map,
   239 		   order_map, order_list, node_data, merge_roots);
   240 	  }
   241 	}
   242 
   243 	for (typename MergeRoots::Value::iterator it = 
   244 	       merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
   245 	  int rn = *it;
   246 	  walkDown(rn, i, node_data, order_list, child_lists, 
   247 		   ancestor_map, low_map, embed_edge, merge_roots);
   248 	}
   249 	merge_roots[node].clear();
   250 	
   251 	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   252 	  Node target = _ugraph.target(e);
   253 	  
   254 	  if (order_map[source] < order_map[target] && !tree_map[e]) {
   255 	    if (embed_edge[target]) {
   256 	      return false;
   257 	    }
   258 	  }
   259 	}
   260       }
   261 
   262       return true;
   263     }
   264     
   265   private:
   266 
   267     void createChildLists(const TreeMap& tree_map, const OrderMap& order_map,
   268 			  const LowMap& low_map, ChildLists& child_lists) {
   269 
   270       for (NodeIt n(_ugraph); n != INVALID; ++n) {
   271 	Node source = n;
   272 	
   273 	std::vector<Node> targets;  
   274 	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
   275 	  Node target = _ugraph.target(e);
   276 
   277 	  if (order_map[source] < order_map[target] && tree_map[e]) {
   278 	    targets.push_back(target);
   279 	  }
   280 	}	
   281 
   282 	if (targets.size() == 0) {
   283 	  child_lists[source].first = INVALID;
   284 	} else if (targets.size() == 1) {
   285 	  child_lists[source].first = targets[0];
   286 	  child_lists[targets[0]].prev = INVALID;
   287 	  child_lists[targets[0]].next = INVALID;
   288 	} else {
   289 	  radixSort(targets.begin(), targets.end(), mapFunctor(low_map));
   290 	  for (int i = 1; i < int(targets.size()); ++i) {
   291 	    child_lists[targets[i]].prev = targets[i - 1];
   292 	    child_lists[targets[i - 1]].next = targets[i];
   293 	  }
   294 	  child_lists[targets.back()].next = INVALID; 
   295 	  child_lists[targets.front()].prev = INVALID;
   296 	  child_lists[source].first = targets.front();
   297 	}
   298       }
   299     }
   300 
   301     void walkUp(const Node& node, Node root, int rorder,
   302 		const PredMap& pred_map, const LowMap& low_map,
   303 		const OrderMap& order_map, const OrderList& order_list,
   304 		NodeData& node_data, MergeRoots& merge_roots) {
   305 
   306       int na, nb;
   307       bool da, db;
   308       
   309       na = nb = order_map[node];
   310       da = true; db = false;
   311       
   312       while (true) {
   313 	
   314 	if (node_data[na].visited == rorder) break;
   315 	if (node_data[nb].visited == rorder) break;
   316 
   317 	node_data[na].visited = rorder;
   318 	node_data[nb].visited = rorder;
   319 
   320 	int rn = -1;
   321 
   322 	if (na >= int(order_list.size())) {
   323 	  rn = na;
   324 	} else if (nb >= int(order_list.size())) {
   325 	  rn = nb;
   326 	}
   327 
   328 	if (rn == -1) {
   329 	  int nn;
   330 	  
   331 	  nn = da ? node_data[na].prev : node_data[na].next;
   332 	  da = node_data[nn].prev != na;
   333 	  na = nn;
   334 	  
   335 	  nn = db ? node_data[nb].prev : node_data[nb].next;
   336 	  db = node_data[nn].prev != nb;
   337 	  nb = nn;
   338 
   339 	} else {
   340 
   341 	  Node rep = order_list[rn - order_list.size()];
   342 	  Node parent = _ugraph.source(pred_map[rep]);
   343 
   344 	  if (low_map[rep] < rorder) {
   345 	    merge_roots[parent].push_back(rn);
   346 	  } else {
   347 	    merge_roots[parent].push_front(rn);
   348 	  }
   349 	  
   350 	  if (parent != root) {  
   351 	    na = nb = order_map[parent];
   352 	    da = true; db = false;
   353 	  } else {
   354 	    break;
   355 	  }
   356 	}	
   357       }
   358     }
   359 
   360     void walkDown(int rn, int rorder, NodeData& node_data,
   361 		  OrderList& order_list, ChildLists& child_lists,
   362 		  AncestorMap& ancestor_map, LowMap& low_map,
   363 		  EmbedEdge& embed_edge, MergeRoots& merge_roots) {
   364 
   365       std::vector<std::pair<int, bool> > merge_stack;
   366 
   367       for (int di = 0; di < 2; ++di) {
   368 	bool rd = di == 0;
   369 	int pn = rn;
   370 	int n = rd ? node_data[rn].next : node_data[rn].prev;
   371 	
   372 	while (n != rn) {
   373 	  
   374 	  Node node = order_list[n];
   375 	  
   376 	  if (embed_edge[node]) {
   377 
   378 	    // Merging components on the critical path
   379 	    while (!merge_stack.empty()) {
   380 
   381 	      // Component root
   382 	      int cn = merge_stack.back().first;
   383 	      bool cd = merge_stack.back().second;
   384 	      merge_stack.pop_back();
   385 
   386 	      // Parent of component
   387 	      int dn = merge_stack.back().first;
   388 	      bool dd = merge_stack.back().second;
   389 	      merge_stack.pop_back();
   390 
   391 	      Node parent = order_list[dn];
   392 
   393 	      // Erasing from merge_roots
   394 	      merge_roots[parent].pop_front();
   395 	      
   396 	      Node child = order_list[cn - order_list.size()];
   397 
   398 	      // Erasing from child_lists
   399 	      if (child_lists[child].prev != INVALID) {
   400 		child_lists[child_lists[child].prev].next =
   401 		  child_lists[child].next;
   402 	      } else {
   403 		child_lists[parent].first = child_lists[child].next;
   404 	      }
   405 	      
   406 	      if (child_lists[child].next != INVALID) {
   407 		child_lists[child_lists[child].next].prev =
   408 		  child_lists[child].prev;
   409 	      }
   410 	      
   411 	      // Merging external faces
   412 	      {
   413 		int en = cn;
   414 		cn = cd ? node_data[cn].prev : node_data[cn].next;
   415 		cd = node_data[cn].next == en;
   416 
   417 	      }
   418 
   419 	      if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn;
   420 	      if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn;
   421 
   422 	    }
   423 
   424 	    bool d = pn == node_data[n].prev;
   425 
   426 	    if (node_data[n].prev == node_data[n].next && 
   427 		node_data[n].inverted) {
   428 	      d = !d;
   429 	    }
   430 
   431 	    // Embedding edge into external face
   432 	    if (rd) node_data[rn].next = n; else node_data[rn].prev = n;
   433 	    if (d) node_data[n].prev = rn; else node_data[n].next = rn;
   434 	    pn = rn;
   435 
   436 	    embed_edge[order_list[n]] = false;
   437 	  }
   438 
   439 	  if (!merge_roots[node].empty()) {
   440 
   441 	    bool d = pn == node_data[n].prev;
   442 
   443 	    merge_stack.push_back(std::make_pair(n, d));
   444 
   445 	    int rn = merge_roots[node].front();
   446 	    
   447 	    int xn = node_data[rn].next;
   448 	    Node xnode = order_list[xn];
   449 	    
   450 	    int yn = node_data[rn].prev;
   451 	    Node ynode = order_list[yn];
   452 	    
   453 	    bool rd;
   454 	    if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
   455 	      rd = true;
   456 	    } else if (!external(ynode, rorder, child_lists, 
   457 				 ancestor_map, low_map)) {
   458 	      rd = false;
   459 	    } else if (pertinent(xnode, embed_edge, merge_roots)) {
   460 	      rd = true;
   461 	    } else {
   462 	      rd = false;
   463 	    }
   464 	    
   465 	    merge_stack.push_back(std::make_pair(rn, rd));
   466 	    
   467 	    pn = rn;
   468 	    n = rd ? xn : yn;	      
   469 	    	    
   470 	  } else if (!external(node, rorder, child_lists,
   471 			       ancestor_map, low_map)) {
   472 	    int nn = (node_data[n].next != pn ? 
   473 		      node_data[n].next : node_data[n].prev);
   474 
   475 	    bool nd = n == node_data[nn].prev;
   476 
   477 	    if (nd) node_data[nn].prev = pn;
   478 	    else node_data[nn].next = pn; 
   479 
   480 	    if (n == node_data[pn].prev) node_data[pn].prev = nn;
   481 	    else node_data[pn].next = nn;
   482 
   483 	    node_data[nn].inverted = 
   484 	      (node_data[nn].prev == node_data[nn].next && nd != rd);
   485 
   486 	    n = nn;
   487 	  }
   488 	  else break;
   489 	  
   490 	}
   491 
   492 	if (!merge_stack.empty() || n == rn) {
   493 	  break;
   494 	}
   495       }
   496     }
   497 
   498     void initFace(const Node& node, NodeData& node_data, 
   499 		  const OrderMap& order_map, const OrderList& order_list) {
   500       int n = order_map[node];
   501       int rn = n + order_list.size();
   502       
   503       node_data[n].next = node_data[n].prev = rn;
   504       node_data[rn].next = node_data[rn].prev = n;
   505       
   506       node_data[n].visited = order_list.size();
   507       node_data[rn].visited = order_list.size();
   508       
   509     }
   510 
   511     bool external(const Node& node, int rorder,
   512 		  ChildLists& child_lists, AncestorMap& ancestor_map, 
   513 		  LowMap& low_map) {
   514       Node child = child_lists[node].first;
   515 
   516       if (child != INVALID) {
   517 	if (low_map[child] < rorder) return true;
   518       }
   519 
   520       if (ancestor_map[node] < rorder) return true;
   521 
   522       return false;
   523     }
   524 
   525     bool pertinent(const Node& node, const EmbedEdge& embed_edge,
   526 		   const MergeRoots& merge_roots) {
   527       return !merge_roots[node].empty() || embed_edge[node];
   528     }
   529 
   530   };
   531 
   532   /// \ingroup planar
   533   ///
   534   /// \brief Planar embedding of an undirected simple graph
   535   ///
   536   /// This class implements the Boyer-Myrvold algorithm for planar
   537   /// embedding of an undirected graph. The planar embeding is an
   538   /// ordering of the outgoing edges in each node, which is a possible
   539   /// configuration to draw the graph in the plane. If there is not
   540   /// such ordering then the graph contains a \f$ K_5 \f$ (full graph
   541   /// with 5 nodes) or an \f$ K_{3,3} \f$ (complete bipartite graph on
   542   /// 3 ANode and 3 BNode) subdivision.
   543   ///
   544   /// The current implementation calculates an embedding or an
   545   /// Kuratowski subdivision if the graph is not planar. The running
   546   /// time of the algorithm is \f$ O(n) \f$.
   547   template <typename UGraph>
   548   class PlanarEmbedding {
   549   private:
   550     
   551     UGRAPH_TYPEDEFS(typename UGraph);
   552       
   553     const UGraph& _ugraph;
   554     typename UGraph::template EdgeMap<Edge> _embedding;
   555 
   556     typename UGraph::template UEdgeMap<bool> _kuratowski;
   557 
   558   private:
   559 
   560     typedef typename UGraph::template NodeMap<Edge> PredMap;
   561     
   562     typedef typename UGraph::template UEdgeMap<bool> TreeMap;
   563 
   564     typedef typename UGraph::template NodeMap<int> OrderMap;
   565     typedef std::vector<Node> OrderList;
   566 
   567     typedef typename UGraph::template NodeMap<int> LowMap;
   568     typedef typename UGraph::template NodeMap<int> AncestorMap;
   569 
   570     typedef _planarity_bits::NodeDataNode<UGraph> NodeDataNode;
   571     typedef std::vector<NodeDataNode> NodeData;
   572     
   573     typedef _planarity_bits::ChildListNode<UGraph> ChildListNode;
   574     typedef typename UGraph::template NodeMap<ChildListNode> ChildLists;
   575 
   576     typedef typename UGraph::template NodeMap<std::list<int> > MergeRoots;
   577  
   578     typedef typename UGraph::template NodeMap<Edge> EmbedEdge;
   579 
   580     typedef _planarity_bits::EdgeListNode<UGraph> EdgeListNode;
   581     typedef typename UGraph::template EdgeMap<EdgeListNode> EdgeLists;
   582 
   583     typedef typename UGraph::template NodeMap<bool> FlipMap;
   584 
   585     typedef typename UGraph::template NodeMap<int> TypeMap;
   586 
   587     enum IsolatorNodeType {
   588       HIGHX = 6, LOWX = 7,
   589       HIGHY = 8, LOWY = 9,
   590       ROOT = 10, PERTINENT = 11,
   591       INTERNAL = 12
   592     };
   593 
   594   public:
   595 
   596     /// \brief The map for store of embedding
   597     typedef typename UGraph::template EdgeMap<Edge> EmbeddingMap;
   598 
   599     /// \brief Constructor
   600     ///
   601     /// \warining The graph should be simple, i.e. parallel and loop edge
   602     /// free.
