lemon/graph_utils.h
author alpar
Fri, 20 Oct 2006 12:06:49 +0000
changeset 2257 0a9393adc747
parent 2201 597714206430
child 2286 1ef281b2b10e
permissions -rw-r--r--
Doc improvements.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_GRAPH_UTILS_H
    20 #define LEMON_GRAPH_UTILS_H
    21 
    22 #include <iterator>
    23 #include <vector>
    24 #include <map>
    25 #include <cmath>
    26 #include <algorithm>
    27 
    28 #include <lemon/bits/invalid.h>
    29 #include <lemon/bits/utility.h>
    30 #include <lemon/maps.h>
    31 #include <lemon/bits/traits.h>
    32 
    33 #include <lemon/bits/alteration_notifier.h>
    34 #include <lemon/bits/default_map.h>
    35 
    36 ///\ingroup gutils
    37 ///\file
    38 ///\brief Graph utilities.
    39 ///
    40 ///
    41 
    42 
    43 namespace lemon {
    44 
    45   /// \addtogroup gutils
    46   /// @{
    47 
    48   ///Creates convenience typedefs for the graph types and iterators
    49 
    50   ///This \c \#define creates convenience typedefs for the following types
    51   ///of \c Graph: \c Node,  \c NodeIt, \c Edge, \c EdgeIt, \c InEdgeIt,
    52   ///\c OutEdgeIt
    53   ///\note If \c G it a template parameter, it should be used in this way.
    54   ///\code
    55   ///  GRAPH_TYPEDEFS(typename G)
    56   ///\endcode
    57   ///
    58   ///\warning There are no typedefs for the graph maps because of the lack of
    59   ///template typedefs in C++.
    60 #define GRAPH_TYPEDEFS(Graph)				\
    61   typedef Graph::     Node      Node;			\
    62     typedef Graph::   NodeIt    NodeIt;			\
    63     typedef Graph::   Edge      Edge;			\
    64     typedef Graph::   EdgeIt    EdgeIt;			\
    65     typedef Graph:: InEdgeIt  InEdgeIt;			\
    66     typedef Graph::OutEdgeIt OutEdgeIt;			
    67 
    68   ///Creates convenience typedefs for the undirected graph types and iterators
    69 
    70   ///This \c \#define creates the same convenience typedefs as defined by
    71   ///\ref GRAPH_TYPEDEFS(Graph) and three more, namely it creates
    72   ///\c UEdge, \c UEdgeIt, \c IncEdgeIt,
    73   ///
    74   ///\note If \c G it a template parameter, it should be used in this way.
    75   ///\code
    76   ///  UGRAPH_TYPEDEFS(typename G)
    77   ///\endcode
    78   ///
    79   ///\warning There are no typedefs for the graph maps because of the lack of
    80   ///template typedefs in C++.
    81 #define UGRAPH_TYPEDEFS(Graph)				\
    82   GRAPH_TYPEDEFS(Graph)						\
    83     typedef Graph:: UEdge   UEdge;			\
    84     typedef Graph:: UEdgeIt UEdgeIt;			\
    85     typedef Graph:: IncEdgeIt   IncEdgeIt;		       
    86 //     typedef Graph::template UEdgeMap<bool> BoolUEdgeMap;	 
    87 //     typedef Graph::template UEdgeMap<int> IntUEdgeMap;
    88 //     typedef Graph::template UEdgeMap<double> DoubleUEdgeMap;
    89 
    90   ///\brief Creates convenience typedefs for the bipartite undirected graph 
    91   ///types and iterators
    92 
    93   ///This \c \#define creates the same convenience typedefs as defined by
    94   ///\ref UGRAPH_TYPEDEFS(Graph) and two more, namely it creates
    95   ///\c ANodeIt, \c BNodeIt, 
    96   ///
    97   ///\note If \c G it a template parameter, it should be used in this way.
    98   ///\code
    99   ///  BPUGRAPH_TYPEDEFS(typename G)
   100   ///\endcode
   101   ///
   102   ///\warning There are no typedefs for the graph maps because of the lack of
   103   ///template typedefs in C++.
   104 #define BPUGRAPH_TYPEDEFS(Graph)            \
   105   UGRAPH_TYPEDEFS(Graph)                    \
   106     typedef Graph::ANodeIt ANodeIt;	    \
   107     typedef Graph::BNodeIt BNodeIt;
   108 
   109   /// \brief Function to count the items in the graph.
