2 * lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_LP_BASE_H
18 #define LEMON_LP_BASE_H
25 #include<lemon/utility.h>
26 #include<lemon/error.h>
27 #include<lemon/invalid.h>
29 //#include"lin_expr.h"
32 ///\brief The interface of the LP solver interface.
33 ///\ingroup gen_opt_group
36 ///Internal data structure to convert floating id's to fix one's
38 ///\todo This might be implemented to be also usable in other places.
41 std::vector<int> index;
42 std::vector<int> cross;
45 _FixId() : first_free(-1) {};
46 ///Convert a floating id to a fix one
48 ///\param n is a floating id
49 ///\return the corresponding fix id
50 int fixId(int n) {return cross[n];}
51 ///Convert a fix id to a floating one
53 ///\param n is a fix id
54 ///\return the corresponding floating id
55 int floatingId(int n) { return index[n];}
56 ///Add a new floating id.
58 ///\param n is a floating id
59 ///\return the fix id of the new value
60 ///\todo Multiple additions should also be handled.
63 if(n>=int(cross.size())) {
66 cross[n]=index.size();
71 int next=index[first_free];
77 ///\todo Create an own exception type.
78 else throw LogicError(); //floatingId-s must form a continuous range;
82 ///\param n is a fix id
89 for(int i=fl+1;i<int(cross.size());++i) {
95 ///An upper bound on the largest fix id.
97 ///\todo Do we need this?
99 std::size_t maxFixId() { return cross.size()-1; }
103 ///Common base class for LP solvers
105 ///\todo Much more docs
106 ///\ingroup gen_opt_group
112 enum SolveExitStatus {
120 enum SolutionStatus {
121 ///Feasible solution has'n been found (but may exist).
123 ///\todo NOTFOUND might be a better name.
126 ///The problem has no feasible solution
128 ///Feasible solution found
130 ///Optimal solution exists and found
132 ///The cost function is unbounded
134 ///\todo Give a feasible solution and an infinite ray (and the
135 ///corresponding bases)
139 ///The floating point type used by the solver
140 typedef double Value;
141 ///The infinity constant
142 static const Value INF;
143 ///The not a number constant
144 static const Value NaN;
146 ///Refer to a column of the LP.
148 ///This type is used to refer to a column of the LP.
150 ///Its value remains valid and correct even after the addition or erase of
153 ///\todo Document what can one do with a Col (INVALID, comparing,
154 ///it is similar to Node/Edge)
158 friend class LpSolverBase;
160 typedef Value ExprValue;
161 typedef True LpSolverCol;
163 Col(const Invalid&) : id(-1) {}
164 bool operator<(Col c) const {return id<c.id;}
165 bool operator==(Col c) const {return id==c.id;}
166 bool operator!=(Col c) const {return id==c.id;}
169 ///Refer to a row of the LP.
171 ///This type is used to refer to a row of the LP.
173 ///Its value remains valid and correct even after the addition or erase of
176 ///\todo Document what can one do with a Row (INVALID, comparing,
177 ///it is similar to Node/Edge)
181 friend class LpSolverBase;
183 typedef Value ExprValue;
184 typedef True LpSolverRow;
186 Row(const Invalid&) : id(-1) {}
188 bool operator<(Row c) const {return id<c.id;}
189 bool operator==(Row c) const {return id==c.id;}
190 bool operator!=(Row c) const {return id==c.id;}
193 ///Linear expression of variables and a constant component
195 ///This data structure strores a linear expression of the variables
196 ///(\ref Col "Col"s) and also has a constant component.
198 ///There are several ways to access and modify the contents of this
200 ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
201 ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
202 ///read and modify the coefficients like
209 ///or you can also iterate through its elements.
212 ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
215 ///(This code computes the sum of all coefficients).
216 ///- Numbers (<tt>double</tt>'s)
217 ///and variables (\ref Col "Col"s) directly convert to an
218 ///\ref Expr and the usual linear operations are defined so
221 ///2*v-3.12*(v-w/2)+2
222 ///v*2.1+(3*v+(v*12+w+6)*3)/2
224 ///are valid \ref Expr "Expr"essions.
225 ///The usual assignment operations are also defined.
228 ///e+=2*v-3.12*(v-w/2)+2;
232 ///- The constant member can be set and read by \ref constComp()
235 ///double c=e.constComp();
238 ///\note \ref clear() not only sets all coefficients to 0 but also
239 ///clears the constant components.
