lemon/bezier.h
author ladanyi
Fri, 26 Aug 2005 15:30:01 +0000
changeset 1654 0917756ba533
parent 1471 11a13908b510
child 1875 98698b69a902
permissions -rw-r--r--
placement of the coordinates caption now takes into account the node radius
     1 /* -*- C++ -*-
     2  * lemon/bezier.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_BEZIER_H
    18 #define LEMON_BEZIER_H
    19 
    20 ///\ingroup misc
    21 ///\file
    22 ///\brief Classes to compute with Bezier curves.
    23 ///
    24 ///Up to now this file is used internally by \ref graph_to_eps.h
    25 ///
    26 ///\author Alpar Juttner
    27 
    28 #include<lemon/xy.h>
    29 
    30 namespace lemon {
    31 
    32 class BezierBase {
    33 public:
    34   typedef xy<double> xy;
    35 protected:
    36   static xy conv(xy x,xy y,double t) {return (1-t)*x+t*y;}
    37 };
    38 
    39 class Bezier1 : public BezierBase
    40 {
    41 public:
    42   xy p1,p2;
    43 
    44   Bezier1() {}
    45   Bezier1(xy _p1, xy _p2) :p1(_p1), p2(_p2) {}
    46   
    47   xy operator()(double t) const
    48   {
    49     //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
    50     return conv(p1,p2,t);
    51   }
    52   Bezier1 before(double t) const
    53   {
    54     return Bezier1(p1,conv(p1,p2,t));
    55   }
    56   
    57   Bezier1 after(double t) const
    58   {
    59     return Bezier1(conv(p1,p2,t),p2);
    60   }
    61 
    62   Bezier1 revert() const { return Bezier1(p2,p1);}
    63   Bezier1 operator()(double a,double b) const { return before(b).after(a/b); }
    64   xy grad() const { return p2-p1; }
    65   xy norm() const { return rot90(p2-p1); }
    66   xy grad(double) const { return grad(); }
    67   xy norm(double t) const { return rot90(grad(t)); }
    68 };
    69 
    70 class Bezier2 : public BezierBase
    71 {
    72 public:
    73   xy p1,p2,p3;
    74 
    75   Bezier2() {}
    76   Bezier2(xy _p1, xy _p2, xy _p3) :p1(_p1), p2(_p2), p3(_p3) {}
    77   Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {}
    78   xy operator()(double t) const
    79   {
    80     //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
    81     return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3;
    82   }
    83   Bezier2 before(double t) const
    84   {
    85     xy q(conv(p1,p2,t));
    86     xy r(conv(p2,p3,t));
    87     return Bezier2(p1,q,conv(q,r,t));
    88   }
    89   
    90   Bezier2 after(double t) const
    91   {
    92     xy q(conv(p1,p2,t));
    93     xy r(conv(p2,p3,t));
    94     return Bezier2(conv(q,r,t),r,p3);
    95   }
    96   Bezier2 revert() const { return Bezier2(p3,p2,p1);}
    97   Bezier2 operator()(double a,double b) const { return before(b).after(a/b); }
    98   Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
    99   Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); }
   100   xy grad(double t) const { return grad()(t); }
   101   xy norm(double t) const { return rot90(grad(t)); }
   102 };
   103 
   104 class Bezier3 : public BezierBase
   105 {
   106 public:
   107   xy p1,p2,p3,p4;
   108 
   109   Bezier3() {}
   110   Bezier3(xy _p1, xy _p2, xy _p3, xy _p4) :p1(_p1), p2(_p2), p3(_p3), p4(_p4) {}
   111   Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)), 
   112 			      p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {}
   113   Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)),
   114 			      p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {}
   115   
   116   xy operator()(double t) const 
   117     {
   118       //    return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t);
   119       return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+
   120 	(3*t*t*(1-t))*p3+(t*t*t)*p4;
   121     }
   122   Bezier3 before(double t) const
   123     {
   124       xy p(conv(p1,p2,t));
   125       xy q(conv(p2,p3,t));
   126       xy r(conv(p3,p4,t));
   127       xy a(conv(p,q,t));
   128       xy b(conv(q,r,t));
   129       xy c(conv(a,b,t));
   130       return Bezier3(p1,p,a,c);
   131     }
   132   
   133   Bezier3 after(double t) const
   134     {
   135       xy p(conv(p1,p2,t));
   136       xy q(conv(p2,p3,t));
   137       xy r(conv(p3,p4,t));
   138       xy a(conv(p,q,t));
   139       xy b(conv(q,r,t));
   140       xy c(conv(a,b,t));
   141       return Bezier3(c,b,r,p4);
   142     }
   143   Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);}
   144   Bezier3 operator()(double a,double b) const { return before(b).after(a/b); }
   145   Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); }
   146   Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1),
   147 				  3.0*rot90(p3-p2),
   148 				  3.0*rot90(p4-p3)); }
   149   xy grad(double t) const { return grad()(t); }
   150   xy norm(double t) const { return rot90(grad(t)); }
   151 
   152   template<class R,class F,class S,class D>
   153   R recSplit(F &_f,const S &_s,D _d) const 
   154   {
   155     const xy a=(p1+p2)/2;
   156     const xy b=(p2+p3)/2;
   157     const xy c=(p3+p4)/2;
   158     const xy d=(a+b)/2;
   159     const xy e=(b+c)/2;
   160     const xy f=(d+e)/2;
   161     R f1=_f(Bezier3(p1,a,d,e),_d);
   162     R f2=_f(Bezier3(e,d,c,p4),_d);
   163     return _s(f1,f2);
   164   }
   165   
   166 };
   167 
   168 } //END OF NAMESPACE LEMON
   169 
   170 #endif // LEMON_BEZIER_H