Extended tutorial.
2 #ifndef HUGO_DIJKSTRA_H
3 #define HUGO_DIJKSTRA_H
7 ///\brief Dijkstra algorithm.
9 #include <hugo/bin_heap.h>
10 #include <hugo/invalid.h>
17 ///%Dijkstra algorithm class.
19 ///This class provides an efficient implementation of %Dijkstra algorithm.
20 ///The edge lengths are passed to the algorithm using a
21 ///\ref ReadMapSkeleton "readable map",
22 ///so it is easy to change it to any kind of length.
24 ///The type of the length is determined by the \c ValueType of the length map.
26 ///It is also possible to change the underlying priority heap.
28 ///\param GR The graph type the algorithm runs on.
29 ///\param LM This read-only
32 ///lengths of the edges. It is read once for each edge, so the map
33 ///may involve in relatively time consuming process to compute the edge
34 ///length if it is necessary. The default map type is
35 ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
36 ///\param Heap The heap type used by the %Dijkstra
37 ///algorithm. The default
38 ///is using \ref BinHeap "binary heap".
40 ///\author Jacint Szabo and Alpar Juttner
41 ///\todo We need a typedef-names should be standardized.
44 template <typename GR,
48 template <typename GR,
49 typename LM=typename GR::template EdgeMap<int>,
50 template <class,class,class,class> class Heap = BinHeap >
54 ///The type of the underlying graph.
56 typedef typename Graph::Node Node;
57 typedef typename Graph::NodeIt NodeIt;
58 typedef typename Graph::Edge Edge;
59 typedef typename Graph::OutEdgeIt OutEdgeIt;
61 ///The type of the length of the edges.
62 typedef typename LM::ValueType ValueType;
63 ///The the type of the map that stores the edge lengths.
65 ///\brief The the type of the map that stores the last
66 ///edges of the shortest paths.
67 typedef typename Graph::template NodeMap<Edge> PredMap;
68 ///\brief The the type of the map that stores the last but one
69 ///nodes of the shortest paths.
70 typedef typename Graph::template NodeMap<Node> PredNodeMap;
71 ///The the type of the map that stores the dists of the nodes.
72 typedef typename Graph::template NodeMap<ValueType> DistMap;
79 bool local_predecessor;
80 PredNodeMap *pred_node;
87 ///\todo Error if \c G or are \c NULL. What about \c length
88 ///\todo Better memory allocation (instead of new).
92 // local_length = true;
93 // length = new LM(G);
96 local_predecessor = true;
97 predecessor = new PredMap(*G);
100 local_pred_node = true;
101 pred_node = new PredNodeMap(*G);
104 local_distance = true;
105 distance = new DistMap(*G);
111 Dijkstra(const Graph& _G, const LM& _length) :
112 G(&_G), length(&_length),
113 predecessor(NULL), pred_node(NULL), distance(NULL),
114 local_predecessor(false), local_pred_node(false), local_distance(false)
119 // if(local_length) delete length;
120 if(local_predecessor) delete predecessor;
121 if(local_pred_node) delete pred_node;
122 if(local_distance) delete distance;
125 ///Sets the graph the algorithm will run on.
127 ///Sets the graph the algorithm will run on.
128 ///\return <tt> (*this) </tt>
129 Dijkstra &setGraph(const Graph &_G)
134 ///Sets the length map.
136 ///Sets the length map.
137 ///\return <tt> (*this) </tt>
138 Dijkstra &setLengthMap(const LM &m)
140 // if(local_length) {
142 // local_length=false;
148 ///Sets the map storing the predecessor edges.
150 ///Sets the map storing the predecessor edges.
151 ///If you don't use this function before calling \ref run(),
152 ///it will allocate one. The destuctor deallocates this
153 ///automatically allocated map, of course.
154 ///\return <tt> (*this) </tt>
155 Dijkstra &setPredMap(PredMap &m)
157 if(local_predecessor) {
159 local_predecessor=false;
165 ///Sets the map storing the predecessor nodes.
167 ///Sets the map storing the predecessor nodes.
168 ///If you don't use this function before calling \ref run(),
169 ///it will allocate one. The destuctor deallocates this
170 ///automatically allocated map, of course.
171 ///\return <tt> (*this) </tt>
172 Dijkstra &setPredNodeMap(PredNodeMap &m)
174 if(local_pred_node) {
176 local_pred_node=false;
182 ///Sets the map storing the distances calculated by the algorithm.