   603     PlanarEmbedding(const UGraph& ugraph)
   604       : _ugraph(ugraph), _embedding(_ugraph), _kuratowski(ugraph, false) {}
   605 
   606     /// \brief Runs the algorithm.
   607     ///
   608     /// Runs the algorithm.  
   609     /// \param kuratowski If the parameter is false, then the
   610     /// algorithm does not calculate the isolate Kuratowski
   611     /// subdivisions.
   612     ///\return %True when the graph is planar.
   613     bool run(bool kuratowski = true) {
   614       typedef _planarity_bits::PlanarityVisitor<UGraph> Visitor;
   615 
   616       PredMap pred_map(_ugraph, INVALID);
   617       TreeMap tree_map(_ugraph, false);
   618 
   619       OrderMap order_map(_ugraph, -1);
   620       OrderList order_list;
   621 
   622       AncestorMap ancestor_map(_ugraph, -1);
   623       LowMap low_map(_ugraph, -1);
   624 
   625       Visitor visitor(_ugraph, pred_map, tree_map,
   626 		      order_map, order_list, ancestor_map, low_map);
   627       DfsVisit<UGraph, Visitor> visit(_ugraph, visitor);
   628       visit.run();
   629 
   630       ChildLists child_lists(_ugraph);
   631       createChildLists(tree_map, order_map, low_map, child_lists);
   632 
   633       NodeData node_data(2 * order_list.size());
   634       
   635       EmbedEdge embed_edge(_ugraph, INVALID);
   636 
   637       MergeRoots merge_roots(_ugraph);
   638 
   639       EdgeLists edge_lists(_ugraph);
   640 
   641       FlipMap flip_map(_ugraph, false);
   642 
   643       for (int i = order_list.size() - 1; i >= 0; --i) {
   644 
   645 	Node node = order_list[i];
   646 
   647 	node_data[i].first = INVALID;
   648 	
   649 	Node source = node;
   650 	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   651 	  Node target = _ugraph.target(e);
   652 	  
   653 	  if (order_map[source] < order_map[target] && tree_map[e]) {
   654 	    initFace(target, edge_lists, node_data,
   655 		      pred_map, order_map, order_list);
   656 	  }
   657 	}
   658 	
   659 	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   660 	  Node target = _ugraph.target(e);
   661 	  
   662 	  if (order_map[source] < order_map[target] && !tree_map[e]) {
   663 	    embed_edge[target] = e;
   664 	    walkUp(target, source, i, pred_map, low_map,
   665 		   order_map, order_list, node_data, merge_roots);
   666 	  }
   667 	}
   668 
   669 	for (typename MergeRoots::Value::iterator it = 
   670 	       merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
   671 	  int rn = *it;
   672 	  walkDown(rn, i, node_data, edge_lists, flip_map, order_list, 
   673 		   child_lists, ancestor_map, low_map, embed_edge, merge_roots);
   674 	}
   675 	merge_roots[node].clear();
   676 	
   677 	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   678 	  Node target = _ugraph.target(e);
   679 	  
   680 	  if (order_map[source] < order_map[target] && !tree_map[e]) {
   681 	    if (embed_edge[target] != INVALID) {
   682 	      if (kuratowski) {
   683 		isolateKuratowski(e, node_data, edge_lists, flip_map,
   684 				  order_map, order_list, pred_map, child_lists,
   685 				  ancestor_map, low_map, 
   686 				  embed_edge, merge_roots);
   687 	      }
   688 	      return false;
   689 	    }
   690 	  }
   691 	}
   692       }
   693 
   694       for (int i = 0; i < int(order_list.size()); ++i) {
   695 
   696 	mergeRemainingFaces(order_list[i], node_data, order_list, order_map,
   697 			    child_lists, edge_lists);
   698 	storeEmbedding(order_list[i], node_data, order_map, pred_map,
   699 		       edge_lists, flip_map);
   700       }
   701 
   702       return true;
   703     }
   704 
   705     /// \brief Gives back the successor of an edge
   706     ///
   707     /// Gives back the successor of an edge. This function makes
   708     /// possible to query the cyclic order of the outgoing edges from
   709     /// a node.
   710     Edge next(const Edge& edge) const {
   711       return _embedding[edge];
   712     }
   713 
   714     /// \brief Gives back the calculated embedding map
   715     ///
   716     /// The returned map contains the successor of each edge in the
   717     /// graph.
   718     const EmbeddingMap& embedding() const {
   719       return _embedding;
   720     }
   721 
   722     /// \brief Gives back true when the undirected edge is in the
   723     /// kuratowski subdivision
   724     ///
   725     /// Gives back true when the undirected edge is in the kuratowski
   726     /// subdivision
   727     bool kuratowski(const UEdge& uedge) {
   728       return _kuratowski[uedge];
   729     }
   730 
   731   private:
   732 
   733     void createChildLists(const TreeMap& tree_map, const OrderMap& order_map,
   734 			  const LowMap& low_map, ChildLists& child_lists) {
   735 
   736       for (NodeIt n(_ugraph); n != INVALID; ++n) {
   737 	Node source = n;
   738 	
   739 	std::vector<Node> targets;  
   740 	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
   741 	  Node target = _ugraph.target(e);
   742 
   743 	  if (order_map[source] < order_map[target] && tree_map[e]) {
   744 	    targets.push_back(target);
   745 	  }
   746 	}	
   747 
   748 	if (targets.size() == 0) {
   749 	  child_lists[source].first = INVALID;
   750 	} else if (targets.size() == 1) {
   751 	  child_lists[source].first = targets[0];
   752 	  child_lists[targets[0]].prev = INVALID;
   753 	  child_lists[targets[0]].next = INVALID;
   754 	} else {
   755 	  radixSort(targets.begin(), targets.end(), mapFunctor(low_map));
   756 	  for (int i = 1; i < int(targets.size()); ++i) {
   757 	    child_lists[targets[i]].prev = targets[i - 1];
   758 	    child_lists[targets[i - 1]].next = targets[i];
   759 	  }
   760 	  child_lists[targets.back()].next = INVALID; 
   761 	  child_lists[targets.front()].prev = INVALID;
   762 	  child_lists[source].first = targets.front();
   763 	}
   764       }
   765     }
   766 
   767     void walkUp(const Node& node, Node root, int rorder,
   768 		const PredMap& pred_map, const LowMap& low_map,
   769 		const OrderMap& order_map, const OrderList& order_list,
   770 		NodeData& node_data, MergeRoots& merge_roots) {
   771 
   772       int na, nb;
   773       bool da, db;
   774       
   775       na = nb = order_map[node];
   776       da = true; db = false;
   777       
   778       while (true) {
   779 	
   780 	if (node_data[na].visited == rorder) break;
   781 	if (node_data[nb].visited == rorder) break;
   782 
   783 	node_data[na].visited = rorder;
   784 	node_data[nb].visited = rorder;
   785 
   786 	int rn = -1;
   787 
   788 	if (na >= int(order_list.size())) {
   789 	  rn = na;
   790 	} else if (nb >= int(order_list.size())) {
   791 	  rn = nb;
   792 	}
   793 
   794 	if (rn == -1) {
   795 	  int nn;
   796 	  
   797 	  nn = da ? node_data[na].prev : node_data[na].next;
   798 	  da = node_data[nn].prev != na;
   799 	  na = nn;
   800 	  
   801 	  nn = db ? node_data[nb].prev : node_data[nb].next;
   802 	  db = node_data[nn].prev != nb;
   803 	  nb = nn;
   804 
   805 	} else {
   806 
   807 	  Node rep = order_list[rn - order_list.size()];
   808 	  Node parent = _ugraph.source(pred_map[rep]);
   809 
   810 	  if (low_map[rep] < rorder) {
   811 	    merge_roots[parent].push_back(rn);
   812 	  } else {
   813 	    merge_roots[parent].push_front(rn);
   814 	  }
   815 	  
   816 	  if (parent != root) {  
   817 	    na = nb = order_map[parent];
   818 	    da = true; db = false;
   819 	  } else {
   820 	    break;
   821 	  }
   822 	}	
   823       }
   824     }
   825 
   826     void walkDown(int rn, int rorder, NodeData& node_data,
   827 		  EdgeLists& edge_lists, FlipMap& flip_map, 
   828 		  OrderList& order_list, ChildLists& child_lists,
   829 		  AncestorMap& ancestor_map, LowMap& low_map,
   830 		  EmbedEdge& embed_edge, MergeRoots& merge_roots) {
   831 
   832       std::vector<std::pair<int, bool> > merge_stack;
   833 
   834       for (int di = 0; di < 2; ++di) {
   835 	bool rd = di == 0;
   836 	int pn = rn;
   837 	int n = rd ? node_data[rn].next : node_data[rn].prev;
   838 	
   839 	while (n != rn) {
   840 	  
   841 	  Node node = order_list[n];
   842 	  
   843 	  if (embed_edge[node] != INVALID) {
   844 
   845 	    // Merging components on the critical path
   846 	    while (!merge_stack.empty()) {
   847 
   848 	      // Component root
   849 	      int cn = merge_stack.back().first;
   850 	      bool cd = merge_stack.back().second;
   851 	      merge_stack.pop_back();
   852 
   853 	      // Parent of component
   854 	      int dn = merge_stack.back().first;
   855 	      bool dd = merge_stack.back().second;
   856 	      merge_stack.pop_back();
   857 
   858 	      Node parent = order_list[dn];
   859 
   860 	      // Erasing from merge_roots
   861 	      merge_roots[parent].pop_front();
   862 	      
   863 	      Node child = order_list[cn - order_list.size()];
   864 
   865 	      // Erasing from child_lists
   866 	      if (child_lists[child].prev != INVALID) {
   867 		child_lists[child_lists[child].prev].next =
   868 		  child_lists[child].next;
   869 	      } else {
   870 		child_lists[parent].first = child_lists[child].next;
   871 	      }
   872 	      
   873 	      if (child_lists[child].next != INVALID) {
   874 		child_lists[child_lists[child].next].prev =
   875 		  child_lists[child].prev;
   876 	      }
   877 
   878 	      // Merging edges + flipping
   879 	      Edge de = node_data[dn].first;
   880 	      Edge ce = node_data[cn].first;
   881 
   882 	      flip_map[order_list[cn - order_list.size()]] = cd != dd;
   883 	      if (cd != dd) {
   884 		std::swap(edge_lists[ce].prev, edge_lists[ce].next);
   885 		ce = edge_lists[ce].prev;
   886 		std::swap(edge_lists[ce].prev, edge_lists[ce].next);
   887 	      }
   888 
   889 	      {
   890 		Edge dne = edge_lists[de].next; 
   891 		Edge cne = edge_lists[ce].next; 
   892 
   893 		edge_lists[de].next = cne;
   894 		edge_lists[ce].next = dne;
   895 	      
   896 		edge_lists[dne].prev = ce;
   897 		edge_lists[cne].prev = de;
   898 	      }
   899 	      	      
   900 	      if (dd) {
   901 		node_data[dn].first = ce;
   902 	      }
   903 	      
   904 	      // Merging external faces
   905 	      {
   906 		int en = cn;
   907 		cn = cd ? node_data[cn].prev : node_data[cn].next;
   908 		cd = node_data[cn].next == en;
   909 
   910  		if (node_data[cn].prev == node_data[cn].next && 
   911 		    node_data[cn].inverted) {
   912  		  cd = !cd;
   913  		}
   914 	      }
   915 
   916 	      if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn;
   917 	      if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn;
   918 
   919 	    }
   920 
   921 	    bool d = pn == node_data[n].prev;
   922 
   923 	    if (node_data[n].prev == node_data[n].next && 
   924 		node_data[n].inverted) {
   925 	      d = !d;
   926 	    }
   927 
   928 	    // Add new edge
   929 	    {
   930 	      Edge edge = embed_edge[node];
   931 	      Edge re = node_data[rn].first;
   932 
   933 	      edge_lists[edge_lists[re].next].prev = edge;
   934 	      edge_lists[edge].next = edge_lists[re].next;
   935 	      edge_lists[edge].prev = re;
   936 	      edge_lists[re].next = edge;
   937 
   938 	      if (!rd) {
   939 		node_data[rn].first = edge;
   940 	      }
   941 
   942 	      Edge rev = _ugraph.oppositeEdge(edge);
   943 	      Edge e = node_data[n].first;
   944 
   945 	      edge_lists[edge_lists[e].next].prev = rev;
   946 	      edge_lists[rev].next = edge_lists[e].next;
   947 	      edge_lists[rev].prev = e;
   948 	      edge_lists[e].next = rev;
   949 
   950 	      if (d) {
   951 		node_data[n].first = rev;
   952 	      }
   953 	      
   954 	    }
   955 
   956 	    // Embedding edge into external face
   957 	    if (rd) node_data[rn].next = n; else node_data[rn].prev = n;
   958 	    if (d) node_data[n].prev = rn; else node_data[n].next = rn;
   959 	    pn = rn;
   960 
   961 	    embed_edge[order_list[n]] = INVALID;
   962 	  }
   963 
   964 	  if (!merge_roots[node].empty()) {
   965 
   966 	    bool d = pn == node_data[n].prev;
   967 	    if (node_data[n].prev == node_data[n].next && 
   968 		node_data[n].inverted) {
   969 	      d = !d;
   970 	    }
   971 
   972 	    merge_stack.push_back(std::make_pair(n, d));
   973 
   974 	    int rn = merge_roots[node].front();
   975 	    
   976 	    int xn = node_data[rn].next;
   977 	    Node xnode = order_list[xn];
   978 	    
   979 	    int yn = node_data[rn].prev;
   980 	    Node ynode = order_list[yn];
   981 	    
   982 	    bool rd;
   983 	    if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
   984 	      rd = true;
   985 	    } else if (!external(ynode, rorder, child_lists, 
   986 				 ancestor_map, low_map)) {
   987 	      rd = false;
   988 	    } else if (pertinent(xnode, embed_edge, merge_roots)) {
   989 	      rd = true;
   990 	    } else {
   991 	      rd = false;
   992 	    }
   993 	    
   994 	    merge_stack.push_back(std::make_pair(rn, rd));
   995 	    
   996 	    pn = rn;
   997 	    n = rd ? xn : yn;	      
   998 	    	    
   999 	  } else if (!external(node, rorder, child_lists,
  1000 			       ancestor_map, low_map)) {
  1001 	    int nn = (node_data[n].next != pn ? 
