src/work/jacint/max_matching.h
author marci
Tue, 11 May 2004 17:02:32 +0000
changeset 612 0856a9a87eb9
parent 582 04cd483c2dbc
child 682 1ea8162ce638
permissions -rw-r--r--
BidirGraph, UndirGraph some docs, in group graphs
     1 // -*- C++ -*-
     2 #ifndef HUGO_MAX_MATCHING_H
     3 #define HUGO_MAX_MATCHING_H
     4 
     5 ///\ingroup galgs
     6 ///\file
     7 ///\brief Maximum matching algorithm.
     8 
     9 #include <queue>
    10 
    11 #include <invalid.h>
    12 #include <unionfind.h>
    13 
    14 namespace hugo {
    15 
    16   /// \addtogroup galgs
    17   /// @{
    18 
    19   ///Maximum matching algorithms class.
    20 
    21   ///This class provides Edmonds' alternating forest matching
    22   ///algorithm. The starting matching (if any) can be passed to the
    23   ///algorithm using read-in functions \ref readNMapNode, \ref
    24   ///readNMapEdge or \ref readEMapBool depending on the container. The
    25   ///resulting maximum matching can be attained by write-out functions
    26   ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
    27   ///depending on the preferred container. 
    28 
    29   ///The dual side of a mathcing is a map of the nodes to
    30   ///MaxMatching::pos_enum, having values D, A and C showing the
    31   ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
    32   ///a graph with factor-critical components, the nodes in A form the
    33   ///barrier, and the nodes in C induce a graph having a perfect
    34   ///matching. This decomposition can be attained by calling \ref
    35   ///writePos after running the algorithm. Before subsequent runs,
    36   ///the function \ref resetPos() must be called.
    37 
    38   ///\param Graph The undirected graph type the algorithm runs on.
    39 
    40   ///\author Jacint Szabo  
    41   template <typename Graph>
    42   class MaxMatching {
    43     typedef typename Graph::Node Node;
    44     typedef typename Graph::Edge Edge;
    45     typedef typename Graph::EdgeIt EdgeIt;
    46     typedef typename Graph::NodeIt NodeIt;
    47     typedef typename Graph::OutEdgeIt OutEdgeIt;
    48 
    49     typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
    50 
    51   public:
    52     
    53     ///Indicates the Gallai-Edmonds decomposition of the graph.
    54 
    55     ///Indicates the Gallai-Edmonds decomposition of the graph, which
    56     ///shows an upper bound on the size of a maximum matching. The
    57     ///nodes with pos_enum \c D induce a graph with factor-critical
    58     ///components, the nodes in \c A form the canonical barrier, and the
    59     ///nodes in \c C induce a graph having a perfect matching. 
    60     enum pos_enum {
    61       D=0,
    62       A=1,
    63       C=2
    64     }; 
    65 
    66   private:
    67 
    68     const Graph& G;
    69     typename Graph::template NodeMap<Node> mate;
    70     typename Graph::template NodeMap<pos_enum> position;
    71      
    72   public:
    73     
    74     MaxMatching(const Graph& _G) : G(_G), mate(_G,INVALID), position(_G,C) {}
    75 
    76     ///Runs Edmonds' algorithm.
    77 
    78     ///Runs Edmonds' algorithm for sparse graphs (edgeNum >=
    79     ///2*nodeNum), and a heuristical Edmonds' algorithm with a
    80     ///heuristic of postponing shrinks for dense graphs. \pre Before
    81     ///the subsequent calls \ref resetPos must be called.
    82     inline void run();
    83 
    84     ///Runs Edmonds' algorithm.
    85     
    86     ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
    87     ///Edmonds' algorithm with a heuristic of postponing shrinks,
    88     ///giving a faster algorithm for dense graphs.  \pre Before the
    89     ///subsequent calls \ref resetPos must be called.
    90     void runEdmonds( int heur );
    91 
    92     ///Finds a greedy matching starting from the actual matching.
    93     
    94     ///Starting form the actual matching stored, it finds a maximal
    95     ///greedy matching.
    96     void greedyMatching();
    97 
    98     ///Returns the size of the actual matching stored.
    99 
   100     ///Returns the size of the actual matching stored. After \ref
   101     ///run() it returns the size of a maximum matching in the graph.