184 ///Sets the map storing the distances calculated by the algorithm.
185 ///If you don't use this function before calling \ref run(),
186 ///it will allocate one. The destuctor deallocates this
187 ///automatically allocated map, of course.
188 ///\return <tt> (*this) </tt>
189 Dijkstra &setDistMap(DistMap &m)
193 local_distance=false;
201 ///The distance of a node from the root.
203 ///Returns the distance of a node from the root.
204 ///\pre \ref run() must be called before using this function.
205 ///\warning If node \c v in unreachable from the root the return value
206 ///of this funcion is undefined.
207 ValueType dist(Node v) const { return (*distance)[v]; }
209 ///Returns the 'previous edge' of the shortest path tree.
211 ///For a node \c v it returns the 'previous edge' of the shortest path tree,
212 ///i.e. it returns the last edge from a shortest path from the root to \c
213 ///v. It is \ref INVALID
214 ///if \c v is unreachable from the root or if \c v=s. The
215 ///shortest path tree used here is equal to the shortest path tree used in
216 ///\ref predNode(Node v). \pre \ref run() must be called before using
218 Edge pred(Node v) const { return (*predecessor)[v]; }
220 ///Returns the 'previous node' of the shortest path tree.
222 ///For a node \c v it returns the 'previous node' of the shortest path tree,
223 ///i.e. it returns the last but one node from a shortest path from the
224 ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
225 ///\c v=s. The shortest path tree used here is equal to the shortest path
226 ///tree used in \ref pred(Node v). \pre \ref run() must be called before
227 ///using this function.
228 Node predNode(Node v) const { return (*pred_node)[v]; }
230 ///Returns a reference to the NodeMap of distances.
232 ///Returns a reference to the NodeMap of distances. \pre \ref run() must
233 ///be called before using this function.
234 const DistMap &distMap() const { return *distance;}
236 ///Returns a reference to the shortest path tree map.
238 ///Returns a reference to the NodeMap of the edges of the
239 ///shortest path tree.
240 ///\pre \ref run() must be called before using this function.
241 const PredMap &predMap() const { return *predecessor;}
243 ///Returns a reference to the map of nodes of shortest paths.
245 ///Returns a reference to the NodeMap of the last but one nodes of the
246 ///shortest path tree.
247 ///\pre \ref run() must be called before using this function.
248 const PredNodeMap &predNodeMap() const { return *pred_node;}
250 ///Checks if a node is reachable from the root.
252 ///Returns \c true if \c v is reachable from the root.
253 ///\warning the root node is reported to be unreached!
254 ///\todo Is this what we want?
255 ///\pre \ref run() must be called before using this function.
257 bool reached(Node v) { return G->valid((*predecessor)[v]); }
262 // **********************************************************************
264 // **********************************************************************
266 ///Runs %Dijkstra algorithm from node the root.
268 ///This method runs the %Dijkstra algorithm from a root node \c s
271 ///shortest path to each node. The algorithm computes
272 ///- The shortest path tree.
273 ///- The distance of each node from the root.
274 template <typename GR, typename LM,
275 template<class,class,class,class> class Heap >
276 void Dijkstra<GR,LM,Heap>::run(Node s) {
280 for ( NodeIt u(*G) ; G->valid(u) ; G->next(u) ) {
281 predecessor->set(u,INVALID);
282 pred_node->set(u,INVALID);
285 typename GR::template NodeMap<int> heap_map(*G,-1);
287 typedef Heap<Node, ValueType, typename GR::template NodeMap<int>,
288 std::less<ValueType> >
291 HeapType heap(heap_map);
295 while ( !heap.empty() ) {
298 ValueType oldvalue=heap[v];
300 distance->set(v, oldvalue);
303 for(OutEdgeIt e(*G,v); G->valid(e); G->next(e)) {
306 switch(heap.state(w)) {
307 case HeapType::PRE_HEAP:
308 heap.push(w,oldvalue+(*length)[e]);
309 predecessor->set(w,e);
312 case HeapType::IN_HEAP:
313 if ( oldvalue+(*length)[e] < heap[w] ) {
314 heap.decrease(w, oldvalue+(*length)[e]);
315 predecessor->set(w,e);
319 case HeapType::POST_HEAP:
328 } //END OF NAMESPACE HUGO