  1002 		      node_data[n].next : node_data[n].prev);
  1003 
  1004 	    bool nd = n == node_data[nn].prev;
  1005 
  1006 	    if (nd) node_data[nn].prev = pn;
  1007 	    else node_data[nn].next = pn; 
  1008 
  1009 	    if (n == node_data[pn].prev) node_data[pn].prev = nn;
  1010 	    else node_data[pn].next = nn;
  1011 
  1012 	    node_data[nn].inverted = 
  1013 	      (node_data[nn].prev == node_data[nn].next && nd != rd);
  1014 
  1015 	    n = nn;
  1016 	  }
  1017 	  else break;
  1018 	  
  1019 	}
  1020 
  1021 	if (!merge_stack.empty() || n == rn) {
  1022 	  break;
  1023 	}
  1024       }
  1025     }
  1026 
  1027     void initFace(const Node& node, EdgeLists& edge_lists,
  1028 		   NodeData& node_data, const PredMap& pred_map,
  1029 		   const OrderMap& order_map, const OrderList& order_list) {
  1030       int n = order_map[node];
  1031       int rn = n + order_list.size();
  1032       
  1033       node_data[n].next = node_data[n].prev = rn;
  1034       node_data[rn].next = node_data[rn].prev = n;
  1035       
  1036       node_data[n].visited = order_list.size();
  1037       node_data[rn].visited = order_list.size();
  1038 
  1039       node_data[n].inverted = false;
  1040       node_data[rn].inverted = false;
  1041 
  1042       Edge edge = pred_map[node];
  1043       Edge rev = _ugraph.oppositeEdge(edge);
  1044 
  1045       node_data[rn].first = edge;
  1046       node_data[n].first = rev;
  1047 
  1048       edge_lists[edge].prev = edge;
  1049       edge_lists[edge].next = edge;
  1050 
  1051       edge_lists[rev].prev = rev;
  1052       edge_lists[rev].next = rev;
  1053 
  1054     }
  1055 
  1056     void mergeRemainingFaces(const Node& node, NodeData& node_data,
  1057 			     OrderList& order_list, OrderMap& order_map,
  1058 			     ChildLists& child_lists, EdgeLists& edge_lists) {
  1059       while (child_lists[node].first != INVALID) {
  1060 	int dd = order_map[node];
  1061 	Node child = child_lists[node].first; 
  1062 	int cd = order_map[child] + order_list.size();
  1063 	child_lists[node].first = child_lists[child].next;
  1064 
  1065 	Edge de = node_data[dd].first;
  1066 	Edge ce = node_data[cd].first;
  1067 
  1068 	if (de != INVALID) {
  1069 	  Edge dne = edge_lists[de].next; 
  1070 	  Edge cne = edge_lists[ce].next; 
  1071 	  
  1072 	  edge_lists[de].next = cne;
  1073 	  edge_lists[ce].next = dne;
  1074 	  
  1075 	  edge_lists[dne].prev = ce;
  1076 	  edge_lists[cne].prev = de;
  1077 	}
  1078 	
  1079 	node_data[dd].first = ce;
  1080 
  1081       }
  1082     }
  1083 
  1084     void storeEmbedding(const Node& node, NodeData& node_data,
  1085 			OrderMap& order_map, PredMap& pred_map,
  1086 			EdgeLists& edge_lists, FlipMap& flip_map) {
  1087 
  1088       if (node_data[order_map[node]].first == INVALID) return;
  1089 
  1090       if (pred_map[node] != INVALID) {
  1091 	Node source = _ugraph.source(pred_map[node]);
  1092 	flip_map[node] = flip_map[node] != flip_map[source];
  1093       }
  1094       
  1095       Edge first = node_data[order_map[node]].first;
  1096       Edge prev = first;
  1097 
  1098       Edge edge = flip_map[node] ?
  1099 	edge_lists[prev].prev : edge_lists[prev].next;
  1100 
  1101       _embedding[prev] = edge;
  1102       
  1103       while (edge != first) {
  1104 	Edge next = edge_lists[edge].prev == prev ?
  1105 	  edge_lists[edge].next : edge_lists[edge].prev;
  1106 	prev = edge; edge = next;
  1107 	_embedding[prev] = edge;
  1108       }
  1109     }
  1110 
  1111 
  1112     bool external(const Node& node, int rorder,
  1113 		  ChildLists& child_lists, AncestorMap& ancestor_map, 
  1114 		  LowMap& low_map) {
  1115       Node child = child_lists[node].first;
  1116 
  1117       if (child != INVALID) {
  1118 	if (low_map[child] < rorder) return true;
  1119       }
  1120 
  1121       if (ancestor_map[node] < rorder) return true;
  1122 
  1123       return false;
  1124     }
  1125 
  1126     bool pertinent(const Node& node, const EmbedEdge& embed_edge,
  1127 		   const MergeRoots& merge_roots) {
  1128       return !merge_roots[node].empty() || embed_edge[node] != INVALID;
  1129     }
  1130 
  1131     int lowPoint(const Node& node, OrderMap& order_map, ChildLists& child_lists,
  1132 		 AncestorMap& ancestor_map, LowMap& low_map) {
  1133       int low_point;
  1134 
  1135       Node child = child_lists[node].first;
  1136 
  1137       if (child != INVALID) {
  1138 	low_point = low_map[child];
  1139       } else {
  1140 	low_point = order_map[node];
  1141       }
  1142 
  1143       if (low_point > ancestor_map[node]) {
  1144 	low_point = ancestor_map[node];
  1145       }
  1146 
  1147       return low_point;
  1148     }
  1149 
  1150     int findComponentRoot(Node root, Node node, ChildLists& child_lists, 
  1151 			  OrderMap& order_map, OrderList& order_list) {
  1152 
  1153       int order = order_map[root];
  1154       int norder = order_map[node];
  1155 
  1156       Node child = child_lists[root].first;
  1157       while (child != INVALID) {
  1158 	int corder = order_map[child];
  1159 	if (corder > order && corder < norder) {
  1160 	  order = corder;
  1161 	}
  1162 	child = child_lists[child].next;
  1163       }
  1164       return order + order_list.size();
  1165     }
  1166 
  1167     Node findPertinent(Node node, OrderMap& order_map, NodeData& node_data,
  1168 		       EmbedEdge& embed_edge, MergeRoots& merge_roots) {
  1169       Node wnode =_ugraph.target(node_data[order_map[node]].first);
  1170       while (!pertinent(wnode, embed_edge, merge_roots)) {
  1171 	wnode = _ugraph.target(node_data[order_map[wnode]].first);
  1172       }
  1173       return wnode;
  1174     }
  1175 
  1176 
  1177     Node findExternal(Node node, int rorder, OrderMap& order_map, 
  1178 		      ChildLists& child_lists, AncestorMap& ancestor_map,
  1179 		      LowMap& low_map, NodeData& node_data) {
  1180       Node wnode =_ugraph.target(node_data[order_map[node]].first);
  1181       while (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
  1182 	wnode = _ugraph.target(node_data[order_map[wnode]].first);
  1183       }
  1184       return wnode;
  1185     }
  1186 
  1187     void markCommonPath(Node node, int rorder, Node& wnode, Node& znode, 
  1188 			OrderList& order_list, OrderMap& order_map, 
  1189 			NodeData& node_data, EdgeLists& edge_lists, 
  1190 			EmbedEdge& embed_edge, MergeRoots& merge_roots, 
  1191 			ChildLists& child_lists, AncestorMap& ancestor_map, 
  1192 			LowMap& low_map) {
  1193       
  1194       Node cnode = node;
  1195       Node pred = INVALID;
  1196       
  1197       while (true) {
  1198 
  1199 	bool pert = pertinent(cnode, embed_edge, merge_roots);
  1200 	bool ext = external(cnode, rorder, child_lists, ancestor_map, low_map);
  1201 
  1202 	if (pert && ext) {
  1203 	  if (!merge_roots[cnode].empty()) {
  1204 	    int cn = merge_roots[cnode].back();
  1205 	    
  1206 	    if (low_map[order_list[cn - order_list.size()]] < rorder) {
  1207 	      Edge edge = node_data[cn].first;
  1208 	      _kuratowski.set(edge, true);
  1209 	      
  1210 	      pred = cnode;
  1211 	      cnode = _ugraph.target(edge);
  1212 	    
  1213 	      continue;
  1214 	    }
  1215 	  }
  1216 	  wnode = znode = cnode;
  1217 	  return;
  1218 
  1219 	} else if (pert) {
  1220 	  wnode = cnode;
  1221 	  
  1222 	  while (!external(cnode, rorder, child_lists, ancestor_map, low_map)) {
  1223 	    Edge edge = node_data[order_map[cnode]].first;
  1224 	  
  1225 	    if (_ugraph.target(edge) == pred) {
  1226 	      edge = edge_lists[edge].next;
  1227 	    }
  1228 	    _kuratowski.set(edge, true);
  1229 	    
  1230 	    Node next = _ugraph.target(edge);
  1231 	    pred = cnode; cnode = next;
  1232 	  }
  1233 	  
  1234 	  znode = cnode;
  1235 	  return;
  1236 
  1237 	} else if (ext) {
  1238 	  znode = cnode;
  1239 	  
  1240 	  while (!pertinent(cnode, embed_edge, merge_roots)) {
  1241 	    Edge edge = node_data[order_map[cnode]].first;
  1242 	  
  1243 	    if (_ugraph.target(edge) == pred) {
  1244 	      edge = edge_lists[edge].next;
  1245 	    }
  1246 	    _kuratowski.set(edge, true);
  1247 	    
  1248 	    Node next = _ugraph.target(edge);
  1249 	    pred = cnode; cnode = next;
  1250 	  }
  1251 	  
  1252 	  wnode = cnode;
  1253 	  return;
  1254 	  
  1255 	} else {
  1256 	  Edge edge = node_data[order_map[cnode]].first;
  1257 	  
  1258 	  if (_ugraph.target(edge) == pred) {
  1259 	    edge = edge_lists[edge].next;
  1260 	  }
  1261 	  _kuratowski.set(edge, true);
  1262 
  1263 	  Node next = _ugraph.target(edge);
  1264 	  pred = cnode; cnode = next;
  1265 	}
  1266 	
  1267       }
  1268 
  1269     }
  1270 
  1271     void orientComponent(Node root, int rn, OrderMap& order_map,
  1272 			 PredMap& pred_map, NodeData& node_data, 
  1273 			 EdgeLists& edge_lists, FlipMap& flip_map, 
  1274 			 TypeMap& type_map) {
  1275       node_data[order_map[root]].first = node_data[rn].first;
  1276       type_map[root] = 1;
  1277 
  1278       std::vector<Node> st, qu;
  1279 
  1280       st.push_back(root);
  1281       while (!st.empty()) {
  1282 	Node node = st.back();
  1283 	st.pop_back();
  1284 	qu.push_back(node);
  1285 	
  1286 	Edge edge = node_data[order_map[node]].first;
  1287 	
  1288 	if (type_map[_ugraph.target(edge)] == 0) {
  1289 	  st.push_back(_ugraph.target(edge));
  1290 	  type_map[_ugraph.target(edge)] = 1;
  1291 	} 
  1292 	
  1293 	Edge last = edge, pred = edge;
  1294 	edge = edge_lists[edge].next;
  1295 	while (edge != last) {
  1296 
  1297 	  if (type_map[_ugraph.target(edge)] == 0) {
  1298 	    st.push_back(_ugraph.target(edge));
  1299 	    type_map[_ugraph.target(edge)] = 1;
