lemon/euler.h
author deba
Mon, 03 Apr 2006 09:45:23 +0000
changeset 2031 080d51024ac5
parent 1979 c2992fd74dad
child 2350 eb371753e814
permissions -rw-r--r--
Correcting the structure of the graph's and adaptor's map.
The template assign operators and map iterators can be used for adaptors also.

Some bugfix in the adaptors

New class SwapBpUGraphAdaptor which swaps the two nodeset of the graph.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #include<lemon/bits/invalid.h>
    20 #include<lemon/topology.h>
    21 #include <list>
    22 
    23 /// \ingroup topology
    24 /// \file
    25 /// \brief Euler tour
    26 ///
    27 ///This file provides an Euler tour iterator and ways to check
    28 ///if a graph is euler.
    29 
    30 
    31 namespace lemon {
    32 
    33   ///Euler iterator for directed graphs.
    34 
    35   /// \ingroup topology
    36   ///This iterator converts to the \c Edge type of the graph and using
    37   ///operator ++ it provides an Euler tour of a \e directed
    38   ///graph (if there exists).
    39   ///
    40   ///For example
    41   ///if the given graph if Euler (i.e it has only one nontrivial component
    42   ///and the in-degree is equal to the out-degree for all nodes),
    43   ///the following code will put the edges of \c g
    44   ///to the vector \c et according to an
    45   ///Euler tour of \c g.
    46   ///\code
    47   ///  std::vector<ListGraph::Edge> et;
    48   ///  for(EulerIt<ListGraph> e(g),e!=INVALID;++e)
    49   ///    et.push_back(e);
    50   ///\endcode
    51   ///If \c g is not Euler then the resulted tour will not be full or closed.
    52   ///\sa UEulerIt
    53   ///\todo Test required
    54   template<class Graph>
    55   class EulerIt 
    56   {
    57     typedef typename Graph::Node Node;
    58     typedef typename Graph::NodeIt NodeIt;
    59     typedef typename Graph::Edge Edge;
    60     typedef typename Graph::EdgeIt EdgeIt;
    61     typedef typename Graph::OutEdgeIt OutEdgeIt;
    62     typedef typename Graph::InEdgeIt InEdgeIt;
    63     
    64     const Graph &g;
    65     typename Graph::NodeMap<OutEdgeIt> nedge;
    66     std::list<Edge> euler;
    67 
    68   public:
    69     
    70     ///Constructor
    71 
    72     ///\param _g A directed graph.
    73     ///\param start The starting point of the tour. If it is not given
    74     ///       the tour will start from the first node.
    75     EulerIt(const Graph &_g,typename Graph::Node start=INVALID)
    76       : g(_g), nedge(g)
    77     {
    78       if(start==INVALID) start=NodeIt(g);
    79       for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutEdgeIt(g,n);
    80       while(nedge[start]!=INVALID) {
    81 	euler.push_back(nedge[start]);
    82 	Node next=g.target(nedge[start]);
    83 	++nedge[start];
    84 	start=next;
    85       }
    86     }
    87     
    88     ///Edge Conversion
    89     operator Edge() { return euler.empty()?INVALID:euler.front(); }
    90     bool operator==(Invalid) { return euler.empty(); }
    91     bool operator!=(Invalid) { return !euler.empty(); }
    92     
    93     ///Next edge of the tour
    94     EulerIt &operator++() {
    95       Node s=g.target(euler.front());
    96       euler.pop_front();
    97       //This produces a warning.Strange.
    98       //std::list<Edge>::iterator next=euler.begin();
    99       typename std::list<Edge>::iterator next=euler.begin();
   100       while(nedge[s]!=INVALID) {
   101 	euler.insert(next,nedge[s]);
   102 	Node n=g.target(nedge[s]);
   103 	++nedge[s];
   104 	s=n;
   105       }
   106       return *this;
   107     }
   108     ///Postfix incrementation
   109     
   110     ///\warning This incrementation
   111     ///returns an \c Edge, not an \ref EulerIt, as one may
   112     ///expect.
   113     Edge operator++(int) 
   114     {
   115       Edge e=*this;
   116       ++(*this);
   117       return e;
   118     }
   119   };
   120 
   121   ///Euler iterator for undirected graphs.
   122 
   123   /// \ingroup topology
   124   ///This iterator converts to the \c Edge (or \cUEdge)
   125   ///type of the graph and using
   126   ///operator ++ it provides an Euler tour of an \undirected
   127   ///graph (if there exists).
   128   ///
   129   ///For example
   130   ///if the given graph if Euler (i.e it has only one nontrivial component
   131   ///and the degree of each node is even),
   132   ///the following code will print the edge IDs according to an
   133   ///Euler tour of \c g.
