lemon/concept/bpugraph.h
author alpar
Thu, 10 Aug 2006 13:54:01 +0000
changeset 2175 0975cad06c2b
parent 2126 2c8adbee9fa6
child 2231 06faf3f06d67
permissions -rw-r--r--
Doc improvements
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 /// \ingroup graph_concepts
    20 /// \file
    21 /// \brief Undirected bipartite graphs and components of.
    22 
    23 
    24 #ifndef LEMON_CONCEPT_BPUGRAPH_H
    25 #define LEMON_CONCEPT_BPUGRAPH_H
    26 
    27 #include <lemon/concept/graph_components.h>
    28 
    29 #include <lemon/concept/graph.h>
    30 #include <lemon/concept/ugraph.h>
    31 
    32 #include <lemon/bits/utility.h>
    33 
    34 namespace lemon {
    35   namespace concept {
    36 
    37     /// \addtogroup graph_concepts
    38     /// @{
    39 
    40 
    41     /// \brief Class describing the concept of Bipartite Undirected Graphs.
    42     ///
    43     /// This class describes the common interface of all 
    44     /// Undirected Bipartite Graphs.
    45     ///
    46     /// As all concept describing classes it provides only interface
    47     /// without any sensible implementation. So any algorithm for
    48     /// bipartite undirected graph should compile with this class, but it 
    49     /// will not run properly, of course.
    50     ///
    51     /// In LEMON bipartite undirected graphs also fulfill the concept of 
    52     /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept"). 
    53     ///
    54     /// You can assume that all undirected bipartite graph can be handled
    55     /// as an undirected graph and consequently as a static graph.
    56     ///
    57     /// The bipartite graph stores two types of nodes which are named
    58     /// ANode and BNode. The graph type contains two types ANode and
    59     /// BNode which are inherited from Node type. Moreover they have
    60     /// constructor which converts Node to either ANode or BNode when
    61     /// it is possible. Therefor everywhere the Node type can be used
    62     /// instead of ANode and BNode. So the usage of the ANode and
    63     /// BNode is not suggested.
    64     ///
    65     /// The iteration on the partition can be done with the ANodeIt and 
    66     /// BNodeIt classes. The node map can be used to map values to the nodes
    67     /// and similarly we can use to map values for just the ANodes and
    68     /// BNodes the ANodeMap and BNodeMap template classes.
    69 
    70     class BpUGraph {
    71     public:
    72       /// \brief The undirected graph should be tagged by the
    73       /// UndirectedTag.
    74       ///
    75       /// The undirected graph should be tagged by the UndirectedTag. This
    76       /// tag helps the enable_if technics to make compile time 
    77       /// specializations for undirected graphs.  
    78       typedef True UndirectedTag;
    79 
    80       /// \brief The base type of node iterators, 
    81       /// or in other words, the trivial node iterator.
    82       ///
    83       /// This is the base type of each node iterator,
    84       /// thus each kind of node iterator converts to this.
    85       /// More precisely each kind of node iterator should be inherited 
    86       /// from the trivial node iterator. The Node class represents
    87       /// both of two types of nodes. 
    88       class Node {
    89       public:
    90         /// Default constructor
    91 
    92         /// @warning The default constructor sets the iterator
    93         /// to an undefined value.
    94         Node() { }
    95         /// Copy constructor.
    96 
    97         /// Copy constructor.
    98         ///
    99         Node(const Node&) { }
   100 
   101         /// Invalid constructor \& conversion.
   102 
   103         /// This constructor initializes the iterator to be invalid.
   104         /// \sa Invalid for more details.
   105         Node(Invalid) { }
   106         /// Equality operator
   107 
   108         /// Two iterators are equal if and only if they point to the
   109         /// same object or both are invalid.
   110         bool operator==(Node) const { return true; }
   111 
   112         /// Inequality operator
   113         
   114         /// \sa operator==(Node n)
   115         ///
   116         bool operator!=(Node) const { return true; }
   117 
   118 	/// Artificial ordering operator.