   110   ///
   111   /// This function counts the items (nodes, edges etc) in the graph.
   112   /// The complexity of the function is O(n) because
   113   /// it iterates on all of the items.
   114 
   115   template <typename Graph, typename Item>
   116   inline int countItems(const Graph& g) {
   117     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   118     int num = 0;
   119     for (ItemIt it(g); it != INVALID; ++it) {
   120       ++num;
   121     }
   122     return num;
   123   }
   124 
   125   // Node counting:
   126 
   127   namespace _graph_utils_bits {
   128     
   129     template <typename Graph, typename Enable = void>
   130     struct CountNodesSelector {
   131       static int count(const Graph &g) {
   132         return countItems<Graph, typename Graph::Node>(g);
   133       }
   134     };
   135 
   136     template <typename Graph>
   137     struct CountNodesSelector<
   138       Graph, typename 
   139       enable_if<typename Graph::NodeNumTag, void>::type> 
   140     {
   141       static int count(const Graph &g) {
   142         return g.nodeNum();
   143       }
   144     };    
   145   }
   146 
   147   /// \brief Function to count the nodes in the graph.
   148   ///
   149   /// This function counts the nodes in the graph.
   150   /// The complexity of the function is O(n) but for some
   151   /// graph structures it is specialized to run in O(1).
   152   ///
   153   /// \todo refer how to specialize it
   154 
   155   template <typename Graph>
   156   inline int countNodes(const Graph& g) {
   157     return _graph_utils_bits::CountNodesSelector<Graph>::count(g);
   158   }
   159 
   160   namespace _graph_utils_bits {
   161     
   162     template <typename Graph, typename Enable = void>
   163     struct CountANodesSelector {
   164       static int count(const Graph &g) {
   165         return countItems<Graph, typename Graph::ANode>(g);
   166       }
   167     };
   168 
   169     template <typename Graph>
   170     struct CountANodesSelector<
   171       Graph, typename 
   172       enable_if<typename Graph::NodeNumTag, void>::type> 
   173     {
   174       static int count(const Graph &g) {
   175         return g.aNodeNum();
   176       }
   177     };    
   178   }
   179 
   180   /// \brief Function to count the anodes in the graph.
   181   ///
   182   /// This function counts the anodes in the graph.
   183   /// The complexity of the function is O(an) but for some
   184   /// graph structures it is specialized to run in O(1).
   185   ///
   186   /// \todo refer how to specialize it
   187 
   188   template <typename Graph>
   189   inline int countANodes(const Graph& g) {
   190     return _graph_utils_bits::CountANodesSelector<Graph>::count(g);
   191   }
   192 
   193   namespace _graph_utils_bits {
   194     
   195     template <typename Graph, typename Enable = void>
   196     struct CountBNodesSelector {
   197       static int count(const Graph &g) {
   198         return countItems<Graph, typename Graph::BNode>(g);
   199       }
   200     };
   201 
   202     template <typename Graph>
   203     struct CountBNodesSelector<
   204       Graph, typename 
   205       enable_if<typename Graph::NodeNumTag, void>::type> 
   206     {
   207       static int count(const Graph &g) {
   208         return g.bNodeNum();
   209       }
   210     };    
   211   }
   212 
   213   /// \brief Function to count the bnodes in the graph.
   214   ///
   215   /// This function counts the bnodes in the graph.
   216   /// The complexity of the function is O(bn) but for some
   217   /// graph structures it is specialized to run in O(1).
   218   ///
   219   /// \todo refer how to specialize it
   220 
   221   template <typename Graph>
   222   inline int countBNodes(const Graph& g) {
   223     return _graph_utils_bits::CountBNodesSelector<Graph>::count(g);
   224   }
   225 
   226 
   227   // Edge counting:
   228 
   229   namespace _graph_utils_bits {
   230     
   231     template <typename Graph, typename Enable = void>
   232     struct CountEdgesSelector {
   233       static int count(const Graph &g) {
   234         return countItems<Graph, typename Graph::Edge>(g);
   235       }
   236     };
   237 
   238     template <typename Graph>
   239     struct CountEdgesSelector<
   240       Graph, 
   241       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
   242     {
   243       static int count(const Graph &g) {
   244         return g.edgeNum();
   245       }
   246     };    
   247   }
   248 
   249   /// \brief Function to count the edges in the graph.
   250   ///
   251   /// This function counts the edges in the graph.