  1300 	  } 
  1301 	  
  1302 	  Edge next = edge_lists[edge].next != pred ? 
  1303 	    edge_lists[edge].next : edge_lists[edge].prev;
  1304 	  pred = edge; edge = next;
  1305 	}
  1306 
  1307       }
  1308 
  1309       type_map[root] = 2;
  1310       flip_map[root] = false;
  1311 
  1312       for (int i = 1; i < int(qu.size()); ++i) {
  1313 
  1314 	Node node = qu[i];
  1315 
  1316 	while (type_map[node] != 2) {
  1317 	  st.push_back(node);
  1318 	  type_map[node] = 2;
  1319 	  node = _ugraph.source(pred_map[node]);
  1320 	}
  1321 
  1322 	bool flip = flip_map[node];
  1323 
  1324 	while (!st.empty()) {
  1325 	  node = st.back();
  1326 	  st.pop_back();
  1327 	  
  1328 	  flip_map[node] = flip != flip_map[node];
  1329 	  flip = flip_map[node];
  1330 
  1331 	  if (flip) {
  1332 	    Edge edge = node_data[order_map[node]].first;
  1333 	    std::swap(edge_lists[edge].prev, edge_lists[edge].next);
  1334 	    edge = edge_lists[edge].prev;
  1335 	    std::swap(edge_lists[edge].prev, edge_lists[edge].next);
  1336 	    node_data[order_map[node]].first = edge;
  1337 	  }
  1338 	}
  1339       }
  1340 
  1341       for (int i = 0; i < int(qu.size()); ++i) {
  1342 
  1343 	Edge edge = node_data[order_map[qu[i]]].first;
  1344 	Edge last = edge, pred = edge;
  1345 
  1346 	edge = edge_lists[edge].next;
  1347 	while (edge != last) {
  1348 
  1349 	  if (edge_lists[edge].next == pred) {
  1350 	    std::swap(edge_lists[edge].next, edge_lists[edge].prev);
  1351 	  } 
  1352 	  pred = edge; edge = edge_lists[edge].next;
  1353 	}
  1354 	
  1355       }
  1356     }
  1357 
  1358     void setFaceFlags(Node root, Node wnode, Node ynode, Node xnode,
  1359 		      OrderMap& order_map, NodeData& node_data, 
  1360 		      TypeMap& type_map) {
  1361       Node node = _ugraph.target(node_data[order_map[root]].first);
  1362 
  1363       while (node != ynode) {
  1364 	type_map[node] = HIGHY;
  1365 	node = _ugraph.target(node_data[order_map[node]].first);
  1366       }
  1367 
  1368       while (node != wnode) {
  1369 	type_map[node] = LOWY;
  1370 	node = _ugraph.target(node_data[order_map[node]].first);
  1371       }
  1372       
  1373       node = _ugraph.target(node_data[order_map[wnode]].first);
  1374       
  1375       while (node != xnode) {
  1376 	type_map[node] = LOWX;
  1377 	node = _ugraph.target(node_data[order_map[node]].first);
  1378       }
  1379       type_map[node] = LOWX;
  1380 
  1381       node = _ugraph.target(node_data[order_map[xnode]].first);
  1382       while (node != root) {
  1383 	type_map[node] = HIGHX;
  1384 	node = _ugraph.target(node_data[order_map[node]].first);
  1385       }
  1386 
  1387       type_map[wnode] = PERTINENT;
  1388       type_map[root] = ROOT;
  1389     }
  1390 
  1391     void findInternalPath(std::vector<Edge>& ipath,
  1392 			  Node wnode, Node root, TypeMap& type_map, 
  1393 			  OrderMap& order_map, NodeData& node_data, 
  1394 			  EdgeLists& edge_lists) {
  1395       std::vector<Edge> st;
  1396 
  1397       Node node = wnode;
  1398       
  1399       while (node != root) {
  1400 	Edge edge = edge_lists[node_data[order_map[node]].first].next;
  1401 	st.push_back(edge);
  1402 	node = _ugraph.target(edge);
  1403       }
  1404       
  1405       while (true) {
  1406 	Edge edge = st.back();
  1407 	if (type_map[_ugraph.target(edge)] == LOWX ||
  1408 	    type_map[_ugraph.target(edge)] == HIGHX) {
  1409 	  break;
  1410 	}
  1411 	if (type_map[_ugraph.target(edge)] == 2) {
  1412 	  type_map[_ugraph.target(edge)] = 3;
  1413 	  
  1414 	  edge = edge_lists[_ugraph.oppositeEdge(edge)].next;
  1415 	  st.push_back(edge);
  1416 	} else {
  1417 	  st.pop_back();
  1418 	  edge = edge_lists[edge].next;
  1419 	  
  1420 	  while (_ugraph.oppositeEdge(edge) == st.back()) {
  1421 	    edge = st.back();
  1422 	    st.pop_back();
  1423 	    edge = edge_lists[edge].next;
  1424 	  }
  1425 	  st.push_back(edge);
  1426 	}
  1427       }
  1428       
  1429       for (int i = 0; i < int(st.size()); ++i) {
  1430 	if (type_map[_ugraph.target(st[i])] != LOWY &&
  1431 	    type_map[_ugraph.target(st[i])] != HIGHY) {
  1432 	  for (; i < int(st.size()); ++i) {
  1433 	    ipath.push_back(st[i]);
  1434 	  }
  1435 	}
  1436       }
  1437     }
  1438 
  1439     void setInternalFlags(std::vector<Edge>& ipath, TypeMap& type_map) {
  1440       for (int i = 1; i < int(ipath.size()); ++i) {
  1441 	type_map[_ugraph.source(ipath[i])] = INTERNAL;
  1442       }
  1443     }
  1444 
  1445     void findPilePath(std::vector<Edge>& ppath,
  1446 		      Node root, TypeMap& type_map, OrderMap& order_map, 
  1447 		      NodeData& node_data, EdgeLists& edge_lists) {
  1448       std::vector<Edge> st;
  1449 
  1450       st.push_back(_ugraph.oppositeEdge(node_data[order_map[root]].first));
  1451       st.push_back(node_data[order_map[root]].first);
  1452       
  1453       while (st.size() > 1) {
  1454 	Edge edge = st.back();
  1455 	if (type_map[_ugraph.target(edge)] == INTERNAL) {
  1456 	  break;
  1457 	}
  1458 	if (type_map[_ugraph.target(edge)] == 3) {
  1459 	  type_map[_ugraph.target(edge)] = 4;
  1460 	  
  1461 	  edge = edge_lists[_ugraph.oppositeEdge(edge)].next;
  1462 	  st.push_back(edge);
  1463 	} else {
  1464 	  st.pop_back();
  1465 	  edge = edge_lists[edge].next;
  1466 	  
  1467 	  while (!st.empty() && _ugraph.oppositeEdge(edge) == st.back()) {
  1468 	    edge = st.back();
  1469 	    st.pop_back();
  1470 	    edge = edge_lists[edge].next;
  1471 	  }
  1472 	  st.push_back(edge);
  1473 	}
  1474       }
  1475       
  1476       for (int i = 1; i < int(st.size()); ++i) {
  1477 	ppath.push_back(st[i]);
  1478       }
  1479     }
  1480 
  1481 
  1482     int markExternalPath(Node node, OrderMap& order_map,
  1483 			 ChildLists& child_lists, PredMap& pred_map,
  1484 			 AncestorMap& ancestor_map, LowMap& low_map) {
  1485       int lp = lowPoint(node, order_map, child_lists,
  1486 			ancestor_map, low_map);
  1487       
  1488       if (ancestor_map[node] != lp) {
  1489 	node = child_lists[node].first;
  1490 	_kuratowski[pred_map[node]] = true;
  1491 
  1492 	while (ancestor_map[node] != lp) {
  1493 	  for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
  1494 	    Node tnode = _ugraph.target(e); 
  1495 	    if (order_map[tnode] > order_map[node] && low_map[tnode] == lp) {
  1496 	      node = tnode;
  1497 	      _kuratowski[e] = true;
  1498 	      break;
  1499 	    }
  1500 	  }
  1501 	}
  1502       }
  1503 
  1504       for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
  1505 	if (order_map[_ugraph.target(e)] == lp) {
  1506 	  _kuratowski[e] = true;
  1507 	  break;
  1508 	}
  1509       }
  1510       
  1511       return lp;
  1512     }
  1513 
  1514     void markPertinentPath(Node node, OrderMap& order_map, 
  1515 			   NodeData& node_data, EdgeLists& edge_lists,
  1516 			   EmbedEdge& embed_edge, MergeRoots& merge_roots) {
  1517       while (embed_edge[node] == INVALID) {
  1518 	int n = merge_roots[node].front();
  1519 	Edge edge = node_data[n].first;
  1520 
  1521 	_kuratowski.set(edge, true);
  1522 	
  1523 	Node pred = node;
  1524 	node = _ugraph.target(edge);
  1525 	while (!pertinent(node, embed_edge, merge_roots)) {
  1526 	  edge = node_data[order_map[node]].first;
  1527 	  if (_ugraph.target(edge) == pred) {
  1528 	    edge = edge_lists[edge].next;
  1529 	  }
  1530 	  _kuratowski.set(edge, true);
  1531 	  pred = node;
  1532 	  node = _ugraph.target(edge);
  1533 	}
  1534       }
  1535       _kuratowski.set(embed_edge[node], true);
  1536     } 
  1537 
  1538     void markPredPath(Node node, Node snode, PredMap& pred_map) {
  1539       while (node != snode) {
  1540 	_kuratowski.set(pred_map[node], true);
  1541 	node = _ugraph.source(pred_map[node]);
  1542       }
  1543     }
  1544 
  1545     void markFacePath(Node ynode, Node xnode, 
  1546 		      OrderMap& order_map, NodeData& node_data) {
  1547       Edge edge = node_data[order_map[ynode]].first;
  1548       Node node = _ugraph.target(edge);
  1549       _kuratowski.set(edge, true);
  1550 	
  1551       while (node != xnode) {
  1552 	edge = node_data[order_map[node]].first;
  1553 	_kuratowski.set(edge, true);
  1554 	node = _ugraph.target(edge);
  1555       }
  1556     }
  1557 
  1558     void markInternalPath(std::vector<Edge>& path) {
  1559       for (int i = 0; i < int(path.size()); ++i) {
  1560 	_kuratowski.set(path[i], true);
  1561       }
  1562     }
  1563 
  1564     void markPilePath(std::vector<Edge>& path) {
  1565       for (int i = 0; i < int(path.size()); ++i) {
  1566 	_kuratowski.set(path[i], true);
  1567       }
  1568     }
  1569 
  1570     void isolateKuratowski(Edge edge, NodeData& node_data, 
  1571 			   EdgeLists& edge_lists, FlipMap& flip_map,
  1572 			   OrderMap& order_map, OrderList& order_list, 
  1573 			   PredMap& pred_map, ChildLists& child_lists,
  1574 			   AncestorMap& ancestor_map, LowMap& low_map, 
  1575 			   EmbedEdge& embed_edge, MergeRoots& merge_roots) {
  1576 
  1577       Node root = _ugraph.source(edge);
  1578       Node enode = _ugraph.target(edge);