243 class Expr : public std::map<Col,Value>
246 typedef LpSolverBase::Col Key;
247 typedef LpSolverBase::Value Value;
250 typedef std::map<Col,Value> Base;
254 typedef True IsLinExpression;
256 Expr() : Base(), const_comp(0) { }
258 Expr(const Key &v) : const_comp(0) {
259 Base::insert(std::make_pair(v, 1));
262 Expr(const Value &v) : const_comp(v) {}
264 void set(const Key &v,const Value &c) {
265 Base::insert(std::make_pair(v, c));
268 Value &constComp() { return const_comp; }
270 const Value &constComp() const { return const_comp; }
272 ///Removes the components with zero coefficient.
274 for (Base::iterator i=Base::begin(); i!=Base::end();) {
277 if ((*i).second==0) Base::erase(i);
282 ///Sets all coefficients and the constant component to 0.
289 Expr &operator+=(const Expr &e) {
290 for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
291 (*this)[j->first]+=j->second;
292 ///\todo it might be speeded up using "hints"
293 const_comp+=e.const_comp;
297 Expr &operator-=(const Expr &e) {
298 for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
299 (*this)[j->first]-=j->second;
300 const_comp-=e.const_comp;
304 Expr &operator*=(const Value &c) {
305 for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
311 Expr &operator/=(const Value &c) {
312 for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
321 ///This data stucture represents a linear constraint in the LP.
322 ///Basically it is a linear expression with a lower or an upper bound
323 ///(or both). These parts of the constraint can be obtained by the member
324 ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
326 ///There are two ways to construct a constraint.
327 ///- You can set the linear expression and the bounds directly
328 /// by the functions above.
329 ///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt>
330 /// are defined between expressions, or even between constraints whenever
331 /// it makes sense. Therefore if \c e and \c f are linear expressions and
332 /// \c s and \c t are numbers, then the followings are valid expressions
333 /// and thus they can be used directly e.g. in \ref addRow() whenever
341 ///\warning The validity of a constraint is checked only at run time, so
342 ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
343 ///\ref LogicError exception.
347 typedef LpSolverBase::Expr Expr;
348 typedef Expr::Key Key;
349 typedef Expr::Value Value;
351 // static const Value INF;
352 // static const Value NaN;
359 Constr() : _expr(), _lb(NaN), _ub(NaN) {}
361 Constr(Value lb,const Expr &e,Value ub) :
362 _expr(e), _lb(lb), _ub(ub) {}
364 Constr(const Expr &e,Value ub) :
365 _expr(e), _lb(NaN), _ub(ub) {}
367 Constr(Value lb,const Expr &e) :
368 _expr(e), _lb(lb), _ub(NaN) {}
370 Constr(const Expr &e) :
371 _expr(e), _lb(NaN), _ub(NaN) {}
379 ///Reference to the linear expression
380 Expr &expr() { return _expr; }
381 ///Cont reference to the linear expression
382 const Expr &expr() const { return _expr; }
383 ///Reference to the lower bound.
386 ///- -\ref INF: the constraint is lower unbounded.
387 ///- -\ref NaN: lower bound has not been set.
388 ///- finite number: the lower bound
389 Value &lowerBound() { return _lb; }
390 ///The const version of \ref lowerBound()
391 const Value &lowerBound() const { return _lb; }
392 ///Reference to the upper bound.
395 ///- -\ref INF: the constraint is upper unbounded.
396 ///- -\ref NaN: upper bound has not been set.
397 ///- finite number: the upper bound
398 Value &upperBound() { return _ub; }
399 ///The const version of \ref upperBound()
400 const Value &upperBound() const { return _ub; }
401 ///Is the constraint lower bounded?
402 bool lowerBounded() const {
406 ///Is the constraint upper bounded?
407 bool upperBounded() const {
413 ///Linear expression of rows
415 ///This data structure represents a column of the matrix,
416 ///thas is it strores a linear expression of the dual variables
417 ///(\ref Row "Row"s).
419 ///There are several ways to access and modify the contents of this
421 ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
422 ///if \c e is an DualExpr and \c v
423 ///and \c w are of type \ref Row, then you can
424 ///read and modify the coefficients like
431 ///or you can also iterate through its elements.