   119 	
   120 	/// To allow the use of graph descriptors as key type in std::map or
   121 	/// similar associative container we require this.
   122 	///
   123 	/// \note This operator only have to define some strict ordering of
   124 	/// the items; this order has nothing to do with the iteration
   125 	/// ordering of the items.
   126 	bool operator<(Node) const { return false; }
   127 
   128       };
   129 
   130       /// \brief Helper class for ANodes.
   131       ///
   132       /// This class is just a helper class for ANodes, it is not
   133       /// suggested to use it directly. It can be converted easily to
   134       /// node and vice versa. The usage of this class is limited
   135       /// two use just as template parameters for special map types. 
   136       class ANode {
   137       public:
   138         /// Default constructor
   139 
   140         /// @warning The default constructor sets the iterator
   141         /// to an undefined value.
   142         ANode() { }
   143         /// Copy constructor.
   144 
   145         /// Copy constructor.
   146         ///
   147         ANode(const ANode&) { }
   148 
   149         /// Construct the same node as ANode.
   150 
   151         /// Construct the same node as ANode. It may throws assertion
   152         /// when the given node is from the BNode set.
   153         ANode(const Node&) { }
   154 
   155         /// Invalid constructor \& conversion.
   156 
   157         /// This constructor initializes the iterator to be invalid.
   158         /// \sa Invalid for more details.
   159         ANode(Invalid) { }
   160         /// Equality operator
   161 
   162         /// Two iterators are equal if and only if they point to the
   163         /// same object or both are invalid.
   164         bool operator==(ANode) const { return true; }
   165 
   166         /// Inequality operator
   167         
   168         /// \sa operator==(ANode n)
   169         ///
   170         bool operator!=(ANode) const { return true; }
   171 
   172 	/// Artificial ordering operator.
   173 	
   174 	/// To allow the use of graph descriptors as key type in std::map or
   175 	/// similar associative container we require this.
   176 	///
   177 	/// \note This operator only have to define some strict ordering of
   178 	/// the items; this order has nothing to do with the iteration
   179 	/// ordering of the items.
   180 	bool operator<(ANode) const { return false; }
   181 
   182       };
   183 
   184       /// \brief Helper class for BNodes.
   185       ///
   186       /// This class is just a helper class for BNodes, it is not
   187       /// suggested to use it directly. It can be converted easily to
   188       /// node and vice versa. The usage of this class is limited
   189       /// two use just as template parameters for special map types. 
   190       class BNode {
   191       public:
   192         /// Default constructor
   193 
   194         /// @warning The default constructor sets the iterator
   195         /// to an undefined value.
   196         BNode() { }
   197         /// Copy constructor.
   198 
   199         /// Copy constructor.
   200         ///
   201         BNode(const BNode&) { }
   202 
   203         /// Construct the same node as BNode.
   204 
   205         /// Construct the same node as BNode. It may throws assertion
   206         /// when the given node is from the ANode set.
   207         BNode(const Node&) { }
   208 
   209         /// Invalid constructor \& conversion.
   210 
   211         /// This constructor initializes the iterator to be invalid.
   212         /// \sa Invalid for more details.
   213         BNode(Invalid) { }
   214         /// Equality operator
   215 
   216         /// Two iterators are equal if and only if they point to the
   217         /// same object or both are invalid.
   218         bool operator==(BNode) const { return true; }
   219 
   220         /// Inequality operator
   221         
   222         /// \sa operator==(BNode n)
   223         ///
   224         bool operator!=(BNode) const { return true; }
   225 
   226 	/// Artificial ordering operator.
   227 	
   228 	/// To allow the use of graph descriptors as key type in std::map or
   229 	/// similar associative container we require this.
   230 	///
   231 	/// \note This operator only have to define some strict ordering of
   232 	/// the items; this order has nothing to do with the iteration
   233 	/// ordering of the items.
   234 	bool operator<(BNode) const { return false; }
   235 
   236       };
   237     
   238       /// This iterator goes through each node.
   239 
   240       /// This iterator goes through each node.
