lemon/euler.h
author klao
Wed, 02 Nov 2005 12:44:50 +0000
changeset 1748 0a75c3e6a91a
child 1761 896464fe9fbb
permissions -rw-r--r--
small svn:ignore fixups
     1 /* -*- C++ -*-
     2  * lemon/topology.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 #include<lemon/invalid.h>
    17 #include <list>
    18 
    19 /// \ingroup gutils
    20 /// \file
    21 /// \brief Euler tour
    22 ///
    23 ///This file provides an Euler tour iterator and ways to check
    24 ///if a graph is euler.
    25 
    26 
    27 namespace lemon {
    28 
    29   ///Euler iterator in directed graphs.
    30 
    31   /// \ingroup gutils
    32   ///This iterator converts to the \c Edge type of the graph and using
    33   ///the ++ operator it provides an Euler tour of the graph (if there exists).
    34   ///
    35   ///For example
    36   ///if the given graph if Euler (i.e it has only one nontrivial component
    37   ///and the in-degree is equal to the out-degree for all nodes),
    38   ///the the following code will print the edge IDs according to an
    39   ///Euler tour of \c g.
    40   ///\code
    41   ///  for(EulerIt<ListGraph> e(g),e!=INVALID;++e) {
    42   ///    std::cout << g.id(e) << std::eol;
    43   ///  }
    44   ///\endcode
    45   ///If \c g is not Euler then the resulted tour will not be full or closed.
    46   ///\todo Test required
    47   template<class Graph>
    48   class EulerIt 
    49   {
    50     typedef typename Graph::Node Node;
    51     typedef typename Graph::NodeIt NodeIt;
    52     typedef typename Graph::Edge Edge;
    53     typedef typename Graph::EdgeIt EdgeIt;
    54     typedef typename Graph::OutEdgeIt OutEdgeIt;
    55     typedef typename Graph::InEdgeIt InEdgeIt;
    56     
    57     const Graph &g;
    58     typename Graph::NodeMap<OutEdgeIt> nedge;
    59     std::list<Edge> euler;
    60 
    61   public:
    62     
    63     ///Constructor
    64 
    65     ///\param _g A directed graph.
    66     ///\param start The starting point of the tour. If it is not given
    67     ///       tho tour will start from the first node.
    68     EulerIt(const Graph &_g,typename Graph::Node start=INVALID)
    69       : g(_g), nedge(g)
    70     {
    71       if(start==INVALID) start=NodeIt(g);
    72       for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutEdgeIt(g,n);
    73       while(nedge[start]!=INVALID) {
    74 	euler.push_back(nedge[start]);
    75 	Node next=g.target(nedge[start]);
    76 	++nedge[start];
    77 	start=next;
    78       }
    79     }
    80     
    81     ///Edge Conversion
    82     operator Edge() { return euler.empty()?INVALID:euler.front(); }
    83     bool operator==(Invalid) { return euler.empty(); }
    84     bool operator!=(Invalid) { return !euler.empty(); }
    85     
    86     ///Next edge of the tour
    87     EulerIt &operator++() {
    88       Node s=g.target(euler.front());
    89       euler.pop_front();
    90       //This produces a warning.Strange.
    91       //std::list<Edge>::iterator next=euler.begin();
    92       typename std::list<Edge>::iterator next=euler.begin();
    93       while(nedge[s]!=INVALID) {
    94 	euler.insert(next,nedge[s]);
    95 	Node n=g.target(nedge[s]);
    96 	++nedge[s];
    97 	s=n;
    98       }
    99       return *this;
   100     }
   101     ///Postfix incrementation
   102     
   103     ///\warning This gives back an Edge, not an EulerIt!
   104     ///\todo Is this what we want?
   105     Edge operator++(int) 
   106     {
   107       Edge e=*this;
   108       ++(*this);
   109       return e;
   110     }
   111   };
   112 
   113   ///Checks if the graph is Euler
   114 
   115   /// \ingroup gutils
   116   ///Checks if the graph is Euler. It works for both directed and
   117   ///undirected graphs.
   118   ///\todo What to do with the isolated points?
   119   ///\todo Test required
   120   template<class Graph>
   121 #ifdef DOXYGEN
   122   bool
   123 #else
   124   typename enable_if<typename Graph::UndirTag,bool>::type
   125 #endif
   126   euler(const Graph &g) 
   127   {
   128     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
   129       if(countIncEdges(g,n)%2) return false;
   130     return true;
   131   }
   132   template<class Graph>
   133   typename disable_if<typename Graph::UndirTag,bool>::type
   134   isEuler(const Graph &g) 
   135   {
   136     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
   137       if(countInEdges(g,n)!=countOutEdges(g,n)) return false;
   138     return true;
   139   }
   140   
   141 }