434 ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
437 ///(This code computes the sum of all coefficients).
438 ///- Numbers (<tt>double</tt>'s)
439 ///and variables (\ref Row "Row"s) directly convert to an
440 ///\ref DualExpr and the usual linear operations are defined so
444 ///v*2.1+(3*v+(v*12+w)*3)/2
446 ///are valid \ref DualExpr "DualExpr"essions.
447 ///The usual assignment operations are also defined.
450 ///e+=2*v-3.12*(v-w/2);
457 class DualExpr : public std::map<Row,Value>
460 typedef LpSolverBase::Row Key;
461 typedef LpSolverBase::Value Value;
464 typedef std::map<Row,Value> Base;
467 typedef True IsLinExpression;
469 DualExpr() : Base() { }
471 DualExpr(const Key &v) {
472 Base::insert(std::make_pair(v, 1));
475 DualExpr(const Value &v) {}
477 void set(const Key &v,const Value &c) {
478 Base::insert(std::make_pair(v, c));
481 ///Removes the components with zero coefficient.
483 for (Base::iterator i=Base::begin(); i!=Base::end();) {
486 if ((*i).second==0) Base::erase(i);
491 ///Sets all coefficients to 0.
497 DualExpr &operator+=(const DualExpr &e) {
498 for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
499 (*this)[j->first]+=j->second;
500 ///\todo it might be speeded up using "hints"
504 DualExpr &operator-=(const DualExpr &e) {
505 for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
506 (*this)[j->first]-=j->second;
510 DualExpr &operator*=(const Value &c) {
511 for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
516 DualExpr &operator/=(const Value &c) {
517 for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
528 //Abstract virtual functions
529 virtual LpSolverBase &_newLp() = 0;
530 virtual LpSolverBase &_copyLp(){
531 ///\todo This should be implemented here, too, when we have problem retrieving routines. It can be overriden.
534 LpSolverBase & newlp(_newLp());
536 //return *(LpSolverBase*)0;
539 virtual int _addCol() = 0;
540 virtual int _addRow() = 0;
541 virtual void _setRowCoeffs(int i,
544 Value const * values ) = 0;
545 virtual void _setColCoeffs(int i,
548 Value const * values ) = 0;
549 virtual void _setCoeff(int row, int col, Value value) = 0;
550 virtual void _setColLowerBound(int i, Value value) = 0;
551 virtual void _setColUpperBound(int i, Value value) = 0;
552 // virtual void _setRowLowerBound(int i, Value value) = 0;
553 // virtual void _setRowUpperBound(int i, Value value) = 0;
554 virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
555 virtual void _setObjCoeff(int i, Value obj_coef) = 0;
556 virtual void _clearObj()=0;
557 // virtual void _setObj(int length,
558 // int const * indices,
559 // Value const * values ) = 0;
560 virtual SolveExitStatus _solve() = 0;
561 virtual Value _getPrimal(int i) = 0;
562 virtual Value _getPrimalValue() = 0;
563 virtual SolutionStatus _getPrimalStatus() = 0;
564 virtual void _setMax() = 0;
565 virtual void _setMin() = 0;
567 //Own protected stuff
569 //Constant component of the objective function
570 Value obj_const_comp;
578 LpSolverBase() : obj_const_comp(0) {}
581 virtual ~LpSolverBase() {}
583 ///Creates a new LP problem
584 LpSolverBase &newLp() {return _newLp();}
585 ///Makes a copy of the LP problem
586 LpSolverBase ©Lp() {return _copyLp();}
588 ///\name Build up and modify of the LP
592 ///Add a new empty column (i.e a new variable) to the LP
593 Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
595 ///\brief Adds several new columns
596 ///(i.e a variables) at once
598 ///This magic function takes a container as its argument
599 ///and fills its elements
600 ///with new columns (i.e. variables)
602 ///- a standard STL compatible iterable container with
603 ///\ref Col as its \c values_type
606 ///std::vector<LpSolverBase::Col>
607 ///std::list<LpSolverBase::Col>
609 ///- a standard STL compatible iterable container with
610 ///\ref Col as its \c mapped_type
613 ///std::map<AnyType,LpSolverBase::Col>
615 ///- an iterable lemon \ref concept::WriteMap "write map" like
617 ///ListGraph::NodeMap<LpSolverBase::Col>
618 ///ListGraph::EdgeMap<LpSolverBase::Col>
620 ///\return The number of the created column.