   241       /// Its usage is quite simple, for example you can count the number
   242       /// of nodes in graph \c g of type \c Graph like this:
   243       ///\code
   244       /// int count=0;
   245       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   246       ///\endcode
   247       class NodeIt : public Node {
   248       public:
   249         /// Default constructor
   250 
   251         /// @warning The default constructor sets the iterator
   252         /// to an undefined value.
   253         NodeIt() { }
   254         /// Copy constructor.
   255         
   256         /// Copy constructor.
   257         ///
   258         NodeIt(const NodeIt& n) : Node(n) { }
   259         /// Invalid constructor \& conversion.
   260 
   261         /// Initialize the iterator to be invalid.
   262         /// \sa Invalid for more details.
   263         NodeIt(Invalid) { }
   264         /// Sets the iterator to the first node.
   265 
   266         /// Sets the iterator to the first node of \c g.
   267         ///
   268         NodeIt(const BpUGraph&) { }
   269         /// Node -> NodeIt conversion.
   270 
   271         /// Sets the iterator to the node of \c the graph pointed by 
   272 	/// the trivial iterator.
   273         /// This feature necessitates that each time we 
   274         /// iterate the edge-set, the iteration order is the same.
   275         NodeIt(const BpUGraph&, const Node&) { }
   276         /// Next node.
   277 
   278         /// Assign the iterator to the next node.
   279         ///
   280         NodeIt& operator++() { return *this; }
   281       };
   282 
   283       /// This iterator goes through each ANode.
   284 
   285       /// This iterator goes through each ANode.
   286       /// Its usage is quite simple, for example you can count the number
   287       /// of nodes in graph \c g of type \c Graph like this:
   288       ///\code
   289       /// int count=0;
   290       /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
   291       ///\endcode
   292       class ANodeIt : public Node {
   293       public:
   294         /// Default constructor
   295 
   296         /// @warning The default constructor sets the iterator
   297         /// to an undefined value.
   298         ANodeIt() { }
   299         /// Copy constructor.
   300         
   301         /// Copy constructor.
   302         ///
   303         ANodeIt(const ANodeIt& n) : Node(n) { }
   304         /// Invalid constructor \& conversion.
   305 
   306         /// Initialize the iterator to be invalid.
   307         /// \sa Invalid for more details.
   308         ANodeIt(Invalid) { }
   309         /// Sets the iterator to the first node.
   310 
   311         /// Sets the iterator to the first node of \c g.
   312         ///
   313         ANodeIt(const BpUGraph&) { }
   314         /// Node -> ANodeIt conversion.
   315 
   316         /// Sets the iterator to the node of \c the graph pointed by 
   317 	/// the trivial iterator.
   318         /// This feature necessitates that each time we 
   319         /// iterate the edge-set, the iteration order is the same.
   320         ANodeIt(const BpUGraph&, const Node&) { }
   321         /// Next node.
   322 
   323         /// Assign the iterator to the next node.
   324         ///
   325         ANodeIt& operator++() { return *this; }
   326       };
   327 
   328       /// This iterator goes through each BNode.
   329 
   330       /// This iterator goes through each BNode.
   331       /// Its usage is quite simple, for example you can count the number
   332       /// of nodes in graph \c g of type \c Graph like this:
   333       ///\code
   334       /// int count=0;
   335       /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
   336       ///\endcode
   337       class BNodeIt : public Node {
   338       public:
   339         /// Default constructor
   340 
   341         /// @warning The default constructor sets the iterator
   342         /// to an undefined value.
   343         BNodeIt() { }
   344         /// Copy constructor.
   345         
   346         /// Copy constructor.
   347         ///
   348         BNodeIt(const BNodeIt& n) : Node(n) { }
   349         /// Invalid constructor \& conversion.
   350 
   351         /// Initialize the iterator to be invalid.
   352         /// \sa Invalid for more details.
   353         BNodeIt(Invalid) { }
   354         /// Sets the iterator to the first node.
   355 
   356         /// Sets the iterator to the first node of \c g.
   357         ///
   358         BNodeIt(const BpUGraph&) { }
   359         /// Node -> BNodeIt conversion.