   252   /// The complexity of the function is O(e) but for some
   253   /// graph structures it is specialized to run in O(1).
   254 
   255   template <typename Graph>
   256   inline int countEdges(const Graph& g) {
   257     return _graph_utils_bits::CountEdgesSelector<Graph>::count(g);
   258   }
   259 
   260   // Undirected edge counting:
   261   namespace _graph_utils_bits {
   262     
   263     template <typename Graph, typename Enable = void>
   264     struct CountUEdgesSelector {
   265       static int count(const Graph &g) {
   266         return countItems<Graph, typename Graph::UEdge>(g);
   267       }
   268     };
   269 
   270     template <typename Graph>
   271     struct CountUEdgesSelector<
   272       Graph, 
   273       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
   274     {
   275       static int count(const Graph &g) {
   276         return g.uEdgeNum();
   277       }
   278     };    
   279   }
   280 
   281   /// \brief Function to count the undirected edges in the graph.
   282   ///
   283   /// This function counts the undirected edges in the graph.
   284   /// The complexity of the function is O(e) but for some
   285   /// graph structures it is specialized to run in O(1).
   286 
   287   template <typename Graph>
   288   inline int countUEdges(const Graph& g) {
   289     return _graph_utils_bits::CountUEdgesSelector<Graph>::count(g);
   290 
   291   }
   292 
   293 
   294   template <typename Graph, typename DegIt>
   295   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
   296     int num = 0;
   297     for (DegIt it(_g, _n); it != INVALID; ++it) {
   298       ++num;
   299     }
   300     return num;
   301   }
   302 
   303   /// \brief Function to count the number of the out-edges from node \c n.
   304   ///
   305   /// This function counts the number of the out-edges from node \c n
   306   /// in the graph.  
   307   template <typename Graph>
   308   inline int countOutEdges(const Graph& _g,  const typename Graph::Node& _n) {
   309     return countNodeDegree<Graph, typename Graph::OutEdgeIt>(_g, _n);
   310   }
   311 
   312   /// \brief Function to count the number of the in-edges to node \c n.
   313   ///
   314   /// This function counts the number of the in-edges to node \c n
   315   /// in the graph.  
   316   template <typename Graph>
   317   inline int countInEdges(const Graph& _g,  const typename Graph::Node& _n) {
   318     return countNodeDegree<Graph, typename Graph::InEdgeIt>(_g, _n);
   319   }
   320 
   321   /// \brief Function to count the number of the inc-edges to node \c n.
   322   ///
   323   /// This function counts the number of the inc-edges to node \c n
   324   /// in the graph.  
   325   template <typename Graph>
   326   inline int countIncEdges(const Graph& _g,  const typename Graph::Node& _n) {
   327     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
   328   }
   329 
   330   namespace _graph_utils_bits {
   331     
   332     template <typename Graph, typename Enable = void>
   333     struct FindEdgeSelector {
   334       typedef typename Graph::Node Node;
   335       typedef typename Graph::Edge Edge;
   336       static Edge find(const Graph &g, Node u, Node v, Edge e) {
   337         if (e == INVALID) {
   338           g.firstOut(e, u);
   339         } else {
   340           g.nextOut(e);
   341         }
   342         while (e != INVALID && g.target(e) != v) {
   343           g.nextOut(e);
   344         }
   345         return e;
   346       }
   347     };
   348 
   349     template <typename Graph>
   350     struct FindEdgeSelector<
   351       Graph, 
   352       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   353     {
   354       typedef typename Graph::Node Node;
   355       typedef typename Graph::Edge Edge;
   356       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
   357         return g.findEdge(u, v, prev);
   358       }
   359     };    
   360   }
   361 
   362   /// \brief Finds an edge between two nodes of a graph.
   363   ///
   364   /// Finds an edge from node \c u to node \c v in graph \c g.
   365   ///
   366   /// If \c prev is \ref INVALID (this is the default value), then
   367   /// it finds the first edge from \c u to \c v. Otherwise it looks for
   368   /// the next edge from \c u to \c v after \c prev.
   369   /// \return The found edge or \ref INVALID if there is no such an edge.
   370   ///
   371   /// Thus you can iterate through each edge from \c u to \c v as it follows.
   372   ///\code
   373   /// for(Edge e=findEdge(g,u,v);e!=INVALID;e=findEdge(g,u,v,e)) {
   374   ///   ...