   102     int size () const;
   103 
   104     ///Resets the map storing the Gallai-Edmonds decomposition.
   105     
   106     ///Resets the map storing the Gallai-Edmonds decomposition of the
   107     ///graph, making it possible to run the algorithm. Must be called
   108     ///before all runs of the Edmonds algorithm, except for the first
   109     ///run.
   110     void resetPos();
   111 
   112     ///Resets the actual matching to the empty matching.
   113 
   114     ///Resets the actual matching to the empty matching.  
   115     ///
   116     void resetMatching();
   117 
   118     ///Reads a matching from a \c Node map of \c Nodes.
   119 
   120     ///Reads a matching from a \c Node map of \c Nodes. This map must be \e
   121     ///symmetric, i.e. if \c map[u]=v then \c map[v]=u must hold, and
   122     ///now \c uv is an edge of the matching.
   123     template<typename NMapN>
   124     void readNMapNode(NMapN& map) {
   125       NodeIt v;
   126       for( G.first(v); G.valid(v); G.next(v)) {
   127 	mate.set(v,map[v]);   
   128       } 
   129     } 
   130     
   131     ///Writes the stored matching to a \c Node map of \c Nodes.
   132 
   133     ///Writes the stored matching to a \c Node map of \c Nodes. The
   134     ///resulting map will be \e symmetric, i.e. if \c map[u]=v then \c
   135     ///map[v]=u will hold, and now \c uv is an edge of the matching.
   136     template<typename NMapN>
   137     void writeNMapNode (NMapN& map) const {
   138       NodeIt v;
   139       for( G.first(v); G.valid(v); G.next(v)) {
   140 	map.set(v,mate[v]);   
   141       } 
   142     } 
   143 
   144     ///Reads a matching from a \c Node map of \c Edges.
   145 
   146     ///Reads a matching from a \c Node map of incident \c Edges. This
   147     ///map must have the property that if \c G.bNode(map[u])=v then \c
   148     ///G.bNode(map[v])=u must hold, and now this edge is an edge of
   149     ///the matching.
   150     template<typename NMapE>
   151     void readNMapEdge(NMapE& map) {
   152       NodeIt v;
   153       for( G.first(v); G.valid(v); G.next(v)) {
   154 	Edge e=map[v];
   155 	if ( G.valid(e) )
   156 	  G.tail(e) == v ? mate.set(v,G.head(e)) : mate.set(v,G.tail(e)); 
   157       } 
   158     } 
   159     
   160     ///Writes the matching stored to a \c Node map of \c Edges.
   161 
   162     ///Writes the stored matching to a \c Node map of incident \c
   163     ///Edges. This map will have the property that if \c
   164     ///G.bNode(map[u])=v then \c G.bNode(map[v])=u holds, and now this
   165     ///edge is an edge of the matching.
   166     template<typename NMapE>
   167     void writeNMapEdge (NMapE& map)  const {
   168       typename Graph::template NodeMap<bool> todo(G,false); 
   169       NodeIt v;
   170       for( G.first(v); G.valid(v); G.next(v)) {
   171 	if ( mate[v]!=INVALID ) todo.set(v,true); 
   172       }
   173       NodeIt e;
   174       for( G.first(e); G.valid(e); G.next(e)) {
   175 	if ( todo[G.head(e)] && todo[G.tail(e)] ) {
   176 	  Node u=G.tail(e);
   177 	  Node v=G.head(e); 
   178 	  if ( mate[u]=v && mate[v]=u ) {
   179 	    map.set(u,e);
   180 	    map.set(v,e);
   181 	    todo.set(u,false);
   182 	    todo.set(v,false);
   183 	  }
   184 	}
   185       }
   186     } 
   187 
   188     ///Reads a matching from an \c Edge map of \c bools.
   189     
   190     ///Reads a matching from an \c Edge map of \c bools. This map must
   191     ///have the property that there are no two adjacent edges \c e, \c
   192     ///f with \c map[e]=map[f]=true. The edges \c e with \c
   193     ///map[e]=true form the matching.