   360 
   361         /// Sets the iterator to the node of \c the graph pointed by 
   362 	/// the trivial iterator.
   363         /// This feature necessitates that each time we 
   364         /// iterate the edge-set, the iteration order is the same.
   365         BNodeIt(const BpUGraph&, const Node&) { }
   366         /// Next node.
   367 
   368         /// Assign the iterator to the next node.
   369         ///
   370         BNodeIt& operator++() { return *this; }
   371       };
   372     
   373     
   374       /// The base type of the undirected edge iterators.
   375 
   376       /// The base type of the undirected edge iterators.
   377       ///
   378       class UEdge {
   379       public:
   380         /// Default constructor
   381 
   382         /// @warning The default constructor sets the iterator
   383         /// to an undefined value.
   384         UEdge() { }
   385         /// Copy constructor.
   386 
   387         /// Copy constructor.
   388         ///
   389         UEdge(const UEdge&) { }
   390         /// Initialize the iterator to be invalid.
   391 
   392         /// Initialize the iterator to be invalid.
   393         ///
   394         UEdge(Invalid) { }
   395         /// Equality operator
   396 
   397         /// Two iterators are equal if and only if they point to the
   398         /// same object or both are invalid.
   399         bool operator==(UEdge) const { return true; }
   400         /// Inequality operator
   401 
   402         /// \sa operator==(UEdge n)
   403         ///
   404         bool operator!=(UEdge) const { return true; }
   405 
   406 	/// Artificial ordering operator.
   407 	
   408 	/// To allow the use of graph descriptors as key type in std::map or
   409 	/// similar associative container we require this.
   410 	///
   411 	/// \note This operator only have to define some strict ordering of
   412 	/// the items; this order has nothing to do with the iteration
   413 	/// ordering of the items.
   414 	bool operator<(UEdge) const { return false; }
   415       };
   416 
   417       /// This iterator goes through each undirected edge.
   418 
   419       /// This iterator goes through each undirected edge of a graph.
   420       /// Its usage is quite simple, for example you can count the number
   421       /// of undirected edges in a graph \c g of type \c Graph as follows:
   422       ///\code
   423       /// int count=0;
   424       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
   425       ///\endcode
   426       class UEdgeIt : public UEdge {
   427       public:
   428         /// Default constructor
   429 
   430         /// @warning The default constructor sets the iterator
   431         /// to an undefined value.
   432         UEdgeIt() { }
   433         /// Copy constructor.
   434 
   435         /// Copy constructor.
   436         ///
   437         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
   438         /// Initialize the iterator to be invalid.
   439 
   440         /// Initialize the iterator to be invalid.
   441         ///
   442         UEdgeIt(Invalid) { }
   443         /// This constructor sets the iterator to the first undirected edge.
   444     
   445         /// This constructor sets the iterator to the first undirected edge.
   446         UEdgeIt(const BpUGraph&) { }
   447         /// UEdge -> UEdgeIt conversion
   448 
   449         /// Sets the iterator to the value of the trivial iterator.
   450         /// This feature necessitates that each time we
   451         /// iterate the undirected edge-set, the iteration order is the 
   452 	/// same.
   453         UEdgeIt(const BpUGraph&, const UEdge&) { } 
   454         /// Next undirected edge
   455         
   456         /// Assign the iterator to the next undirected edge.
   457         UEdgeIt& operator++() { return *this; }
   458       };
   459 
   460       /// \brief This iterator goes trough the incident undirected 
   461       /// edges of a node.
   462       ///
   463       /// This iterator goes trough the incident undirected edges
   464       /// of a certain node
   465       /// of a graph.
   466       /// Its usage is quite simple, for example you can compute the
   467       /// degree (i.e. count the number
   468       /// of incident edges of a node \c n
   469       /// in graph \c g of type \c Graph as follows.
   470       ///\code
   471       /// int count=0;
   472       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   473       ///\endcode
   474       class IncEdgeIt : public UEdge {
   475       public:
   476         /// Default constructor
   477 
   478         /// @warning The default constructor sets the iterator
   479         /// to an undefined value.