   134   ///\code
   135   ///  for(UEulerIt<ListUGraph> e(g),e!=INVALID;++e) {
   136   ///    std::cout << g.id(UEdge(e)) << std::eol;
   137   ///  }
   138   ///\endcode
   139   ///Although the iterator provides an Euler tour of an undirected graph,
   140   ///in order to indicate the direction of the tour, UEulerIt
   141   ///returns directed edges (that convert to the undirected ones, of course).
   142   ///
   143   ///If \c g is not Euler then the resulted tour will not be full or closed.
   144   ///\sa EulerIt
   145   ///\todo Test required
   146   template<class Graph>
   147   class UEulerIt
   148   {
   149     typedef typename Graph::Node Node;
   150     typedef typename Graph::NodeIt NodeIt;
   151     typedef typename Graph::Edge Edge;
   152     typedef typename Graph::EdgeIt EdgeIt;
   153     typedef typename Graph::OutEdgeIt OutEdgeIt;
   154     typedef typename Graph::InEdgeIt InEdgeIt;
   155     
   156     const Graph &g;
   157     typename Graph::NodeMap<OutEdgeIt> nedge;
   158     typename Graph::UEdgeMap<bool> visited;
   159     std::list<Edge> euler;
   160 
   161   public:
   162     
   163     ///Constructor
   164 
   165     ///\param _g An undirected graph.
   166     ///\param start The starting point of the tour. If it is not given
   167     ///       the tour will start from the first node.
   168     UEulerIt(const Graph &_g,typename Graph::Node start=INVALID)
   169       : g(_g), nedge(g), visited(g,false)
   170     {
   171       if(start==INVALID) start=NodeIt(g);
   172       for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutEdgeIt(g,n);
   173       while(nedge[start]!=INVALID) {
   174 	euler.push_back(nedge[start]);
   175 	Node next=g.target(nedge[start]);
   176 	++nedge[start];
   177 	start=next;	while(nedge[start]!=INVALID && visited[nedge[start]]) ++nedge[start];
   178       }
   179     }
   180     
   181     ///Edge Conversion
   182     operator Edge() { return euler.empty()?INVALID:euler.front(); }
   183     bool operator==(Invalid) { return euler.empty(); }
   184     bool operator!=(Invalid) { return !euler.empty(); }
   185     
   186     ///Next edge of the tour
   187     UEulerIt &operator++() {
   188       Node s=g.target(euler.front());
   189       euler.pop_front();
   190       typename std::list<Edge>::iterator next=euler.begin();
   191 
   192       while(nedge[s]!=INVALID) {
   193 	while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s];
   194 	if(nedge[s]==INVALID) break;
   195 	else {
   196 	  euler.insert(next,nedge[s]);
   197 	  Node n=g.target(nedge[s]);
   198 	  ++nedge[s];
   199 	  s=n;
   200 	}
   201       }
   202       return *this;
   203     }
   204     
   205     ///Postfix incrementation
   206     
   207     ///\warning This incrementation
   208     ///returns an \c Edge, not an \ref UEulerIt, as one may
   209     ///expect.
   210     Edge operator++(int) 
   211     {
   212       Edge e=*this;
   213       ++(*this);
   214       return e;
   215     }
   216   };
   217 
   218 
   219   ///Checks if the graph is Euler
   220 
   221   /// \ingroup topology
   222   ///Checks if the graph is Euler. It works for both directed and
   223   ///undirected graphs.
   224   ///\note By definition, a directed graph is called \e Euler if
   225   ///and only if connected and the number of it is incoming and outgoing edges
   226   ///are the same for each node.
   227   ///Similarly, an undirected graph is called \e Euler if
   228   ///and only if it is connected and the number of incident edges is even
   229   ///for each node. <em>Therefore, there are graphs which are not Euler, but
   230   ///still have an Euler tour</em>.
   231   ///\todo Test required
   232   template<class Graph>
   233 #ifdef DOXYGEN
   234   bool
   235 #else
   236   typename enable_if<UndirectedTagIndicator<Graph>,bool>::type
   237   euler(const Graph &g) 
   238   {
   239     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
   240       if(countIncEdges(g,n)%2) return false;
   241     return connected(g);
   242   }
   243   template<class Graph>
   244   typename disable_if<UndirectedTagIndicator<Graph>,bool>::type
   245 #endif
   246   euler(const Graph &g) 
   247   {
   248     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
   249       if(countInEdges(g,n)!=countOutEdges(g,n)) return false;
   250     return connected(g);
   251   }
   252   
   253 }