   375   /// }
   376   ///\endcode
   377   ///
   378   ///\sa EdgeLookUp
   379   ///\se AllEdgeLookup
   380   ///\sa ConEdgeIt
   381   template <typename Graph>
   382   inline typename Graph::Edge findEdge(const Graph &g,
   383 				       typename Graph::Node u, 
   384 				       typename Graph::Node v,
   385 				       typename Graph::Edge prev = INVALID) {
   386     return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, prev);
   387   }
   388 
   389   /// \brief Iterator for iterating on edges connected the same nodes.
   390   ///
   391   /// Iterator for iterating on edges connected the same nodes. It is 
   392   /// higher level interface for the findEdge() function. You can
   393   /// use it the following way:
   394   ///\code
   395   /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   396   ///   ...
   397   /// }
   398   ///\endcode
   399   /// 
   400   ///\sa findEdge()
   401   ///\sa EdgeLookUp
   402   ///\se AllEdgeLookup
   403   ///
   404   /// \author Balazs Dezso 
   405   template <typename _Graph>
   406   class ConEdgeIt : public _Graph::Edge {
   407   public:
   408 
   409     typedef _Graph Graph;
   410     typedef typename Graph::Edge Parent;
   411 
   412     typedef typename Graph::Edge Edge;
   413     typedef typename Graph::Node Node;
   414 
   415     /// \brief Constructor.
   416     ///
   417     /// Construct a new ConEdgeIt iterating on the edges which
   418     /// connects the \c u and \c v node.
   419     ConEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
   420       Parent::operator=(findEdge(graph, u, v));
   421     }
   422 
   423     /// \brief Constructor.
   424     ///
   425     /// Construct a new ConEdgeIt which continues the iterating from 
   426     /// the \c e edge.
   427     ConEdgeIt(const Graph& g, Edge e) : Parent(e), graph(g) {}
   428     
   429     /// \brief Increment operator.
   430     ///
   431     /// It increments the iterator and gives back the next edge.
   432     ConEdgeIt& operator++() {
   433       Parent::operator=(findEdge(graph, graph.source(*this), 
   434 				 graph.target(*this), *this));
   435       return *this;
   436     }
   437   private:
   438     const Graph& graph;
   439   };
   440 
   441   namespace _graph_utils_bits {
   442     
   443     template <typename Graph, typename Enable = void>
   444     struct FindUEdgeSelector {
   445       typedef typename Graph::Node Node;
   446       typedef typename Graph::UEdge UEdge;
   447       static UEdge find(const Graph &g, Node u, Node v, UEdge e) {
   448         bool b;
   449         if (u != v) {
   450           if (e == INVALID) {
   451             g.firstInc(e, b, u);
   452           } else {
   453             b = g.source(e) == u;
   454             g.nextInc(e, b);
   455           }
   456           while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) {
   457             g.nextInc(e, b);
   458           }
   459         } else {
   460           if (e == INVALID) {
   461             g.firstInc(e, b, u);
   462           } else {
   463             b = true;
   464             g.nextInc(e, b);
   465           }
   466           while (e != INVALID && (!b || g.target(e) != v)) {
   467             g.nextInc(e, b);
   468           }
   469         }
   470         return e;
   471       }
   472     };
   473 
   474     template <typename Graph>
   475     struct FindUEdgeSelector<
   476       Graph, 
   477       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   478     {
   479       typedef typename Graph::Node Node;
   480       typedef typename Graph::UEdge UEdge;
   481       static UEdge find(const Graph &g, Node u, Node v, UEdge prev) {
   482         return g.findUEdge(u, v, prev);
   483       }
   484     };    
   485   }
   486 
   487   /// \brief Finds an uedge between two nodes of a graph.
   488   ///
   489   /// Finds an uedge from node \c u to node \c v in graph \c g.
   490   /// If the node \c u and node \c v is equal then each loop edge
   491   /// will be enumerated.
   492   ///
   493   /// If \c prev is \ref INVALID (this is the default value), then
   494   /// it finds the first edge from \c u to \c v. Otherwise it looks for
   495   /// the next edge from \c u to \c v after \c prev.
   496   /// \return The found edge or \ref INVALID if there is no such an edge.
   497   ///
   498   /// Thus you can iterate through each edge from \c u to \c v as it follows.
   499   ///\code
   500   /// for(UEdge e = findUEdge(g,u,v); e != INVALID; 
   501   ///     e = findUEdge(g,u,v,e)) {
   502   ///   ...