   480         IncEdgeIt() { }
   481         /// Copy constructor.
   482 
   483         /// Copy constructor.
   484         ///
   485         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
   486         /// Initialize the iterator to be invalid.
   487 
   488         /// Initialize the iterator to be invalid.
   489         ///
   490         IncEdgeIt(Invalid) { }
   491         /// This constructor sets the iterator to first incident edge.
   492     
   493         /// This constructor set the iterator to the first incident edge of
   494         /// the node.
   495         IncEdgeIt(const BpUGraph&, const Node&) { }
   496         /// UEdge -> IncEdgeIt conversion
   497 
   498         /// Sets the iterator to the value of the trivial iterator \c e.
   499         /// This feature necessitates that each time we 
   500         /// iterate the edge-set, the iteration order is the same.
   501         IncEdgeIt(const BpUGraph&, const UEdge&) { }
   502         /// Next incident edge
   503 
   504         /// Assign the iterator to the next incident edge
   505 	/// of the corresponding node.
   506         IncEdgeIt& operator++() { return *this; }
   507       };
   508 
   509       /// The directed edge type.
   510 
   511       /// The directed edge type. It can be converted to the
   512       /// undirected edge.
   513       class Edge : public UEdge {
   514       public:
   515         /// Default constructor
   516 
   517         /// @warning The default constructor sets the iterator
   518         /// to an undefined value.
   519         Edge() { }
   520         /// Copy constructor.
   521 
   522         /// Copy constructor.
   523         ///
   524         Edge(const Edge& e) : UEdge(e) { }
   525         /// Initialize the iterator to be invalid.
   526 
   527         /// Initialize the iterator to be invalid.
   528         ///
   529         Edge(Invalid) { }
   530         /// Equality operator
   531 
   532         /// Two iterators are equal if and only if they point to the
   533         /// same object or both are invalid.
   534         bool operator==(Edge) const { return true; }
   535         /// Inequality operator
   536 
   537         /// \sa operator==(Edge n)
   538         ///
   539         bool operator!=(Edge) const { return true; }
   540 
   541 	/// Artificial ordering operator.
   542 	
   543 	/// To allow the use of graph descriptors as key type in std::map or
   544 	/// similar associative container we require this.
   545 	///
   546 	/// \note This operator only have to define some strict ordering of
   547 	/// the items; this order has nothing to do with the iteration
   548 	/// ordering of the items.
   549 	bool operator<(Edge) const { return false; }
   550 	
   551       }; 
   552       /// This iterator goes through each directed edge.
   553 
   554       /// This iterator goes through each edge of a graph.
   555       /// Its usage is quite simple, for example you can count the number
   556       /// of edges in a graph \c g of type \c Graph as follows:
   557       ///\code
   558       /// int count=0;
   559       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   560       ///\endcode
   561       class EdgeIt : public Edge {
   562       public:
   563         /// Default constructor
   564 
   565         /// @warning The default constructor sets the iterator
   566         /// to an undefined value.
   567         EdgeIt() { }
   568         /// Copy constructor.
   569 
   570         /// Copy constructor.
   571         ///
   572         EdgeIt(const EdgeIt& e) : Edge(e) { }
   573         /// Initialize the iterator to be invalid.
   574 
   575         /// Initialize the iterator to be invalid.
   576         ///
   577         EdgeIt(Invalid) { }
   578         /// This constructor sets the iterator to the first edge.
   579     
   580         /// This constructor sets the iterator to the first edge of \c g.
   581         ///@param g the graph
   582         EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
   583         /// Edge -> EdgeIt conversion
   584 
   585         /// Sets the iterator to the value of the trivial iterator \c e.
   586         /// This feature necessitates that each time we 
   587         /// iterate the edge-set, the iteration order is the same.
   588         EdgeIt(const BpUGraph&, const Edge&) { } 
   589         ///Next edge
   590         
   591         /// Assign the iterator to the next edge.