623 int addColSet(T &t) { return 0;}
626 typename enable_if<typename T::value_type::LpSolverCol,int>::type
627 addColSet(T &t,dummy<0> = 0) {
629 for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
633 typename enable_if<typename T::value_type::second_type::LpSolverCol,
635 addColSet(T &t,dummy<1> = 1) {
637 for(typename T::iterator i=t.begin();i!=t.end();++i) {
644 typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
646 addColSet(T &t,dummy<2> = 2) {
647 ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
649 for(typename T::ValueSet::iterator i=t.valueSet().begin();
650 i!=t.valueSet().end();
660 ///Set a column (i.e a dual constraint) of the LP
662 ///\param c is the column to be modified
663 ///\param e is a dual linear expression (see \ref DualExpr)
664 ///\bug This is a temportary function. The interface will change to
666 void setCol(Col c,const DualExpr &e) {
667 std::vector<int> indices;
668 std::vector<Value> values;
669 indices.push_back(0);
671 for(DualExpr::const_iterator i=e.begin(); i!=e.end(); ++i)
672 if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
673 indices.push_back(cols.floatingId((*i).first.id));
674 values.push_back((*i).second);
676 _setColCoeffs(cols.floatingId(c.id),indices.size()-1,
677 &indices[0],&values[0]);
680 ///Add a new column to the LP
682 ///\param e is a dual linear expression (see \ref DualExpr)
683 ///\param obj is the corresponding component of the objective
684 ///function. It is 0 by default.
685 ///\return The created column.
686 ///\bug This is a temportary function. The interface will change to
688 Col addCol(Value l,const DualExpr &e, Value obj=0) {
695 ///Add a new empty row (i.e a new constraint) to the LP
697 ///This function adds a new empty row (i.e a new constraint) to the LP.
698 ///\return The created row
699 Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
701 ///\brief Adds several new row
702 ///(i.e a variables) at once
704 ///This magic function takes a container as its argument
705 ///and fills its elements
706 ///with new row (i.e. variables)
708 ///- a standard STL compatible iterable container with
709 ///\ref Row as its \c values_type
712 ///std::vector<LpSolverBase::Row>
713 ///std::list<LpSolverBase::Row>
715 ///- a standard STL compatible iterable container with
716 ///\ref Row as its \c mapped_type
719 ///std::map<AnyType,LpSolverBase::Row>
721 ///- an iterable lemon \ref concept::WriteMap "write map" like
723 ///ListGraph::NodeMap<LpSolverBase::Row>
724 ///ListGraph::EdgeMap<LpSolverBase::Row>
726 ///\return The number of rows created.
729 int addRowSet(T &t) { return 0;}
732 typename enable_if<typename T::value_type::LpSolverRow,int>::type
733 addRowSet(T &t,dummy<0> = 0) {
735 for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
739 typename enable_if<typename T::value_type::second_type::LpSolverRow,
741 addRowSet(T &t,dummy<1> = 1) {
743 for(typename T::iterator i=t.begin();i!=t.end();++i) {
750 typename enable_if<typename T::ValueSet::value_type::LpSolverRow,
752 addRowSet(T &t,dummy<2> = 2) {
753 ///\bug <tt>return addRowSet(t.valueSet());</tt> should also work.
755 for(typename T::ValueSet::iterator i=t.valueSet().begin();
756 i!=t.valueSet().end();
766 ///Set a row (i.e a constraint) of the LP
768 ///\param r is the row to be modified
769 ///\param l is lower bound (-\ref INF means no bound)
770 ///\param e is a linear expression (see \ref Expr)
771 ///\param u is the upper bound (\ref INF means no bound)
772 ///\bug This is a temportary function. The interface will change to
774 ///\todo Option to control whether a constraint with a single variable is
776 void setRow(Row r, Value l,const Expr &e, Value u) {
777 std::vector<int> indices;
778 std::vector<Value> values;
779 indices.push_back(0);
781 for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
782 if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
783 indices.push_back(cols.floatingId((*i).first.id));
784 values.push_back((*i).second);
786 _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
787 &indices[0],&values[0]);
788 // _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
789 // _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
790 _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp());
793 ///Set a row (i.e a constraint) of the LP
795 ///\param r is the row to be modified
796 ///\param c is a linear expression (see \ref Constr)
797 void setRow(Row r, const Constr &c) {
799 c.lowerBounded()?c.lowerBound():-INF,
801 c.upperBounded()?c.upperBound():INF);
804 ///Add a new row (i.e a new constraint) to the LP
806 ///\param l is the lower bound (-\ref INF means no bound)
807 ///\param e is a linear expression (see \ref Expr)
808 ///\param u is the upper bound (\ref INF means no bound)
809 ///\return The created row.