  1579 
  1580       int rorder = order_map[root];
  1581 
  1582       TypeMap type_map(_ugraph, 0);
  1583 
  1584       int rn = findComponentRoot(root, enode, child_lists, 
  1585 				 order_map, order_list);
  1586 
  1587       Node xnode = order_list[node_data[rn].next];
  1588       Node ynode = order_list[node_data[rn].prev];
  1589 
  1590       // Minor-A
  1591       {
  1592 	while (!merge_roots[xnode].empty() || !merge_roots[ynode].empty()) {
  1593 	  
  1594 	  if (!merge_roots[xnode].empty()) {
  1595 	    root = xnode;
  1596 	    rn = merge_roots[xnode].front();
  1597 	  } else {
  1598 	    root = ynode;
  1599 	    rn = merge_roots[ynode].front();
  1600 	  }
  1601 	  
  1602 	  xnode = order_list[node_data[rn].next];
  1603 	  ynode = order_list[node_data[rn].prev];
  1604 	}
  1605 	
  1606 	if (root != _ugraph.source(edge)) {
  1607 	  orientComponent(root, rn, order_map, pred_map, 
  1608 			  node_data, edge_lists, flip_map, type_map);
  1609 	  markFacePath(root, root, order_map, node_data);
  1610 	  int xlp = markExternalPath(xnode, order_map, child_lists, 
  1611 				     pred_map, ancestor_map, low_map);
  1612 	  int ylp = markExternalPath(ynode, order_map, child_lists, 
  1613 				     pred_map, ancestor_map, low_map);
  1614 	  markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1615 	  Node lwnode = findPertinent(ynode, order_map, node_data,
  1616 				     embed_edge, merge_roots);
  1617 	  
  1618 	  markPertinentPath(lwnode, order_map, node_data, edge_lists,
  1619 			    embed_edge, merge_roots);
  1620 	  
  1621 	  return;
  1622 	}
  1623       }
  1624       
  1625       orientComponent(root, rn, order_map, pred_map, 
  1626 		      node_data, edge_lists, flip_map, type_map);
  1627 
  1628       Node wnode = findPertinent(ynode, order_map, node_data,
  1629 				 embed_edge, merge_roots);
  1630       setFaceFlags(root, wnode, ynode, xnode, order_map, node_data, type_map);
  1631 
  1632       
  1633       //Minor-B
  1634       if (!merge_roots[wnode].empty()) {
  1635 	int cn = merge_roots[wnode].back();
  1636 	Node rep = order_list[cn - order_list.size()];
  1637 	if (low_map[rep] < rorder) {
  1638 	  markFacePath(root, root, order_map, node_data);
  1639 	  int xlp = markExternalPath(xnode, order_map, child_lists, 
  1640 				     pred_map, ancestor_map, low_map);
  1641 	  int ylp = markExternalPath(ynode, order_map, child_lists, 
  1642 				     pred_map, ancestor_map, low_map);
  1643 
  1644 	  Node lwnode, lznode;
  1645 	  markCommonPath(wnode, rorder, lwnode, lznode, order_list, 
  1646 			 order_map, node_data, edge_lists, embed_edge, 
  1647 			 merge_roots, child_lists, ancestor_map, low_map);
  1648 	  	  
  1649 	  markPertinentPath(lwnode, order_map, node_data, edge_lists,
  1650 			    embed_edge, merge_roots);
  1651 	  int zlp = markExternalPath(lznode, order_map, child_lists, 
  1652 				     pred_map, ancestor_map, low_map);
  1653 
  1654 	  int minlp = xlp < ylp ? xlp : ylp;
  1655 	  if (zlp < minlp) minlp = zlp;
  1656 
  1657 	  int maxlp = xlp > ylp ? xlp : ylp;
  1658 	  if (zlp > maxlp) maxlp = zlp;
  1659 	  
  1660 	  markPredPath(order_list[maxlp], order_list[minlp], pred_map);
  1661 	  
  1662 	  return;
  1663 	}
  1664       }
  1665 
  1666       Node pxnode, pynode;
  1667       std::vector<Edge> ipath;
  1668       findInternalPath(ipath, wnode, root, type_map, order_map,
  1669 		       node_data, edge_lists);
  1670       setInternalFlags(ipath, type_map);
  1671       pynode = _ugraph.source(ipath.front());
  1672       pxnode = _ugraph.target(ipath.back());
  1673 
  1674       wnode = findPertinent(pynode, order_map, node_data,
  1675 			    embed_edge, merge_roots);
  1676       
  1677       // Minor-C
  1678       {
  1679 	if (type_map[_ugraph.source(ipath.front())] == HIGHY) {
  1680 	  if (type_map[_ugraph.target(ipath.back())] == HIGHX) {
  1681 	    markFacePath(xnode, pxnode, order_map, node_data);
  1682 	  }
  1683 	  markFacePath(root, xnode, order_map, node_data);
  1684 	  markPertinentPath(wnode, order_map, node_data, edge_lists,
  1685 			    embed_edge, merge_roots);
  1686 	  markInternalPath(ipath);
  1687 	  int xlp = markExternalPath(xnode, order_map, child_lists, 
  1688 				     pred_map, ancestor_map, low_map);
  1689 	  int ylp = markExternalPath(ynode, order_map, child_lists, 
  1690 				     pred_map, ancestor_map, low_map);
  1691 	  markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1692 	  return;
  1693 	}
  1694 
  1695 	if (type_map[_ugraph.target(ipath.back())] == HIGHX) {
  1696 	  markFacePath(ynode, root, order_map, node_data);
  1697 	  markPertinentPath(wnode, order_map, node_data, edge_lists,
  1698 			    embed_edge, merge_roots);
  1699 	  markInternalPath(ipath);
  1700 	  int xlp = markExternalPath(xnode, order_map, child_lists, 
  1701 				     pred_map, ancestor_map, low_map);
  1702 	  int ylp = markExternalPath(ynode, order_map, child_lists, 
  1703 				     pred_map, ancestor_map, low_map);
  1704 	  markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1705 	  return;
  1706 	}
  1707       }
  1708 
  1709       std::vector<Edge> ppath;
  1710       findPilePath(ppath, root, type_map, order_map, node_data, edge_lists);
  1711       
  1712       // Minor-D
  1713       if (!ppath.empty()) {
  1714 	markFacePath(ynode, xnode, order_map, node_data);
  1715 	markPertinentPath(wnode, order_map, node_data, edge_lists,
  1716 			  embed_edge, merge_roots);
  1717 	markPilePath(ppath);
  1718 	markInternalPath(ipath);
  1719 	int xlp = markExternalPath(xnode, order_map, child_lists, 
  1720 				   pred_map, ancestor_map, low_map);
  1721 	int ylp = markExternalPath(ynode, order_map, child_lists, 
  1722 				   pred_map, ancestor_map, low_map);
  1723 	markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1724 	return;
  1725       }
  1726 
  1727       // Minor-E*
  1728       {
  1729 
  1730 	if (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
  1731 	  Node znode = findExternal(pynode, rorder, order_map, 
  1732 				    child_lists, ancestor_map,
  1733 				    low_map, node_data);
  1734 	  
  1735 	  if (type_map[znode] == LOWY) {
  1736 	    markFacePath(root, xnode, order_map, node_data);
  1737 	    markPertinentPath(wnode, order_map, node_data, edge_lists,
  1738 			      embed_edge, merge_roots);
  1739 	    markInternalPath(ipath);
  1740 	    int xlp = markExternalPath(xnode, order_map, child_lists, 
  1741 				       pred_map, ancestor_map, low_map);
  1742 	    int zlp = markExternalPath(znode, order_map, child_lists, 
  1743 				       pred_map, ancestor_map, low_map);
  1744 	    markPredPath(root, order_list[xlp < zlp ? xlp : zlp], pred_map);
  1745 	  } else {
  1746 	    markFacePath(ynode, root, order_map, node_data);
  1747 	    markPertinentPath(wnode, order_map, node_data, edge_lists,
  1748 			      embed_edge, merge_roots);
  1749 	    markInternalPath(ipath);
  1750 	    int ylp = markExternalPath(ynode, order_map, child_lists, 
  1751 				       pred_map, ancestor_map, low_map);
  1752 	    int zlp = markExternalPath(znode, order_map, child_lists, 
  1753 				       pred_map, ancestor_map, low_map);
  1754 	    markPredPath(root, order_list[ylp < zlp ? ylp : zlp], pred_map);
  1755 	  }
  1756 	  return;
  1757 	}
  1758 
  1759 	int xlp = markExternalPath(xnode, order_map, child_lists, 
  1760 				   pred_map, ancestor_map, low_map);
  1761 	int ylp = markExternalPath(ynode, order_map, child_lists, 
  1762 				   pred_map, ancestor_map, low_map);
  1763 	int wlp = markExternalPath(wnode, order_map, child_lists, 
  1764 				   pred_map, ancestor_map, low_map);
  1765 
  1766 	if (wlp > xlp && wlp > ylp) {
  1767 	  markFacePath(root, root, order_map, node_data);
  1768 	  markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1769 	  return;
  1770 	}
  1771 
  1772 	markInternalPath(ipath);
  1773 	markPertinentPath(wnode, order_map, node_data, edge_lists,
  1774 			  embed_edge, merge_roots);
  1775 
  1776 	if (xlp > ylp && xlp > wlp) {
  1777 	  markFacePath(root, pynode, order_map, node_data);
  1778 	  markFacePath(wnode, xnode, order_map, node_data);
  1779 	  markPredPath(root, order_list[ylp < wlp ? ylp : wlp], pred_map);
  1780 	  return;
  1781 	}
  1782 
  1783 	if (ylp > xlp && ylp > wlp) {
  1784 	  markFacePath(pxnode, root, order_map, node_data);
  1785 	  markFacePath(ynode, wnode, order_map, node_data);
  1786 	  markPredPath(root, order_list[xlp < wlp ? xlp : wlp], pred_map);
  1787 	  return;
  1788 	}
  1789 
  1790 	if (pynode != ynode) {
  1791 	  markFacePath(pxnode, wnode, order_map, node_data);
  1792 
  1793 	  int minlp = xlp < ylp ? xlp : ylp;
  1794 	  if (wlp < minlp) minlp = wlp;
  1795 
  1796 	  int maxlp = xlp > ylp ? xlp : ylp;
  1797 	  if (wlp > maxlp) maxlp = wlp;
  1798 	  
  1799 	  markPredPath(order_list[maxlp], order_list[minlp], pred_map);
  1800 	  return;
  1801 	}
  1802 
  1803 	if (pxnode != xnode) {
  1804 	  markFacePath(wnode, pynode, order_map, node_data);
  1805 
  1806 	  int minlp = xlp < ylp ? xlp : ylp;
  1807 	  if (wlp < minlp) minlp = wlp;
  1808 
  1809 	  int maxlp = xlp > ylp ? xlp : ylp;