   592         EdgeIt& operator++() { return *this; }
   593       };
   594    
   595       /// This iterator goes trough the outgoing directed edges of a node.
   596 
   597       /// This iterator goes trough the \e outgoing edges of a certain node
   598       /// of a graph.
   599       /// Its usage is quite simple, for example you can count the number
   600       /// of outgoing edges of a node \c n
   601       /// in graph \c g of type \c Graph as follows.
   602       ///\code
   603       /// int count=0;
   604       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   605       ///\endcode
   606     
   607       class OutEdgeIt : public Edge {
   608       public:
   609         /// Default constructor
   610 
   611         /// @warning The default constructor sets the iterator
   612         /// to an undefined value.
   613         OutEdgeIt() { }
   614         /// Copy constructor.
   615 
   616         /// Copy constructor.
   617         ///
   618         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   619         /// Initialize the iterator to be invalid.
   620 
   621         /// Initialize the iterator to be invalid.
   622         ///
   623         OutEdgeIt(Invalid) { }
   624         /// This constructor sets the iterator to the first outgoing edge.
   625     
   626         /// This constructor sets the iterator to the first outgoing edge of
   627         /// the node.
   628         ///@param n the node
   629         ///@param g the graph
   630         OutEdgeIt(const BpUGraph& n, const Node& g) {
   631 	  ignore_unused_variable_warning(n);
   632 	  ignore_unused_variable_warning(g);
   633 	}
   634         /// Edge -> OutEdgeIt conversion
   635 
   636         /// Sets the iterator to the value of the trivial iterator.
   637 	/// This feature necessitates that each time we 
   638         /// iterate the edge-set, the iteration order is the same.
   639         OutEdgeIt(const BpUGraph&, const Edge&) { }
   640         ///Next outgoing edge
   641         
   642         /// Assign the iterator to the next 
   643         /// outgoing edge of the corresponding node.
   644         OutEdgeIt& operator++() { return *this; }
   645       };
   646 
   647       /// This iterator goes trough the incoming directed edges of a node.
   648 
   649       /// This iterator goes trough the \e incoming edges of a certain node
   650       /// of a graph.
   651       /// Its usage is quite simple, for example you can count the number
   652       /// of outgoing edges of a node \c n
   653       /// in graph \c g of type \c Graph as follows.
   654       ///\code
   655       /// int count=0;
   656       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   657       ///\endcode
   658 
   659       class InEdgeIt : public Edge {
   660       public:
   661         /// Default constructor
   662 
   663         /// @warning The default constructor sets the iterator
   664         /// to an undefined value.
   665         InEdgeIt() { }
   666         /// Copy constructor.
   667 
   668         /// Copy constructor.
   669         ///
   670         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   671         /// Initialize the iterator to be invalid.
   672 
   673         /// Initialize the iterator to be invalid.
   674         ///
   675         InEdgeIt(Invalid) { }
   676         /// This constructor sets the iterator to first incoming edge.
   677     
   678         /// This constructor set the iterator to the first incoming edge of
   679         /// the node.
   680         ///@param n the node
   681         ///@param g the graph
   682         InEdgeIt(const BpUGraph& g, const Node& n) { 
   683 	  ignore_unused_variable_warning(n);
   684 	  ignore_unused_variable_warning(g);
   685 	}
   686         /// Edge -> InEdgeIt conversion
   687 
   688         /// Sets the iterator to the value of the trivial iterator \c e.
   689         /// This feature necessitates that each time we 
   690         /// iterate the edge-set, the iteration order is the same.
   691         InEdgeIt(const BpUGraph&, const Edge&) { }
   692         /// Next incoming edge
   693 
   694         /// Assign the iterator to the next inedge of the corresponding node.
   695         ///
   696         InEdgeIt& operator++() { return *this; }
   697       };
   698 
   699       /// \brief Read write map of the nodes to type \c T.
   700       /// 
   701       /// ReadWrite map of the nodes to type \c T.
   702       /// \sa Reference
   703       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   704       /// needs some extra attention!