   503   /// }
   504   ///\endcode
   505   ///
   506   ///\sa ConEdgeIt
   507 
   508   template <typename Graph>
   509   inline typename Graph::UEdge findUEdge(const Graph &g,
   510                                          typename Graph::Node u, 
   511                                          typename Graph::Node v,
   512                                          typename Graph::UEdge p = INVALID) {
   513     return _graph_utils_bits::FindUEdgeSelector<Graph>::find(g, u, v, p);
   514   }
   515 
   516   /// \brief Iterator for iterating on uedges connected the same nodes.
   517   ///
   518   /// Iterator for iterating on uedges connected the same nodes. It is 
   519   /// higher level interface for the findUEdge() function. You can
   520   /// use it the following way:
   521   ///\code
   522   /// for (ConUEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   523   ///   ...
   524   /// }
   525   ///\endcode
   526   ///
   527   ///\sa findUEdge()
   528   ///
   529   /// \author Balazs Dezso 
   530   template <typename _Graph>
   531   class ConUEdgeIt : public _Graph::UEdge {
   532   public:
   533 
   534     typedef _Graph Graph;
   535     typedef typename Graph::UEdge Parent;
   536 
   537     typedef typename Graph::UEdge UEdge;
   538     typedef typename Graph::Node Node;
   539 
   540     /// \brief Constructor.
   541     ///
   542     /// Construct a new ConUEdgeIt iterating on the edges which
   543     /// connects the \c u and \c v node.
   544     ConUEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
   545       Parent::operator=(findUEdge(graph, u, v));
   546     }
   547 
   548     /// \brief Constructor.
   549     ///
   550     /// Construct a new ConUEdgeIt which continues the iterating from 
   551     /// the \c e edge.
   552     ConUEdgeIt(const Graph& g, UEdge e) : Parent(e), graph(g) {}
   553     
   554     /// \brief Increment operator.
   555     ///
   556     /// It increments the iterator and gives back the next edge.
   557     ConUEdgeIt& operator++() {
   558       Parent::operator=(findUEdge(graph, graph.source(*this), 
   559 				      graph.target(*this), *this));
   560       return *this;
   561     }
   562   private:
   563     const Graph& graph;
   564   };
   565 
   566   /// \brief Copy a map.
   567   ///
   568   /// This function copies the \c source map to the \c target map. It uses the
   569   /// given iterator to iterate on the data structure and it uses the \c ref
   570   /// mapping to convert the source's keys to the target's keys.
   571   template <typename Target, typename Source, 
   572 	    typename ItemIt, typename Ref>	    
   573   void copyMap(Target& target, const Source& source, 
   574 	       ItemIt it, const Ref& ref) {
   575     for (; it != INVALID; ++it) {
   576       target[ref[it]] = source[it];
   577     }
   578   }
   579 
   580   /// \brief Copy the source map to the target map.
   581   ///
   582   /// Copy the \c source map to the \c target map. It uses the given iterator
   583   /// to iterate on the data structure.
   584   template <typename Target, typename Source, typename ItemIt>	    
   585   void copyMap(Target& target, const Source& source, ItemIt it) {
   586     for (; it != INVALID; ++it) {
   587       target[it] = source[it];
   588     }
   589   }
   590 
   591   /// \brief Class to copy a graph.
   592   ///
   593   /// Class to copy a graph to another graph (duplicate a graph). The
   594   /// simplest way of using it is through the \c copyGraph() function.
   595   template <typename Target, typename Source>
   596   class GraphCopy {
   597   public: 
   598     typedef typename Source::Node Node;
   599     typedef typename Source::NodeIt NodeIt;
   600     typedef typename Source::Edge Edge;
   601     typedef typename Source::EdgeIt EdgeIt;
   602 
   603     typedef typename Source::template NodeMap<typename Target::Node>NodeRefMap;
   604     typedef typename Source::template EdgeMap<typename Target::Edge>EdgeRefMap;
   605 
   606     /// \brief Constructor for the GraphCopy.
   607     ///
   608     /// It copies the content of the \c _source graph into the
   609     /// \c _target graph. It creates also two references, one beetween
   610     /// the two nodeset and one beetween the two edgesets.
