src/work/marci_max_flow.hh
author marci
Mon, 12 Jan 2004 11:49:16 +0000
changeset 12 0810e3fc64a4
child 14 99014d576aed
permissions -rw-r--r--
.
     1 #ifndef MARCI_MAX_FLOW_HH
     2 #define MARCI_MAX_FLOW_HH
     3 
     4 #include <algorithm>
     5 
     6 #include <marci_graph_traits.hh>
     7 #include <marci_property_vector.hh>
     8 #include <marci_bfs.hh>
     9 
    10 namespace marci {
    11 
    12   template<typename graph_type, typename T>
    13   class res_graph_type { 
    14     typedef typename graph_traits<graph_type>::node_iterator node_iterator;
    15     typedef typename graph_traits<graph_type>::edge_iterator edge_iterator;
    16     typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
    17     typedef typename graph_traits<graph_type>::sym_edge_iterator sym_edge_iterator;
    18 
    19     graph_type& G;
    20     edge_property_vector<graph_type, T>& flow;
    21     edge_property_vector<graph_type, T>& capacity;
    22   public:
    23     res_graph_type(graph_type& _G, edge_property_vector<graph_type, T>& _flow, edge_property_vector<graph_type, T>& _capacity) : G(_G), flow(_flow), capacity(_capacity) { }
    24 
    25     class res_edge_it {
    26       friend class res_graph_type<graph_type, T>;
    27     protected:
    28       res_graph_type<graph_type, T>* resG;
    29       sym_edge_iterator sym;
    30     public:
    31       res_edge_it() { }
    32       //bool is_free() {  
    33       //if (resG->G.a_node(sym)==resG->G.tail(sym)) { 
    34       //  return (resG->flow.get(sym)<resG->capacity.get(sym)); 
    35       //} else { 
    36       //  return (resG->flow.get(sym)>0); 
    37       //}
    38       //}
    39       T free() { 
    40 	if (resG->G.a_node(sym)==resG->G.tail(sym)) { 
    41 	  return (resG->capacity.get(sym)-resG->flow.get(sym)); 
    42 	} else { 
    43 	  return (resG->flow.get(sym)); 
    44 	}
    45       }
    46       bool is_valid() { return sym.is_valid(); }
    47       void augment(T a) {
    48 	if (resG->G.a_node(sym)==resG->G.tail(sym)) { 
    49 	  resG->flow.put(sym, resG->flow.get(sym)+a);
    50 	} else { 
    51 	  resG->flow.put(sym, resG->flow.get(sym)-a);
    52 	}
    53       }
    54     };
    55 
    56     class res_out_edge_it : public res_edge_it {
    57     public:
    58       res_out_edge_it() { }
    59       res_out_edge_it(res_graph_type<graph_type, T>& _resG, const node_iterator& v) { 
    60       	resG=&_resG;
    61 	sym=resG->G.first_sym_edge(v);
    62 	while( sym.is_valid() && !(free()>0) ) { ++sym; }
    63       }
    64       res_out_edge_it& operator++() { 
    65 	++sym; 
    66 	while( sym.is_valid() && !(free()>0) ) { ++sym; }
    67 	return *this; 
    68       }
    69     };
    70 
    71     res_out_edge_it first_out_edge(const node_iterator& v) {
    72       return res_out_edge_it(*this, v);
    73     }
    74 
    75     each_node_iterator first_node() {
    76       return G.first_node();
    77     }
    78 
    79     node_iterator tail(const res_edge_it& e) { return G.a_node(e.sym); }
    80     node_iterator head(const res_edge_it& e) { return G.b_node(e.sym); }
    81 
    82     int id(const node_iterator& v) { return G.id(v); }
    83 
    84     node_iterator invalid_node() { return G.invalid_node(); }
    85     res_edge_it invalid_edge() { res_edge_it n; n.sym=G.invalid_sym_edge(); return n; }
    86     
    87   };
    88 
    89   template <typename graph_type, typename T>
    90   struct graph_traits< res_graph_type<graph_type, T> > {
    91     typedef typename graph_traits<graph_type>::node_iterator node_iterator;
    92     typedef typename res_graph_type<graph_type, T>::res_edge_it edge_iterator;
    93     typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
    94     typedef typename res_graph_type<graph_type, T>::res_out_edge_it out_edge_iterator;
    95   };
    96 
    97   template <typename graph_type, typename pred_type, typename free_type>
    98   struct flow_visitor {
    99     typedef typename graph_traits<graph_type>::node_iterator node_iterator;
   100     typedef typename graph_traits<graph_type>::edge_iterator edge_iterator;
   101     typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
   102     typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
   103     graph_type& G;
   104     pred_type& pred;
   105     free_type& free;
   106     flow_visitor(graph_type& _G, pred_type& _pred, free_type& _free) : G(_G), pred(_pred), free(_free) { }
   107     void at_previously_reached(out_edge_iterator& e) { 
   108       //node_iterator v=G.tail(e);
   109       //node_iterator w=G.head(e);
   110       //std::cout<<G.id(v)<<"->"<<G.id(w)<<", "<<G.id(w)<<" is already reached";
   111       //std::cout<<std::endl;
   112    }
   113     void at_newly_reached(out_edge_iterator& e) { 
   114       node_iterator v=G.tail(e);
   115       node_iterator w=G.head(e);