   705       /// \todo Wrong documentation
   706       template<class T> 
   707       class NodeMap : public ReadWriteMap< Node, T >
   708       {
   709       public:
   710 
   711         ///\e
   712         NodeMap(const BpUGraph&) { }
   713         ///\e
   714         NodeMap(const BpUGraph&, T) { }
   715 
   716         ///Copy constructor
   717         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   718         ///Assignment operator
   719         NodeMap& operator=(const NodeMap&) { return *this; }
   720         // \todo fix this concept
   721       };
   722 
   723       /// \brief Read write map of the ANodes to type \c T.
   724       /// 
   725       /// ReadWrite map of the ANodes to type \c T.
   726       /// \sa Reference
   727       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   728       /// needs some extra attention!
   729       /// \todo Wrong documentation
   730       template<class T> 
   731       class ANodeMap : public ReadWriteMap< Node, T >
   732       {
   733       public:
   734 
   735         ///\e
   736         ANodeMap(const BpUGraph&) { }
   737         ///\e
   738         ANodeMap(const BpUGraph&, T) { }
   739 
   740         ///Copy constructor
   741         ANodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   742         ///Assignment operator
   743         ANodeMap& operator=(const NodeMap&) { return *this; }
   744         // \todo fix this concept
   745       };
   746 
   747       /// \brief Read write map of the BNodes to type \c T.
   748       /// 
   749       /// ReadWrite map of the BNodes to type \c T.
   750       /// \sa Reference
   751       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   752       /// needs some extra attention!
   753       /// \todo Wrong documentation
   754       template<class T> 
   755       class BNodeMap : public ReadWriteMap< Node, T >
   756       {
   757       public:
   758 
   759         ///\e
   760         BNodeMap(const BpUGraph&) { }
   761         ///\e
   762         BNodeMap(const BpUGraph&, T) { }
   763 
   764         ///Copy constructor
   765         BNodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   766         ///Assignment operator
   767         BNodeMap& operator=(const NodeMap&) { return *this; }
   768         // \todo fix this concept
   769       };
   770 
   771       /// \brief Read write map of the directed edges to type \c T.
   772       ///
   773       /// Reference map of the directed edges to type \c T.
   774       /// \sa Reference
   775       /// \warning Making maps that can handle bool type (EdgeMap<bool>)
   776       /// needs some extra attention!
   777       /// \todo Wrong documentation
   778       template<class T> 
   779       class EdgeMap : public ReadWriteMap<Edge,T>
   780       {
   781       public:
   782 
   783         ///\e
   784         EdgeMap(const BpUGraph&) { }
   785         ///\e
   786         EdgeMap(const BpUGraph&, T) { }
   787         ///Copy constructor
   788         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   789         ///Assignment operator
   790         EdgeMap& operator=(const EdgeMap&) { return *this; }
   791         // \todo fix this concept    
   792       };
   793 
   794       /// Read write map of the undirected edges to type \c T.
   795 
   796       /// Reference map of the edges to type \c T.
   797       /// \sa Reference
   798       /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
   799       /// needs some extra attention!
   800       /// \todo Wrong documentation
   801       template<class T> 
   802       class UEdgeMap : public ReadWriteMap<UEdge,T>
   803       {
   804       public:
   805 
   806         ///\e
   807         UEdgeMap(const BpUGraph&) { }
   808         ///\e
   809         UEdgeMap(const BpUGraph&, T) { }
   810         ///Copy constructor
   811         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
   812         ///Assignment operator
   813         UEdgeMap &operator=(const UEdgeMap&) { return *this; }
   814         // \todo fix this concept    
   815       };
   816 
   817       /// \brief Direct the given undirected edge.
   818       ///
   819       /// Direct the given undirected edge. The returned edge source
   820       /// will be the given node.
   821       Edge direct(const UEdge&, const Node&) const {
   822 	return INVALID;
   823       }
   824 
   825       /// \brief Direct the given undirected edge.
   826       ///
   827       /// Direct the given undirected edge. The returned edge
   828       /// represents the given undireted edge and the direction comes
   829       /// from the given bool.  The source of the undirected edge and
   830       /// the directed edge is the same when the given bool is true.