  1810 	  if (wlp > maxlp) maxlp = wlp;
  1811 	  
  1812 	  markPredPath(order_list[maxlp], order_list[minlp], pred_map);
  1813 	  return;
  1814 	}
  1815 
  1816 	markFacePath(root, root, order_map, node_data);
  1817 	int minlp = xlp < ylp ? xlp : ylp;
  1818 	if (wlp < minlp) minlp = wlp;
  1819 	markPredPath(root, order_list[minlp], pred_map);
  1820 	return;
  1821       }
  1822       
  1823     }
  1824 
  1825   };
  1826 
  1827   namespace _planarity_bits {
  1828 
  1829     template <typename UGraph, typename EmbeddingMap>
  1830     void makeConnected(UGraph& ugraph, EmbeddingMap& embedding) {
  1831       DfsVisitor<UGraph> null_visitor;
  1832       DfsVisit<UGraph, DfsVisitor<UGraph> > dfs(ugraph, null_visitor);
  1833       dfs.init();
  1834 
  1835       typename UGraph::Node u = INVALID;
  1836       for (typename UGraph::NodeIt n(ugraph); n != INVALID; ++n) {
  1837 	if (!dfs.reached(n)) {
  1838 	  dfs.addSource(n);
  1839 	  dfs.start();
  1840 	  if (u == INVALID) {
  1841 	    u = n;
  1842 	  } else {
  1843 	    typename UGraph::Node v = n;
  1844 	    
  1845 	    typename UGraph::Edge ue = typename UGraph::OutEdgeIt(ugraph, u);
  1846 	    typename UGraph::Edge ve = typename UGraph::OutEdgeIt(ugraph, v);
  1847 
  1848 	    typename UGraph::Edge e = ugraph.direct(ugraph.addEdge(u, v), true);
  1849 	    
  1850 	    if (ue != INVALID) {
  1851 	      embedding[e] = embedding[ue];
  1852 	      embedding[ue] = e;
  1853 	    } else {
  1854 	      embedding[e] = e;
  1855 	    }
  1856 
  1857 	    if (ve != INVALID) {
  1858 	      embedding[ugraph.oppositeEdge(e)] = embedding[ve];
  1859 	      embedding[ve] = ugraph.oppositeEdge(e);
  1860 	    } else {
  1861 	      embedding[ugraph.oppositeEdge(e)] = ugraph.oppositeEdge(e);
  1862 	    }
  1863 	  }
  1864 	}
  1865       }
  1866     }
  1867 
  1868     template <typename UGraph, typename EmbeddingMap>
  1869     void makeBiNodeConnected(UGraph& ugraph, EmbeddingMap& embedding) {
  1870       typename UGraph::template EdgeMap<bool> processed(ugraph);
  1871 
  1872       std::vector<typename UGraph::Edge> edges;
  1873       for (typename UGraph::EdgeIt e(ugraph); e != INVALID; ++e) {
  1874 	edges.push_back(e);
  1875       }
  1876 
  1877       IterableBoolMap<UGraph, typename UGraph::Node> visited(ugraph, false);
  1878       
  1879       for (int i = 0; i < int(edges.size()); ++i) {
  1880 	typename UGraph::Edge pp = edges[i];
  1881 	if (processed[pp]) continue;
  1882 
  1883 	typename UGraph::Edge e = embedding[ugraph.oppositeEdge(pp)];
  1884 	processed[e] = true;
  1885 	visited.set(ugraph.source(e), true);
  1886 	
  1887 	typename UGraph::Edge p = e, l = e;
  1888 	e = embedding[ugraph.oppositeEdge(e)];
  1889 	
  1890 	while (e != l) {
  1891 	  processed[e] = true;
  1892 
  1893 	  if (visited[ugraph.source(e)]) {
  1894 	    
  1895 	    typename UGraph::Edge n = 
  1896 	      ugraph.direct(ugraph.addEdge(ugraph.source(p), 
  1897 					   ugraph.target(e)), true);
  1898 	    embedding[n] = p;
  1899 	    embedding[ugraph.oppositeEdge(pp)] = n;
  1900 
  1901 	    embedding[ugraph.oppositeEdge(n)] = 
  1902 	      embedding[ugraph.oppositeEdge(e)];
  1903 	    embedding[ugraph.oppositeEdge(e)] = 
  1904 	      ugraph.oppositeEdge(n);
  1905 	    
  1906 	    p = n;
  1907 	    e = embedding[ugraph.oppositeEdge(n)];
  1908 	  } else {
  1909 	    visited.set(ugraph.source(e), true);
  1910 	    pp = p;
  1911 	    p = e;
  1912 	    e = embedding[ugraph.oppositeEdge(e)];
  1913 	  }
  1914 	}
  1915 	visited.setAll(false);
  1916       }
  1917     }
  1918     
  1919     
  1920     template <typename UGraph, typename EmbeddingMap>
  1921     void makeMaxPlanar(UGraph& ugraph, EmbeddingMap& embedding) {
  1922       
  1923       typename UGraph::template NodeMap<int> degree(ugraph);
  1924 
  1925       for (typename UGraph::NodeIt n(ugraph); n != INVALID; ++n) {
  1926 	degree[n] = countIncEdges(ugraph, n);
  1927       }
  1928 
  1929       typename UGraph::template EdgeMap<bool> processed(ugraph);
  1930       IterableBoolMap<UGraph, typename UGraph::Node> visited(ugraph, false);
  1931 
  1932       std::vector<typename UGraph::Edge> edges;
  1933       for (typename UGraph::EdgeIt e(ugraph); e != INVALID; ++e) {
  1934 	edges.push_back(e);
  1935       }
  1936 
  1937       for (int i = 0; i < int(edges.size()); ++i) {
  1938 	typename UGraph::Edge e = edges[i];
  1939 
  1940 	if (processed[e]) continue;
  1941 	processed[e] = true;
  1942 
  1943 	typename UGraph::Edge mine = e;
  1944 	int mind = degree[ugraph.source(e)];
  1945 
  1946 	int face_size = 1;	
  1947 
  1948 	typename UGraph::Edge l = e;
  1949 	e = embedding[ugraph.oppositeEdge(e)];
  1950 	while (l != e) {
  1951 	  processed[e] = true;
  1952 
  1953 	  ++face_size;
  1954 
  1955 	  if (degree[ugraph.source(e)] < mind) {
  1956 	    mine = e;
  1957 	    mind = degree[ugraph.source(e)];
  1958 	  }
  1959 	  
  1960 	  e = embedding[ugraph.oppositeEdge(e)];	  
  1961 	}
  1962 	
  1963 	if (face_size < 4) {
  1964 	  continue;
  1965 	}
  1966 
  1967 	typename UGraph::Node s = ugraph.source(mine);
  1968 	for (typename UGraph::OutEdgeIt e(ugraph, s); e != INVALID; ++e) {
  1969 	  visited.set(ugraph.target(e), true); 
  1970 	}
  1971 
  1972 	typename UGraph::Edge oppe = INVALID;
  1973 
  1974 	e = embedding[ugraph.oppositeEdge(mine)];
  1975 	e = embedding[ugraph.oppositeEdge(e)];
  1976 	while (ugraph.target(e) != s) {
  1977 	  if (visited[ugraph.source(e)]) {
  1978 	    oppe = e;
  1979 	    break;
  1980 	  }
  1981 	  e = embedding[ugraph.oppositeEdge(e)];
  1982 	}
  1983 	visited.setAll(false);
  1984 	
  1985 	if (oppe == INVALID) {
  1986 
  1987 	  e = embedding[ugraph.oppositeEdge(mine)];
  1988 	  typename UGraph::Edge pn = mine, p = e;
  1989 
  1990 	  e = embedding[ugraph.oppositeEdge(e)];
  1991 	  while (ugraph.target(e) != s) {
  1992 	    typename UGraph::Edge n = 
  1993 	      ugraph.direct(ugraph.addEdge(s, ugraph.source(e)), true);
  1994 
  1995 	    embedding[n] = pn;
  1996 	    embedding[ugraph.oppositeEdge(n)] = e;
  1997 	    embedding[ugraph.oppositeEdge(p)] = ugraph.oppositeEdge(n);
  1998 
  1999 	    pn = n;
  2000 	    
  2001 	    p = e;
  2002 	    e = embedding[ugraph.oppositeEdge(e)];
  2003 	  }
  2004 
  2005 	  embedding[ugraph.oppositeEdge(e)] = pn;
  2006 
  2007 	} else {
  2008 
  2009 	  mine = embedding[ugraph.oppositeEdge(mine)];
  2010 	  s = ugraph.source(mine);
  2011 	  oppe = embedding[ugraph.oppositeEdge(oppe)];
  2012 	  typename UGraph::Node t = ugraph.source(oppe);
  2013 	  
  2014 	  typename UGraph::Edge ce = ugraph.direct(ugraph.addEdge(s, t), true);
  2015 	  embedding[ce] = mine;
  2016 	  embedding[ugraph.oppositeEdge(ce)] = oppe;
  2017 
  2018 	  typename UGraph::Edge pn = ce, p = oppe;	  
  2019 	  e = embedding[ugraph.oppositeEdge(oppe)];
  2020 	  while (ugraph.target(e) != s) {
  2021 	    typename UGraph::Edge n = 
  2022 	      ugraph.direct(ugraph.addEdge(s, ugraph.source(e)), true);
  2023 
  2024 	    embedding[n] = pn;
  2025 	    embedding[ugraph.oppositeEdge(n)] = e;
  2026 	    embedding[ugraph.oppositeEdge(p)] = ugraph.oppositeEdge(n);
  2027 
  2028 	    pn = n;
  2029 	    
  2030 	    p = e;
  2031 	    e = embedding[ugraph.oppositeEdge(e)];
  2032 	    
  2033 	  }
  2034 	  embedding[ugraph.oppositeEdge(e)] = pn;
  2035 
  2036 	  pn = ugraph.oppositeEdge(ce), p = mine;	  
  2037 	  e = embedding[ugraph.oppositeEdge(mine)];
  2038 	  while (ugraph.target(e) != t) {
  2039 	    typename UGraph::Edge n = 
  2040 	      ugraph.direct(ugraph.addEdge(t, ugraph.source(e)), true);
  2041 
  2042 	    embedding[n] = pn;
  2043 	    embedding[ugraph.oppositeEdge(n)] = e;
  2044 	    embedding[ugraph.oppositeEdge(p)] = ugraph.oppositeEdge(n);
  2045 
  2046 	    pn = n;
  2047 	    
  2048 	    p = e;
  2049 	    e = embedding[ugraph.oppositeEdge(e)];
  2050 	    
  2051 	  }
  2052 	  embedding[ugraph.oppositeEdge(e)] = pn;
  2053 	}
  2054       }
  2055     }
  2056 
  2057   }
  2058 
  2059   /// \ingroup planar
  2060   ///
  2061   /// \brief Schnyder's planar drawing algorithms
  2062   ///
  2063   /// The planar drawing algorithm calculates location for each node
  2064   /// in the plane, which coordinates satisfies that if each edge is
  2065   /// represented with a straight line then the edges will not
  2066   /// intersect each other.
  2067   ///
  2068   /// Scnyder's algorithm embeds the graph on \c (n-2,n-2) size grid,
  2069   /// ie. each node will be located in the \c [0,n-2]x[0,n-2] square.
  2070   /// The time complexity of the algorithm is O(n).
  2071   template <typename UGraph>
  2072   class PlanarDrawing {
  2073   public:
  2074 
  2075     UGRAPH_TYPEDEFS(typename UGraph);
  2076 
  2077     /// \brief The point type for store coordinates
  2078     typedef dim2::Point<int> Point;
  2079     /// \brief The map type for store coordinates
  2080     typedef typename UGraph::template NodeMap<Point> PointMap;
  2081 
  2082 
  2083     /// \brief Constructor
  2084     ///
  2085     /// Constructor
  2086     /// \pre The ugraph should be simple, ie. loop and parallel edge free. 