   116       //std::cout<<G.id(v)<<"->"<<G.id(w)<<", "<<G.id(w)<<" is newly reached";
   117       pred.put(w, e);
   118       if (pred.get(v).is_valid()) {
   119 	free.put(w, std::min(free.get(v), e.free()));
   120 	//std::cout <<" nem elso csucs: ";
   121 	//std::cout <<"szabad kap eddig: "<< free.get(w) << " ";
   122       } else {
   123 	free.put(w, e.free()); 
   124 	//std::cout <<" elso csucs: ";
   125 	//std::cout <<"szabad kap eddig: "<< free.get(w) << " ";
   126       }
   127       //std::cout<<std::endl;
   128     }
   129   };
   130 
   131   template <typename graph_type, typename T>
   132   struct max_flow_type {
   133     
   134     typedef typename graph_traits<graph_type>::node_iterator node_iterator;
   135     typedef typename graph_traits<graph_type>::edge_iterator edge_iterator;
   136     typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
   137     typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
   138     typedef typename graph_traits<graph_type>::in_edge_iterator in_edge_iterator;
   139 
   140     graph_type& G;
   141     node_iterator s;
   142     node_iterator t;
   143     edge_property_vector<graph_type, T> flow;
   144     edge_property_vector<graph_type, T>& capacity;
   145 
   146     max_flow_type(graph_type& _G, node_iterator _s, node_iterator _t, edge_property_vector<graph_type, T>& _capacity) : G(_G), s(_s), t(_t), flow(_G), capacity(_capacity) { 
   147       for(each_node_iterator i=G.first_node(); i.is_valid(); ++i) 
   148 	for(out_edge_iterator j=G.first_out_edge(i); j.is_valid(); ++j) 
   149 	  flow.put(j, 0);
   150     }
   151     void run() {
   152       typedef res_graph_type<graph_type, T> aug_graph_type;
   153       aug_graph_type res_graph(G, flow, capacity);
   154 
   155       typedef std::queue<graph_traits<aug_graph_type>::out_edge_iterator> bfs_queue_type;
   156       bfs_queue_type bfs_queue;
   157       //bfs_queue.push(res_graph.first_out_edge(s));
   158 
   159       typedef node_property_vector<aug_graph_type, bool> reached_type;
   160       //reached_type reached(res_graph, false);
   161       reached_type reached(res_graph);
   162       //reached.put(s, true);
   163 
   164       typedef node_property_vector<aug_graph_type, graph_traits<aug_graph_type>::edge_iterator> pred_type;
   165       pred_type pred(res_graph);
   166       pred.put(s, res_graph.invalid_edge());
   167       
   168       typedef node_property_vector<aug_graph_type, int> free_type;
   169       free_type free(res_graph);
   170 
   171       typedef flow_visitor<aug_graph_type, pred_type, free_type> visitor_type;
   172       visitor_type vis(res_graph, pred, free);
   173       
   174       bfs_iterator< aug_graph_type, reached_type, visitor_type > 
   175 	res_bfs(res_graph, bfs_queue, reached, vis);
   176 
   177       //for(graph_traits<aug_graph_type>::each_node_iterator i=res_graph.first_node(); i.is_valid(); ++i) { 
   178       //for(graph_traits<aug_graph_type>::out_edge_iterator j=res_graph.first_out_edge(i); j.is_valid(); ++j) {
   179       //  std::cout<<"("<<res_graph.tail(j)<< "->"<<res_graph.head(j)<<") ";
   180       //}
   181       //}
   182       //std::cout<<std::endl;
   183 
   184       //char c; 
   185       bool augment;
   186       do {
   187 	augment=false;
   188 	
   189 	while (!bfs_queue.empty()) { bfs_queue.pop(); }
   190 	bfs_queue.push(res_graph.first_out_edge(s));
   191 	
   192 	for(graph_traits<aug_graph_type>::each_node_iterator i=res_graph.first_node(); i.is_valid(); ++i) { reached.put(i, false); }
   193 	reached.put(s, true); 
   194 	
   195 	//searching for augmenting path
   196 	while ( /*std::cin>>c &&*/ res_bfs.is_valid() ) { 
   197 	  res_bfs.process(); 
   198 	  //if (res_graph.head(graph_traits<aug_graph_type>::out_edge_iterator(res_bfs))==t) break;
   199 	  if (res_graph.head(res_bfs)==t) break;
   200 	  //res_bfs.next();
   201 	  ++res_bfs;
   202 	}
   203 	//for (; std::cin>>c && !res_bfs.finished() && res_graph.head(res_bfs.current())!=t; res_bfs.next()) { res_bfs.process(); } 
   204 	if (reached.get(t)) {
   205 	  augment=true;
   206 	  node_iterator n=t;
   207 	  T augment_value=free.get(t);
   208 	  std::cout<<"augmentation: ";
   209 	  while (pred.get(n).is_valid()) { 
   210 	    graph_traits<aug_graph_type>::edge_iterator e=pred.get(n);
   211 	    e.augment(augment_value); 
   212 	    std::cout<<"("<<res_graph.tail(e)<< "->"<<res_graph.head(e)<<") ";
   213 	    n=res_graph.tail(e);
   214 	  }
   215 	  std::cout<<std::endl;
   216 	}
   217 
   218 	std::cout << "max flow:"<< std::endl;
   219 	for(graph_traits<graph_type>::each_edge_iterator e=G.first_edge(); e.is_valid(); ++e) { 
   220 	  std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
   221 	}
   222 	std::cout<<std::endl;
   223 
   224       } while (augment);
   225     }
   226   };
   227 
   228 } // namespace marci
   229 
   230 #endif //MARCI_MAX_FLOW_HH