810 ///\bug This is a temportary function. The interface will change to
812 Row addRow(Value l,const Expr &e, Value u) {
818 ///Add a new row (i.e a new constraint) to the LP
820 ///\param c is a linear expression (see \ref Constr)
821 ///\return The created row.
822 Row addRow(const Constr &c) {
828 ///Set an element of the coefficient matrix of the LP
830 ///\param r is the row of the element to be modified
831 ///\param c is the coloumn of the element to be modified
832 ///\param val is the new value of the coefficient
833 void setCoeff(Row r, Col c, Value val){
834 _setCoeff(rows.floatingId(r.id),cols.floatingId(c.id), val);
837 /// Set the lower bound of a column (i.e a variable)
839 /// The upper bound of a variable (column) has to be given by an
840 /// extended number of type Value, i.e. a finite number of type
841 /// Value or -\ref INF.
842 void colLowerBound(Col c, Value value) {
843 _setColLowerBound(cols.floatingId(c.id),value);
845 /// Set the upper bound of a column (i.e a variable)
847 /// The upper bound of a variable (column) has to be given by an
848 /// extended number of type Value, i.e. a finite number of type
849 /// Value or \ref INF.
850 void colUpperBound(Col c, Value value) {
851 _setColUpperBound(cols.floatingId(c.id),value);
853 /// Set the lower and the upper bounds of a column (i.e a variable)
855 /// The lower and the upper bounds of
856 /// a variable (column) have to be given by an
857 /// extended number of type Value, i.e. a finite number of type
858 /// Value, -\ref INF or \ref INF.
859 void colBounds(Col c, Value lower, Value upper) {
860 _setColLowerBound(cols.floatingId(c.id),lower);
861 _setColUpperBound(cols.floatingId(c.id),upper);
864 // /// Set the lower bound of a row (i.e a constraint)
866 // /// The lower bound of a linear expression (row) has to be given by an
867 // /// extended number of type Value, i.e. a finite number of type
868 // /// Value or -\ref INF.
869 // void rowLowerBound(Row r, Value value) {
870 // _setRowLowerBound(rows.floatingId(r.id),value);
872 // /// Set the upper bound of a row (i.e a constraint)
874 // /// The upper bound of a linear expression (row) has to be given by an
875 // /// extended number of type Value, i.e. a finite number of type
876 // /// Value or \ref INF.
877 // void rowUpperBound(Row r, Value value) {
878 // _setRowUpperBound(rows.floatingId(r.id),value);
881 /// Set the lower and the upper bounds of a row (i.e a constraint)
883 /// The lower and the upper bounds of
884 /// a constraint (row) have to be given by an
885 /// extended number of type Value, i.e. a finite number of type
886 /// Value, -\ref INF or \ref INF.
887 void rowBounds(Row c, Value lower, Value upper) {
888 _setRowBounds(rows.floatingId(c.id),lower, upper);
889 // _setRowUpperBound(rows.floatingId(c.id),upper);
892 ///Set an element of the objective function
893 void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
894 ///Set the objective function
896 ///\param e is a linear expression of type \ref Expr.
897 ///\bug The previous objective function is not cleared!
898 void setObj(Expr e) {
900 for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
901 objCoeff((*i).first,(*i).second);
902 obj_const_comp=e.constComp();
906 void max() { _setMax(); }
908 void min() { _setMin(); }
914 ///\name Solve the LP
919 SolveExitStatus solve() { return _solve(); }
923 ///\name Obtain the solution
928 SolutionStatus primalStatus() {
929 return _getPrimalStatus();
933 Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
938 ///- \ref INF or -\ref INF means either infeasibility or unboundedness
939 /// of the primal problem, depending on whether we minimize or maximize.
940 ///- \ref NaN if no primal solution is found.
941 ///- The (finite) objective value if an optimal solution is found.