   194     template<typename EMapB>
   195     void readEMapBool(EMapB& map) {
   196       EdgeIt e;
   197       for( G.first(e); G.valid(e); G.next(e)) {
   198 	if ( G.valid(e) ) {
   199 	  Node u=G.tail(e);	  
   200 	  Node v=G.head(e);
   201 	  mate.set(u,v);
   202 	  mate.set(v,u);
   203 	} 
   204       } 
   205     }
   206 
   207 
   208     ///Writes the matching stored to an \c Edge map of \c bools.
   209 
   210     ///Writes the matching stored to an \c Edge map of \c bools. This
   211     ///map will have the property that there are no two adjacent edges
   212     ///\c e, \c f with \c map[e]=map[f]=true. The edges \c e with \c
   213     ///map[e]=true form the matching.
   214     template<typename EMapB>
   215     void writeEMapBool (EMapB& map) const {
   216       typename Graph::template NodeMap<bool> todo(G,false); 
   217       NodeIt v;
   218       for( G.first(v); G.valid(v); G.next(v)) {
   219 	if ( mate[v]!=INVALID ) todo.set(v,true); 
   220       }
   221       
   222       NodeIt e;
   223       for( G.first(e); G.valid(e); G.next(e)) {
   224 	map.set(e,false);
   225 	if ( todo[G.head(e)] && todo[G.tail(e)] ) {
   226 	  Node u=G.tail(e);
   227 	  Node v=G.head(e); 
   228 	  if ( mate[u]=v && mate[v]=u ) {
   229 	    map.set(e,true);
   230 	    todo.set(u,false);
   231 	    todo.set(v,false);
   232 	  }
   233 	}
   234       }
   235     }
   236 
   237     ///Writes the canonical decomposition of the graph after running
   238     ///the algorithm.
   239 
   240     ///After calling any run methods of the class, and before calling
   241     ///\ref resetPos(), it writes the Gallai-Edmonds canonical
   242     ///decomposition of the graph. \c map must be a node map of \ref pos_enum 's.
   243     template<typename NMapEnum>
   244     void writePos (NMapEnum& map) const {
   245       NodeIt v;
   246       for( G.first(v); G.valid(v); G.next(v)) map.set(v,position[v]);
   247     }
   248 
   249   private: 
   250 
   251     void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   252 		    UFE& blossom, UFE& tree);
   253 
   254     void normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
   255 		    UFE& blossom, UFE& tree);
   256 
   257     bool noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
   258 		      UFE& blossom, UFE& tree, std::queue<Node>& Q);
   259 
   260     void shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
   261 		    UFE& blossom, UFE& tree, std::queue<Node>& Q);
   262 
   263     void augment(Node x, typename Graph::NodeMap<Node>& ear,  
   264 		 UFE& blossom, UFE& tree);
   265 
   266   };
   267 
   268 
   269   // **********************************************************************
   270   //  IMPLEMENTATIONS
   271   // **********************************************************************
   272 
   273 
   274   template <typename Graph>
   275   void MaxMatching<Graph>::run() {
   276     if ( G.edgeNum() > 2*G.nodeNum() ) {
   277       greedyMatching();
   278       runEdmonds(1);
   279     } else runEdmonds(0);
   280   }
   281 
   282   template <typename Graph>
   283   void MaxMatching<Graph>::runEdmonds( int heur=1 ) {
   284       
   285     typename Graph::template NodeMap<Node> ear(G,INVALID); 
   286     //undefined for the base nodes of the blossoms (i.e. for the
   287     //representative elements of UFE blossom) and for the nodes in C
   288       
   289     typename UFE::MapType blossom_base(G);
   290     UFE blossom(blossom_base);
   291     typename UFE::MapType tree_base(G);
   292     UFE tree(tree_base);
   293 	
   294     NodeIt v;
   295     for( G.first(v); G.valid(v); G.next(v) ) {
   296       if ( position[v]==C && mate[v]==INVALID ) {
   297 	blossom.insert(v);
   298 	tree.insert(v); 
   299 	position.set(v,D);
   300 	if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
   301 	else normShrink( v, ear, blossom, tree );
   302       }
   303     }
   304   }
   305     