   831       Edge direct(const UEdge&, bool) const {
   832 	return INVALID;
   833       }
   834 
   835       /// \brief Returns true when the given node is an ANode.
   836       ///
   837       /// Returns true when the given node is an ANode.
   838       bool aNode(Node) const { return true;}
   839 
   840       /// \brief Returns true when the given node is an BNode.
   841       ///
   842       /// Returns true when the given node is an BNode.
   843       bool bNode(Node) const { return true;}
   844 
   845       /// \brief Returns the edge's end node which is in the ANode set.
   846       ///
   847       /// Returns the edge's end node which is in the ANode set.
   848       Node aNode(UEdge) const { return INVALID;}
   849 
   850       /// \brief Returns the edge's end node which is in the BNode set.
   851       ///
   852       /// Returns the edge's end node which is in the BNode set.
   853       Node bNode(UEdge) const { return INVALID;}
   854 
   855       /// \brief Returns true if the edge has default orientation.
   856       ///
   857       /// Returns whether the given directed edge is same orientation as
   858       /// the corresponding undirected edge's default orientation.
   859       bool direction(Edge) const { return true; }
   860 
   861       /// \brief Returns the opposite directed edge.
   862       ///
   863       /// Returns the opposite directed edge.
   864       Edge oppositeEdge(Edge) const { return INVALID; }
   865 
   866       /// \brief Opposite node on an edge
   867       ///
   868       /// \return the opposite of the given Node on the given UEdge
   869       Node oppositeNode(Node, UEdge) const { return INVALID; }
   870 
   871       /// \brief First node of the undirected edge.
   872       ///
   873       /// \return the first node of the given UEdge.
   874       ///
   875       /// Naturally undirected edges don't have direction and thus
   876       /// don't have source and target node. But we use these two methods
   877       /// to query the two endnodes of the edge. The direction of the edge
   878       /// which arises this way is called the inherent direction of the
   879       /// undirected edge, and is used to define the "default" direction
   880       /// of the directed versions of the edges.
   881       /// \sa direction
   882       Node source(UEdge) const { return INVALID; }
   883 
   884       /// \brief Second node of the undirected edge.
   885       Node target(UEdge) const { return INVALID; }
   886 
   887       /// \brief Source node of the directed edge.
   888       Node source(Edge) const { return INVALID; }
   889 
   890       /// \brief Target node of the directed edge.
   891       Node target(Edge) const { return INVALID; }
   892 
   893       /// \brief Base node of the iterator
   894       ///
   895       /// Returns the base node (the source in this case) of the iterator
   896       Node baseNode(OutEdgeIt e) const {
   897 	return source(e);
   898       }
   899 
   900       /// \brief Running node of the iterator
   901       ///
   902       /// Returns the running node (the target in this case) of the
   903       /// iterator
   904       Node runningNode(OutEdgeIt e) const {
   905 	return target(e);
   906       }
   907 
   908       /// \brief Base node of the iterator
   909       ///
   910       /// Returns the base node (the target in this case) of the iterator
   911       Node baseNode(InEdgeIt e) const {
   912 	return target(e);
   913       }
   914       /// \brief Running node of the iterator
   915       ///
   916       /// Returns the running node (the source in this case) of the
   917       /// iterator
   918       Node runningNode(InEdgeIt e) const {
   919 	return source(e);
   920       }
   921 
   922       /// \brief Base node of the iterator
   923       ///
   924       /// Returns the base node of the iterator
   925       Node baseNode(IncEdgeIt) const {
   926 	return INVALID;
   927       }
   928       
   929       /// \brief Running node of the iterator
   930       ///
   931       /// Returns the running node of the iterator
   932       Node runningNode(IncEdgeIt) const {
   933 	return INVALID;
   934       }
   935 
   936       template <typename Graph>
   937       struct Constraints {
   938 	void constraints() {
   939 	}
   940       };
   941 
   942     };
   943 
   944 
   945     /// @}
   946 
   947   }
   948 
   949 }
   950 
   951 #endif