942 Value primalValue() { return _getPrimalValue()+obj_const_comp;}
949 ///\relates LpSolverBase::Expr
951 inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
952 const LpSolverBase::Expr &b)
954 LpSolverBase::Expr tmp(a);
955 tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
960 ///\relates LpSolverBase::Expr
962 inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
963 const LpSolverBase::Expr &b)
965 LpSolverBase::Expr tmp(a);
966 tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
971 ///\relates LpSolverBase::Expr
973 inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
974 const LpSolverBase::Value &b)
976 LpSolverBase::Expr tmp(a);
977 tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
983 ///\relates LpSolverBase::Expr
985 inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
986 const LpSolverBase::Expr &b)
988 LpSolverBase::Expr tmp(b);
989 tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
994 ///\relates LpSolverBase::Expr
996 inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
997 const LpSolverBase::Value &b)
999 LpSolverBase::Expr tmp(a);
1000 tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
1006 ///\relates LpSolverBase::Constr
1008 inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
1009 const LpSolverBase::Expr &f)
1011 return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
1016 ///\relates LpSolverBase::Constr
1018 inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
1019 const LpSolverBase::Expr &f)
1021 return LpSolverBase::Constr(e,f);
1026 ///\relates LpSolverBase::Constr
1028 inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
1029 const LpSolverBase::Value &f)
1031 return LpSolverBase::Constr(e,f);
1036 ///\relates LpSolverBase::Constr
1038 inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
1039 const LpSolverBase::Expr &f)
1041 return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
1047 ///\relates LpSolverBase::Constr
1049 inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
1050 const LpSolverBase::Expr &f)
1052 return LpSolverBase::Constr(f,e);
1058 ///\relates LpSolverBase::Constr
1060 inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
1061 const LpSolverBase::Value &f)
1063 return LpSolverBase::Constr(f,e);
1068 ///\relates LpSolverBase::Constr
1070 inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
1071 const LpSolverBase::Expr &f)
1073 return LpSolverBase::Constr(0,e-f,0);
1078 ///\relates LpSolverBase::Constr
1080 inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
1081 const LpSolverBase::Constr&c)
1083 LpSolverBase::Constr tmp(c);
1084 ///\todo Create an own exception type.
1085 if(!isnan(tmp.lowerBound())) throw LogicError();
1086 else tmp.lowerBound()=n;
1091 ///\relates LpSolverBase::Constr
1093 inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
1094 const LpSolverBase::Value &n)
1096 LpSolverBase::Constr tmp(c);
1097 ///\todo Create an own exception type.
1098 if(!isnan(tmp.upperBound())) throw LogicError();
1099 else tmp.upperBound()=n;
1105 ///\relates LpSolverBase::Constr
1107 inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
1108 const LpSolverBase::Constr&c)
1110 LpSolverBase::Constr tmp(c);
1111 ///\todo Create an own exception type.
1112 if(!isnan(tmp.upperBound())) throw LogicError();
1113 else tmp.upperBound()=n;
1118 ///\relates LpSolverBase::Constr
1120 inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
1121 const LpSolverBase::Value &n)
1123 LpSolverBase::Constr tmp(c);
1124 ///\todo Create an own exception type.
1125 if(!isnan(tmp.lowerBound())) throw LogicError();
1126 else tmp.lowerBound()=n;
1132 ///\relates LpSolverBase::DualExpr
1134 inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
1135 const LpSolverBase::DualExpr &b)
1137 LpSolverBase::DualExpr tmp(a);
1138 tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
1143 ///\relates LpSolverBase::DualExpr
1145 inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
1146 const LpSolverBase::DualExpr &b)
1148 LpSolverBase::DualExpr tmp(a);
1149 tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
1154 ///\relates LpSolverBase::DualExpr
1156 inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
1157 const LpSolverBase::Value &b)
1159 LpSolverBase::DualExpr tmp(a);
1160 tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
1166 ///\relates LpSolverBase::DualExpr
1168 inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
1169 const LpSolverBase::DualExpr &b)
1171 LpSolverBase::DualExpr tmp(b);
1172 tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
1177 ///\relates LpSolverBase::DualExpr
1179 inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
1180 const LpSolverBase::Value &b)
1182 LpSolverBase::DualExpr tmp(a);
1183 tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
1190 #endif //LEMON_LP_BASE_H