   306   template <typename Graph>
   307   void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   308 				      UFE& blossom, UFE& tree) {
   309      
   310     std::queue<Node> Q;   //queue of the totally unscanned nodes
   311     Q.push(v);  
   312     std::queue<Node> R;   
   313     //queue of the nodes which must be scanned for a possible shrink
   314       
   315     while ( !Q.empty() ) {
   316       Node x=Q.front();
   317       Q.pop();
   318       if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return;
   319       else R.push(x);
   320     }
   321       
   322     while ( !R.empty() ) {
   323       Node x=R.front();
   324       R.pop();
   325 	
   326       OutEdgeIt e;
   327       for( G.first(e,x); G.valid(e); G.next(e) ) {
   328 	Node y=G.bNode(e);
   329 
   330 	if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { 
   331 	  //x and y must be in the same tree
   332 	
   333 	  typename Graph::template NodeMap<bool> path(G,false);
   334 
   335 	  Node b=blossom.find(x);
   336 	  path.set(b,true);
   337 	  b=mate[b];
   338 	  while ( b!=INVALID ) { 
   339 	    b=blossom.find(ear[b]);
   340 	    path.set(b,true);
   341 	    b=mate[b];
   342 	  } //going till the root
   343 	
   344 	  Node top=y;
   345 	  Node middle=blossom.find(top);
   346 	  Node bottom=x;
   347 	  while ( !path[middle] )
   348 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   349 		  
   350 	  Node base=middle;
   351 	  top=x;
   352 	  middle=blossom.find(top);
   353 	  bottom=y;
   354 	  Node blossom_base=blossom.find(base);
   355 	  while ( middle!=blossom_base )
   356 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   357 		  
   358 	  blossom.makeRep(base);
   359 	} // if shrink is needed
   360 
   361 	while ( !Q.empty() ) {
   362 	  Node x=Q.front();
   363 	  Q.pop();
   364 	  if ( noShrinkStep(x, ear, blossom, tree, Q) ) return;
   365 	  else R.push(x);
   366 	}
   367       } //for e
   368     } // while ( !R.empty() )
   369   }
   370 
   371   template <typename Graph>
   372   void MaxMatching<Graph>::normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
   373 				      UFE& blossom, UFE& tree) {
   374 
   375     std::queue<Node> Q;   //queue of the unscanned nodes
   376     Q.push(v);  
   377     while ( !Q.empty() ) {
   378       Node x=Q.front();
   379       Q.pop();
   380 	
   381       OutEdgeIt e;
   382       for( G.first(e,x); G.valid(e); G.next(e) ) {
   383 	Node y=G.bNode(e);
   384 	      
   385 	switch ( position[y] ) {
   386 	case D:          //x and y must be in the same tree
   387 	  if ( blossom.find(x) != blossom.find(y) ) { //shrink
   388 	    typename Graph::template NodeMap<bool> path(G,false);
   389 	      
   390 	    Node b=blossom.find(x);
   391 	    path.set(b,true);
   392 	    b=mate[b];
   393 	    while ( b!=INVALID ) { 
   394 	      b=blossom.find(ear[b]);
   395 	      path.set(b,true);
   396 	      b=mate[b];
   397 	    } //going till the root
   398 	
   399 	    Node top=y;
   400 	    Node middle=blossom.find(top);
   401 	    Node bottom=x;
   402 	    while ( !path[middle] )
   403 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   404 		
   405 	    Node base=middle;
   406 	    top=x;
   407 	    middle=blossom.find(top);
   408 	    bottom=y;
   409 	    Node blossom_base=blossom.find(base);
   410 	    while ( middle!=blossom_base )
   411 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   412 		
   413 	    blossom.makeRep(base);
   414 	  }
   415 	  break;
   416 	case C:
   417 	  if ( mate[y]!=INVALID ) {   //grow
   418 	    ear.set(y,x);
   419 	    Node w=mate[y];
   420 	    blossom.insert(w);
   421 	    position.set(y,A); 
   422 	    position.set(w,D); 
   423 	    tree.insert(y);
   424 	    tree.insert(w);
   425 	    tree.join(y,blossom.find(x));  
   426 	    tree.join(w,y);  
   427 	    Q.push(w);
   428 	  } else {                 //augment  
   429 	    augment(x, ear, blossom, tree);