  2087     PlanarDrawing(const UGraph& ugraph)
  2088       : _ugraph(ugraph), _point_map(ugraph) {}
  2089 
  2090   private:
  2091 
  2092     template <typename AuxUGraph, typename AuxEmbeddingMap>
  2093     void drawing(const AuxUGraph& ugraph, 
  2094 		 const AuxEmbeddingMap& next, 
  2095 		 PointMap& point_map) {
  2096       UGRAPH_TYPEDEFS(typename AuxUGraph);
  2097 
  2098       typename AuxUGraph::template EdgeMap<Edge> prev(ugraph);
  2099 
  2100       for (NodeIt n(ugraph); n != INVALID; ++n) {
  2101 	Edge e = OutEdgeIt(ugraph, n);
  2102 	
  2103 	Edge p = e, l = e;
  2104 	
  2105 	e = next[e];
  2106 	while (e != l) {
  2107 	  prev[e] = p;
  2108 	  p = e;
  2109 	  e = next[e];
  2110 	}
  2111 	prev[e] = p;
  2112       }
  2113 
  2114       Node anode, bnode, cnode;
  2115 
  2116       {
  2117 	Edge e = EdgeIt(ugraph);
  2118 	anode = ugraph.source(e);
  2119 	bnode = ugraph.target(e);
  2120 	cnode = ugraph.target(next[ugraph.oppositeEdge(e)]);
  2121       }
  2122       
  2123       IterableBoolMap<AuxUGraph, Node> proper(ugraph, false);
  2124       typename AuxUGraph::template NodeMap<int> conn(ugraph, -1);
  2125 
  2126       conn[anode] = conn[bnode] = -2;      
  2127       {
  2128 	for (OutEdgeIt e(ugraph, anode); e != INVALID; ++e) {
  2129 	  Node m = ugraph.target(e);
  2130 	  if (conn[m] == -1) {
  2131 	    conn[m] = 1;
  2132 	  }
  2133 	}
  2134 	conn[cnode] = 2;
  2135 
  2136 	for (OutEdgeIt e(ugraph, bnode); e != INVALID; ++e) {
  2137 	  Node m = ugraph.target(e);
  2138 	  if (conn[m] == -1) {
  2139 	    conn[m] = 1;
  2140 	  } else if (conn[m] != -2) {
  2141 	    conn[m] += 1;	    
  2142 	    Edge pe = ugraph.oppositeEdge(e);
  2143 	    if (conn[ugraph.target(next[pe])] == -2) {
  2144 	      conn[m] -= 1;
  2145 	    }
  2146 	    if (conn[ugraph.target(prev[pe])] == -2) {
  2147 	      conn[m] -= 1;
  2148 	    }
  2149 
  2150 	    proper.set(m, conn[m] == 1);
  2151 	  }
  2152 	}
  2153       }
  2154       
  2155 
  2156       typename AuxUGraph::template EdgeMap<int> angle(ugraph, -1);
  2157 
  2158       while (proper.trueNum() != 0) {
  2159 	Node n = typename IterableBoolMap<AuxUGraph, Node>::TrueIt(proper);
  2160 	proper.set(n, false);
  2161 	conn[n] = -2;
  2162 
  2163 	for (OutEdgeIt e(ugraph, n); e != INVALID; ++e) {
  2164 	  Node m = ugraph.target(e);
  2165 	  if (conn[m] == -1) {
  2166 	    conn[m] = 1;
  2167 	  } else if (conn[m] != -2) {
  2168 	    conn[m] += 1;	    
  2169 	    Edge pe = ugraph.oppositeEdge(e);
  2170 	    if (conn[ugraph.target(next[pe])] == -2) {
  2171 	      conn[m] -= 1;
  2172 	    }
  2173 	    if (conn[ugraph.target(prev[pe])] == -2) {
  2174 	      conn[m] -= 1;
  2175 	    }
  2176 
  2177 	    proper.set(m, conn[m] == 1);
  2178 	  }
  2179 	}
  2180 
  2181 	{
  2182 	  Edge e = OutEdgeIt(ugraph, n);
  2183 	  Edge p = e, l = e;
  2184 	  
  2185 	  e = next[e];
  2186 	  while (e != l) {
  2187 	    
  2188 	    if (conn[ugraph.target(e)] == -2 && conn[ugraph.target(p)] == -2) {
  2189 	      Edge f = e;
  2190 	      angle[f] = 0;
  2191 	      f = next[ugraph.oppositeEdge(f)];
  2192 	      angle[f] = 1;
  2193 	      f = next[ugraph.oppositeEdge(f)];
  2194 	      angle[f] = 2;
  2195 	    }
  2196 	    
  2197 	    p = e;
  2198 	    e = next[e];
  2199 	  }
  2200 	  
  2201 	  if (conn[ugraph.target(e)] == -2 && conn[ugraph.target(p)] == -2) {
  2202 	    Edge f = e;
  2203 	    angle[f] = 0;
  2204 	    f = next[ugraph.oppositeEdge(f)];
  2205 	    angle[f] = 1;
  2206 	    f = next[ugraph.oppositeEdge(f)];
  2207 	    angle[f] = 2;
  2208 	  }
  2209 	}
  2210       }
  2211 
  2212       typename AuxUGraph::template NodeMap<Node> apred(ugraph, INVALID);
  2213       typename AuxUGraph::template NodeMap<Node> bpred(ugraph, INVALID);
  2214       typename AuxUGraph::template NodeMap<Node> cpred(ugraph, INVALID);
  2215 
  2216       typename AuxUGraph::template NodeMap<int> apredid(ugraph, -1);
  2217       typename AuxUGraph::template NodeMap<int> bpredid(ugraph, -1);
  2218       typename AuxUGraph::template NodeMap<int> cpredid(ugraph, -1);
  2219 
  2220       for (EdgeIt e(ugraph); e != INVALID; ++e) {
  2221 	if (angle[e] == angle[next[e]]) {
  2222 	  switch (angle[e]) {
  2223 	  case 2:
  2224 	    apred[ugraph.target(e)] = ugraph.source(e);
  2225 	    apredid[ugraph.target(e)] = ugraph.id(ugraph.source(e));
  2226 	    break;
  2227 	  case 1:
  2228 	    bpred[ugraph.target(e)] = ugraph.source(e);
  2229 	    bpredid[ugraph.target(e)] = ugraph.id(ugraph.source(e));
  2230 	    break;
  2231 	  case 0:
  2232 	    cpred[ugraph.target(e)] = ugraph.source(e);
  2233 	    cpredid[ugraph.target(e)] = ugraph.id(ugraph.source(e));
  2234 	    break;
  2235 	  }
  2236 	}
  2237       }
  2238 
  2239       cpred[anode] = INVALID;
  2240       cpred[bnode] = INVALID;
  2241 
  2242       std::vector<Node> aorder, border, corder; 
  2243 
  2244       {
  2245 	typename AuxUGraph::template NodeMap<bool> processed(ugraph, false);
  2246 	std::vector<Node> st;
  2247 	for (NodeIt n(ugraph); n != INVALID; ++n) {
  2248 	  if (!processed[n] && n != bnode && n != cnode) {
  2249 	    st.push_back(n);
  2250 	    processed[n] = true;
  2251 	    Node m = apred[n];
  2252 	    while (m != INVALID && !processed[m]) {
  2253 	      st.push_back(m);
  2254 	      processed[m] = true;
  2255 	      m = apred[m];
  2256 	    }
  2257 	    while (!st.empty()) {
  2258 	      aorder.push_back(st.back());
  2259 	      st.pop_back();
  2260 	    }
  2261 	  }
  2262 	}
  2263       }
  2264 
  2265       {
  2266 	typename AuxUGraph::template NodeMap<bool> processed(ugraph, false);
  2267 	std::vector<Node> st;
  2268 	for (NodeIt n(ugraph); n != INVALID; ++n) {
  2269 	  if (!processed[n] && n != cnode && n != anode) {
  2270 	    st.push_back(n);
  2271 	    processed[n] = true;
  2272 	    Node m = bpred[n];
  2273 	    while (m != INVALID && !processed[m]) {
  2274 	      st.push_back(m);
  2275 	      processed[m] = true;
  2276 	      m = bpred[m];
  2277 	    }
  2278 	    while (!st.empty()) {
  2279 	      border.push_back(st.back());
  2280 	      st.pop_back();
  2281 	    }
  2282 	  }
  2283 	}
  2284       }
  2285 
  2286       {
  2287 	typename AuxUGraph::template NodeMap<bool> processed(ugraph, false);
  2288 	std::vector<Node> st;
  2289 	for (NodeIt n(ugraph); n != INVALID; ++n) {
  2290 	  if (!processed[n] && n != anode && n != bnode) {
  2291 	    st.push_back(n);
  2292 	    processed[n] = true;
  2293 	    Node m = cpred[n];
  2294 	    while (m != INVALID && !processed[m]) {
  2295 	      st.push_back(m);
  2296 	      processed[m] = true;
  2297 	      m = cpred[m];
  2298 	    }
  2299 	    while (!st.empty()) {
  2300 	      corder.push_back(st.back());
  2301 	      st.pop_back();
  2302 	    }
  2303 	  }
  2304 	}
  2305       }
  2306 
  2307       typename AuxUGraph::template NodeMap<int> atree(ugraph, 0);
  2308       for (int i = aorder.size() - 1; i >= 0; --i) {
  2309 	Node n = aorder[i];
  2310 	atree[n] = 1;
  2311 	for (OutEdgeIt e(ugraph, n); e != INVALID; ++e) {
  2312 	  if (apred[ugraph.target(e)] == n) {
  2313 	    atree[n] += atree[ugraph.target(e)];
  2314 	  }
  2315 	} 
  2316       }
  2317 
  2318       typename AuxUGraph::template NodeMap<int> btree(ugraph, 0);
  2319       for (int i = border.size() - 1; i >= 0; --i) {
  2320 	Node n = border[i];
  2321 	btree[n] = 1;
  2322 	for (OutEdgeIt e(ugraph, n); e != INVALID; ++e) {
  2323 	  if (bpred[ugraph.target(e)] == n) {
  2324 	    btree[n] += btree[ugraph.target(e)];
  2325 	  }
  2326 	} 
  2327       }
  2328       
  2329       typename AuxUGraph::template NodeMap<int> apath(ugraph, 0);
  2330       apath[bnode] = apath[cnode] = 1;
  2331       typename AuxUGraph::template NodeMap<int> apath_btree(ugraph, 0);
  2332       apath_btree[bnode] = btree[bnode];
  2333       for (int i = 1; i < int(aorder.size()); ++i) {
  2334 	Node n = aorder[i];
  2335 	apath[n] = apath[apred[n]] + 1;
  2336 	apath_btree[n] = btree[n] + apath_btree[apred[n]];
  2337       }
  2338 
  2339       typename AuxUGraph::template NodeMap<int> bpath_atree(ugraph, 0);
  2340       bpath_atree[anode] = atree[anode];
  2341       for (int i = 1; i < int(border.size()); ++i) {
  2342 	Node n = border[i];
  2343 	bpath_atree[n] = atree[n] + bpath_atree[bpred[n]];
  2344       }
  2345 
  2346       typename AuxUGraph::template NodeMap<int> cpath(ugraph, 0);
  2347       cpath[anode] = cpath[bnode] = 1;
  2348       typename AuxUGraph::template NodeMap<int> cpath_atree(ugraph, 0);
  2349       cpath_atree[anode] = atree[anode];
  2350       typename AuxUGraph::template NodeMap<int> cpath_btree(ugraph, 0);
  2351       cpath_btree[bnode] = btree[bnode];
  2352       for (int i = 1; i < int(corder.size()); ++i) {
  2353 	Node n = corder[i];
  2354 	cpath[n] = cpath[cpred[n]] + 1;
  2355 	cpath_atree[n] = atree[n] + cpath_atree[cpred[n]];
  2356 	cpath_btree[n] = btree[n] + cpath_btree[cpred[n]];
  2357       }
  2358 
  2359       typename AuxUGraph::template NodeMap<int> third(ugraph);
  2360       for (NodeIt n(ugraph); n != INVALID; ++n) {
  2361 	point_map[n].x = 
  2362 	  bpath_atree[n] + cpath_atree[n] - atree[n] - cpath[n] + 1;
  2363 	point_map[n].y = 
  2364 	  cpath_btree[n] + apath_btree[n] - btree[n] - apath[n] + 1;
  2365       }
  2366       
  2367     }
  2368 
  2369   public:
  2370 
  2371     /// \brief Calculates the node locations
  2372     ///
  2373     /// This function calculates the node locations.
  2374     bool run() {
  2375       PlanarEmbedding<UGraph> pe(_ugraph);
  2376       if (!pe.run()) return false;
  2377       
  2378       run(pe);
  2379       return true;
  2380     }
  2381 
  2382     /// \brief Calculates the node locations according to a
  2383     /// combinatorical embedding
  2384     ///
  2385     /// This function calculates the node locations. The \c embedding
  2386     /// parameter should contain a valid combinatorical embedding, ie.
  2387     /// a valid cyclic order of the edges.
  2388     template <typename EmbeddingMap>
  2389     void run(const EmbeddingMap& embedding) {
  2390       typedef SmartUEdgeSet<UGraph> AuxUGraph; 
  2391 
  2392       if (3 * countNodes(_ugraph) - 6 == countUEdges(_ugraph)) {
  2393 	drawing(_ugraph, embedding, _point_map);
  2394 	return;
  2395       }
  2396 
  2397       AuxUGraph aux_ugraph(_ugraph);
  2398       typename AuxUGraph::template EdgeMap<typename AuxUGraph::Edge> 
  2399 	aux_embedding(aux_ugraph);
  2400 
  2401       {
  2402 
  2403 	typename UGraph::template UEdgeMap<typename AuxUGraph::UEdge> 
  2404 	  ref(_ugraph);
  2405 	
  2406 	for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
  2407 	  ref[e] = aux_ugraph.addEdge(_ugraph.source(e), _ugraph.target(e));
  2408 	}
  2409 
  2410 	for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
  2411 	  Edge ee = embedding[_ugraph.direct(e, true)];
  2412 	  aux_embedding[aux_ugraph.direct(ref[e], true)] = 
  2413 	    aux_ugraph.direct(ref[ee], _ugraph.direction(ee));
  2414 	  ee = embedding[_ugraph.direct(e, false)];
  2415 	  aux_embedding[aux_ugraph.direct(ref[e], false)] = 
  2416 	    aux_ugraph.direct(ref[ee], _ugraph.direction(ee));
  2417 	}
  2418       }
  2419       _planarity_bits::makeConnected(aux_ugraph, aux_embedding);
  2420       _planarity_bits::makeBiNodeConnected(aux_ugraph, aux_embedding);
  2421       _planarity_bits::makeMaxPlanar(aux_ugraph, aux_embedding);
  2422       drawing(aux_ugraph, aux_embedding, _point_map);
  2423     }
  2424 
  2425     /// \brief The coordinate of the given node
  2426     ///
  2427     /// The coordinate of the given node.
  2428     Point operator[](const Node& node) {
  2429       return _point_map[node];
  2430     }
  2431 
  2432     /// \brief Returns the grid embedding in a \e NodeMap.
  2433     ///
  2434     /// Returns the grid embedding in a \e NodeMap of \c dim2::Point<int> .
  2435     const PointMap& coords() const {
  2436       return _point_map;
  2437     }
  2438 
  2439   private:
  2440     
  2441     const UGraph& _ugraph;
  2442     PointMap _point_map;
  2443     
  2444   };
  2445 
  2446   namespace _planarity_bits {
  2447 
  2448     template <typename ColorMap>
  2449     class KempeFilter {
  2450     public:
  2451       typedef typename ColorMap::Key Key;
  2452       typedef bool Value;
  2453 
  2454       KempeFilter(const ColorMap& color_map, 
  2455 		  const typename ColorMap::Value& first,
  2456 		  const typename ColorMap::Value& second)
  2457 	: _color_map(color_map), _first(first), _second(second) {}
  2458 
  2459       Value operator[](const Key& key) const {
  2460 	return _color_map[key] == _first || _color_map[key] == _second;
  2461       }
  2462 
  2463     private:
  2464       const ColorMap& _color_map;
  2465       typename ColorMap::Value _first, _second;
  2466     };
  2467   }
  2468 
  2469   /// \ingroup planar
  2470   ///
  2471   /// \brief Coloring planar graphs
  2472   ///
  2473   /// The graph coloring problem is the coloring of the graph nodes
  2474   /// such way that there are not adjacent nodes with the same
  2475   /// color. The planar graphs can be always colored with four colors,
  2476   /// it is proved by Appel and Haken and their proofs provide a
  2477   /// quadratic time algorithm for four coloring, but it could not be
  2478   /// used to implement efficient algorithm. The five and six coloring
  2479   /// can be made in linear time, but in this class the five coloring
  2480   /// has quadratic worst case time complexity. The two coloring (if
  2481   /// possible) is solvable with a graph search algorithm and it is
  2482   /// implemented in \ref bipartitePartitions() function in Lemon. To
  2483   /// decide whether the planar graph is three colorable is
  2484   /// NP-complete.
  2485   ///
  2486   /// This class contains member functions for calculate colorings
  2487   /// with five and six colors. The six coloring algorithm is a simple
  2488   /// greedy coloring on the backward minimum outgoing order of nodes.
  2489   /// This order can be computed such way, that in each phase the node
  2490   /// with least outgoing edges to unprocessed nodes is choosen. This
  2491   /// order guarantees that at the time of coloring of a node it has
  2492   /// at most five already colored adjacents. The five coloring
  2493   /// algorithm works in the same way, but if the greedy approach
  2494   /// fails to color with five color, ie. the node has five already
  2495   /// different colored neighbours, it swaps the colors in one
  2496   /// connected two colored set with the Kempe recoloring method.
  2497   template <typename UGraph>
  2498   class PlanarColoring {
  2499   public:
  2500 
  2501     UGRAPH_TYPEDEFS(typename UGraph);
  2502 
  2503     /// \brief The map type for store color indexes
  2504     typedef typename UGraph::template NodeMap<int> IndexMap;
  2505     /// \brief The map type for store colors
  2506     typedef ComposeMap<Palette, IndexMap> ColorMap;
  2507 
  2508     /// \brief Constructor
  2509     ///
  2510     /// Constructor
  2511     /// \pre The ugraph should be simple, ie. loop and parallel edge free. 
  2512     PlanarColoring(const UGraph& ugraph)
  2513       : _ugraph(ugraph), _color_map(ugraph), _palette(0) {
  2514       _palette.add(Color(1,0,0));
  2515       _palette.add(Color(0,1,0));
  2516       _palette.add(Color(0,0,1));
  2517       _palette.add(Color(1,1,0));
  2518       _palette.add(Color(1,0,1));
  2519       _palette.add(Color(0,1,1));
  2520     }
  2521 
  2522     /// \brief Returns the \e NodeMap of color indexes
  2523     ///
  2524     /// Returns the \e NodeMap of color indexes. The values are in the
  2525     /// range \c [0..4] or \c [0..5] according to the five coloring or 
  2526     /// six coloring.
  2527     IndexMap colorIndexMap() const {
  2528       return _color_map;
  2529     }
  2530 
  2531     /// \brief Returns the \e NodeMap of colors
  2532     ///
  2533     /// Returns the \e NodeMap of colors. The values are five or six
  2534     /// distinct \ref lemon::Color "colors".
  2535     ColorMap colorMap() const {
  2536       return composeMap(_palette, _color_map);
  2537     }
  2538 
  2539     /// \brief Returns the color index of the node
  2540     ///
  2541     /// Returns the color index of the node. The values are in the
  2542     /// range \c [0..4] or \c [0..5] according to the five coloring or
  2543     /// six coloring.
  2544     int colorIndex(const Node& node) const {
  2545       return _color_map[node];
  2546     }
  2547 
  2548     /// \brief Returns the color of the node
  2549     ///
  2550     /// Returns the color of the node. The values are five or six
  2551     /// distinct \ref lemon::Color "colors".
  2552     int color(const Node& node) const {
  2553       return _palette[_color_map[node]];
  2554     }
  2555     
  2556 
  2557     /// \brief Calculates a coloring with at most six colors
  2558     ///
  2559     /// This function calculates a coloring with at most six colors. The time
  2560     /// complexity of this variant is linear in the size of the graph.
  2561     /// \return %True when the algorithm could color the graph with six color.
  2562     /// If the algorithm fails, then the graph could not be planar.
  2563     bool runSixColoring() {
  2564       
  2565       typename UGraph::template NodeMap<int> heap_index(_ugraph, -1);
  2566       BucketHeap<typename UGraph::template NodeMap<int> > heap(heap_index);
  2567       
  2568       for (NodeIt n(_ugraph); n != INVALID; ++n) {
  2569 	_color_map[n] = -2;
  2570 	heap.push(n, countOutEdges(_ugraph, n));
  2571       }
  2572       
  2573       std::vector<Node> order;
  2574       
  2575       while (!heap.empty()) {
  2576 	Node n = heap.top();
  2577 	heap.pop();
  2578 	_color_map[n] = -1;
  2579 	order.push_back(n);
  2580 	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  2581 	  Node t = _ugraph.runningNode(e); 
  2582 	  if (_color_map[t] == -2) {
  2583 	    heap.decrease(t, heap[t] - 1);
  2584 	  }
  2585 	}
  2586       }
  2587 
  2588       for (int i = order.size() - 1; i >= 0; --i) {
  2589 	std::vector<bool> forbidden(6, false);
  2590 	for (OutEdgeIt e(_ugraph, order[i]); e != INVALID; ++e) {
  2591 	  Node t = _ugraph.runningNode(e); 
  2592 	  if (_color_map[t] != -1) {
  2593 	    forbidden[_color_map[t]] = true;
  2594 	  }
  2595 	}
  2596        	for (int k = 0; k < 6; ++k) {
  2597 	  if (!forbidden[k]) {
  2598 	    _color_map[order[i]] = k;
  2599 	    break;
  2600 	  }
  2601 	}
  2602 	if (_color_map[order[i]] == -1) {
  2603 	  return false;
  2604 	}
  2605       }
  2606       return true;
  2607     }
  2608 
  2609   private:
  2610 
  2611     bool recolor(const Node& u, const Node& v) {
  2612       int ucolor = _color_map[u];
  2613       int vcolor = _color_map[v];
  2614       typedef _planarity_bits::KempeFilter<IndexMap> KempeFilter;
  2615       KempeFilter filter(_color_map, ucolor, vcolor);
  2616 
  2617       typedef NodeSubUGraphAdaptor<const UGraph, const KempeFilter> KempeUGraph;
  2618       KempeUGraph kempe_ugraph(_ugraph, filter);
  2619       
  2620       std::vector<Node> comp;
  2621       Bfs<KempeUGraph> bfs(kempe_ugraph);
  2622       bfs.init();
  2623       bfs.addSource(u);
  2624       while (!bfs.emptyQueue()) {
  2625 	Node n = bfs.nextNode();
  2626 	if (n == v) return false;
  2627 	comp.push_back(n);
  2628 	bfs.processNextNode();
  2629       }
  2630 
  2631       int scolor = ucolor + vcolor;
  2632       for (int i = 0; i < static_cast<int>(comp.size()); ++i) {
  2633 	_color_map[comp[i]] = scolor - _color_map[comp[i]]; 
  2634       }
  2635 
  2636       return true;
  2637     }
  2638 
  2639     template <typename EmbeddingMap>
  2640     void kempeRecoloring(const Node& node, const EmbeddingMap& embedding) {
  2641       std::vector<Node> nodes;
  2642       nodes.reserve(4);
  2643 
  2644       for (Edge e = OutEdgeIt(_ugraph, node); e != INVALID; e = embedding[e]) {
  2645 	Node t = _ugraph.target(e); 
  2646 	if (_color_map[t] != -1) {
  2647 	  nodes.push_back(t);
  2648 	  if (nodes.size() == 4) break;
  2649 	}
  2650       }
  2651       
  2652       int color = _color_map[nodes[0]];
  2653       if (recolor(nodes[0], nodes[2])) {
  2654 	_color_map[node] = color;
  2655       } else {
  2656 	color = _color_map[nodes[1]];
  2657 	recolor(nodes[1], nodes[3]);
  2658 	_color_map[node] = color;
  2659       }
  2660     }
  2661 
  2662   public:
  2663 
  2664     /// \brief Calculates a coloring with at most five colors
  2665     ///
  2666     /// This function calculates a coloring with at most five
  2667     /// colors. The wirst case time complexity of this variant is
  2668     /// quadratic in the size of the graph.
  2669     template <typename EmbeddingMap>
  2670     void runFiveColoring(const EmbeddingMap& embedding) {
  2671       
  2672       typename UGraph::template NodeMap<int> heap_index(_ugraph, -1);
  2673       BucketHeap<typename UGraph::template NodeMap<int> > heap(heap_index);
  2674       
  2675       for (NodeIt n(_ugraph); n != INVALID; ++n) {
  2676 	_color_map[n] = -2;
  2677 	heap.push(n, countOutEdges(_ugraph, n));
  2678       }
  2679       
  2680       std::vector<Node> order;
  2681       
  2682       while (!heap.empty()) {
  2683 	Node n = heap.top();
  2684 	heap.pop();
  2685 	_color_map[n] = -1;
  2686 	order.push_back(n);
  2687 	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  2688 	  Node t = _ugraph.runningNode(e); 
  2689 	  if (_color_map[t] == -2) {
  2690 	    heap.decrease(t, heap[t] - 1);
  2691 	  }
  2692 	}
  2693       }
  2694 
  2695       for (int i = order.size() - 1; i >= 0; --i) {
  2696 	std::vector<bool> forbidden(5, false);
  2697 	for (OutEdgeIt e(_ugraph, order[i]); e != INVALID; ++e) {
  2698 	  Node t = _ugraph.runningNode(e); 
  2699 	  if (_color_map[t] != -1) {
  2700 	    forbidden[_color_map[t]] = true;
  2701 	  }
  2702 	}
  2703 	for (int k = 0; k < 5; ++k) {
  2704 	  if (!forbidden[k]) {
  2705 	    _color_map[order[i]] = k;
  2706 	    break;
  2707 	  }
  2708 	}
  2709 	if (_color_map[order[i]] == -1) {
  2710 	  kempeRecoloring(order[i], embedding);
  2711 	}
  2712       }
  2713     }
  2714 
  2715     /// \brief Calculates a coloring with at most five colors
  2716     ///
  2717     /// This function calculates a coloring with at most five
  2718     /// colors. The worst case time complexity of this variant is
  2719     /// quadratic in the size of the graph, but it most cases it does
  2720     /// not have to use Kempe recoloring method, in this case it is
  2721     /// equivalent with the runSixColoring() algorithm.
  2722     /// \return %True when the graph is planar.
  2723     bool runFiveColoring() {
  2724       PlanarEmbedding<UGraph> pe(_ugraph);
  2725       if (!pe.run()) return false;
  2726       
  2727       runFiveColoring(pe.embeddingMap());
  2728       return true;
  2729     }
  2730 
  2731   private:
  2732     
  2733     const UGraph& _ugraph;
  2734     IndexMap _color_map;
  2735     Palette _palette;
  2736   };
  2737 
  2738 }
  2739 
  2740 #endif