   430 	    mate.set(x,y);
   431 	    mate.set(y,x);
   432 	    return;
   433 	  } //if 
   434 	  break;
   435 	default: break;
   436 	}
   437       }
   438     }
   439   }
   440 
   441   template <typename Graph>
   442   void MaxMatching<Graph>::greedyMatching() {
   443     NodeIt v;
   444     for( G.first(v); G.valid(v); G.next(v) )
   445       if ( mate[v]==INVALID ) {
   446 	OutEdgeIt e;
   447 	for( G.first(e,v); G.valid(e); G.next(e) ) {
   448 	  Node y=G.bNode(e);
   449 	  if ( mate[y]==INVALID && y!=v ) {
   450 	    mate.set(v,y);
   451 	    mate.set(y,v);
   452 	    break;
   453 	  }
   454 	}
   455       } 
   456   }
   457    
   458   template <typename Graph>
   459   int MaxMatching<Graph>::size() const {
   460     int s=0;
   461     NodeIt v;
   462     for(G.first(v); G.valid(v); G.next(v) ) {
   463       if ( G.valid(mate[v]) ) {
   464 	++s;
   465       }
   466     }
   467     return (int)s/2;
   468   }
   469 
   470   template <typename Graph>
   471   void MaxMatching<Graph>::resetPos() {
   472     NodeIt v;
   473     for( G.first(v); G.valid(v); G.next(v))
   474       position.set(v,C);      
   475   }
   476 
   477   template <typename Graph>
   478   void MaxMatching<Graph>::resetMatching() {
   479     NodeIt v;
   480     for( G.first(v); G.valid(v); G.next(v))
   481       mate.set(v,INVALID);      
   482   }
   483 
   484   template <typename Graph>
   485   bool MaxMatching<Graph>::noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
   486 					UFE& blossom, UFE& tree, std::queue<Node>& Q) {
   487     OutEdgeIt e;
   488     for( G.first(e,x); G.valid(e); G.next(e) ) {
   489       Node y=G.bNode(e);
   490 	
   491       if ( position[y]==C ) {
   492 	if ( mate[y]!=INVALID ) {       //grow
   493 	  ear.set(y,x);
   494 	  Node w=mate[y];
   495 	  blossom.insert(w);
   496 	  position.set(y,A);
   497 	  position.set(w,D);
   498 	  tree.insert(y);
   499 	  tree.insert(w);
   500 	  tree.join(y,blossom.find(x));  
   501 	  tree.join(w,y);  
   502 	  Q.push(w);
   503 	} else {                      //augment 
   504 	  augment(x, ear, blossom, tree);
   505 	  mate.set(x,y);
   506 	  mate.set(y,x);
   507 	  return true;
   508 	}
   509       }
   510     }
   511     return false;
   512   }
   513 
   514   template <typename Graph>
   515   void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
   516 				      UFE& blossom, UFE& tree, std::queue<Node>& Q) {
   517     ear.set(top,bottom);
   518     Node t=top;
   519     while ( t!=middle ) {
   520       Node u=mate[t];
   521       t=ear[u];
   522       ear.set(t,u);
   523     } 
   524     bottom=mate[middle];
   525     position.set(bottom,D);
   526     Q.push(bottom);
   527     top=ear[bottom];		
   528     Node oldmiddle=middle;
   529     middle=blossom.find(top);
   530     tree.erase(bottom);
   531     tree.erase(oldmiddle);
   532     blossom.insert(bottom);
   533     blossom.join(bottom, oldmiddle);
   534     blossom.join(top, oldmiddle);
   535   }
   536 
   537   template <typename Graph>
   538   void MaxMatching<Graph>::augment(Node x, typename Graph::NodeMap<Node>& ear,  
   539 				   UFE& blossom, UFE& tree) { 
   540     Node v=mate[x];
   541     while ( G.valid(v) ) {
   542 	
   543       Node u=ear[v];
   544       mate.set(v,u);
   545       Node tmp=v;
   546       v=mate[u];
   547       mate.set(u,tmp);
   548     }
   549     typename UFE::ItemIt it;
   550     for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) {   
   551       if ( position[it] == D ) {
   552 	typename UFE::ItemIt b_it;
   553 	for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) {  
   554 	  position.set( b_it ,C);
   555 	}
   556 	blossom.eraseClass(it);
   557       } else position.set( it ,C);
   558     }
   559     tree.eraseClass(x);
   560   }
   561 
   562 
   563 
   564   /// @}
   565   
   566 } //END OF NAMESPACE HUGO
   567 
   568 #endif //EDMONDS_H