   611     GraphCopy(Target& _target, const Source& _source) 
   612       : source(_source), target(_target), 
   613 	nodeRefMap(_source), edgeRefMap(_source) {
   614       for (NodeIt it(source); it != INVALID; ++it) {
   615 	nodeRefMap[it] = target.addNode();
   616       }
   617       for (EdgeIt it(source); it != INVALID; ++it) {
   618 	edgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
   619 					nodeRefMap[source.target(it)]);
   620       }
   621     }
   622 
   623     /// \brief Copies the node references into the given map.
   624     ///
   625     /// Copies the node references into the given map.
   626     template <typename NodeRef>
   627     const GraphCopy& nodeRef(NodeRef& map) const {
   628       for (NodeIt it(source); it != INVALID; ++it) {
   629 	map.set(it, nodeRefMap[it]);
   630       }
   631       return *this;
   632     }
   633 
   634     /// \brief Reverse and copies the node references into the given map.
   635     ///
   636     /// Reverse and copies the node references into the given map.
   637     template <typename NodeRef>
   638     const GraphCopy& nodeCrossRef(NodeRef& map) const {
   639       for (NodeIt it(source); it != INVALID; ++it) {
   640 	map.set(nodeRefMap[it], it);
   641       }
   642       return *this;
   643     }
   644 
   645     /// \brief Copies the edge references into the given map.
   646     ///
   647     /// Copies the edge references into the given map.
   648     template <typename EdgeRef>
   649     const GraphCopy& edgeRef(EdgeRef& map) const {
   650       for (EdgeIt it(source); it != INVALID; ++it) {
   651 	map.set(it, edgeRefMap[it]);
   652       }
   653       return *this;
   654     }
   655 
   656     /// \brief Reverse and copies the edge references into the given map.
   657     ///
   658     /// Reverse and copies the edge references into the given map.
   659     template <typename EdgeRef>
   660     const GraphCopy& edgeCrossRef(EdgeRef& map) const {
   661       for (EdgeIt it(source); it != INVALID; ++it) {
   662 	map.set(edgeRefMap[it], it);
   663       }
   664       return *this;
   665     }
   666 
   667     /// \brief Make copy of the given map.
   668     ///
   669     /// Makes copy of the given map for the newly created graph. 
   670     /// The new map's key type is the target graph's node type,
   671     /// and the copied map's key type is the source graph's node
   672     /// type.  
   673     template <typename TargetMap, typename SourceMap>
   674     const GraphCopy& nodeMap(TargetMap& tMap, const SourceMap& sMap) const {
   675       copyMap(tMap, sMap, NodeIt(source), nodeRefMap);
   676       return *this;
   677     }
   678 
   679     /// \brief Make copy of the given map.
   680     ///
   681     /// Makes copy of the given map for the newly created graph. 
   682     /// The new map's key type is the target graph's edge type,
   683     /// and the copied map's key type is the source graph's edge
   684     /// type.  
   685     template <typename TargetMap, typename SourceMap>
   686     const GraphCopy& edgeMap(TargetMap& tMap, const SourceMap& sMap) const {
   687       copyMap(tMap, sMap, EdgeIt(source), edgeRefMap);
   688       return *this;
   689     }
   690 
   691     /// \brief Gives back the stored node references.
   692     ///
   693     /// Gives back the stored node references.
   694     const NodeRefMap& nodeRef() const {
   695       return nodeRefMap;
   696     }
   697 
   698     /// \brief Gives back the stored edge references.
   699     ///
   700     /// Gives back the stored edge references.
   701     const EdgeRefMap& edgeRef() const {
   702       return edgeRefMap;
   703     }
   704 
   705     void run() const {}
   706 
   707   private:
   708     
   709     const Source& source;
   710     Target& target;
   711 
   712     NodeRefMap nodeRefMap;
   713     EdgeRefMap edgeRefMap;
   714   };
   715 
   716   /// \brief Copy a graph to another graph.
   717   ///
   718   /// Copy a graph to another graph.
   719   /// The usage of the function:
   720   /// 
   721   ///\code
   722   /// copyGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr);
   723   ///\endcode
   724   /// 
   725   /// After the copy the \c nr map will contain the mapping from the
   726   /// source graph's nodes to the target graph's nodes and the \c ecr will
   727   /// contain the mapping from the target graph's edges to the source's
   728   /// edges.
   729   template <typename Target, typename Source>
   730   GraphCopy<Target, Source> copyGraph(Target& target, const Source& source) {
   731     return GraphCopy<Target, Source>(target, source);
   732   }
   733 
   734   /// \brief Class to copy an undirected graph.
   735   ///
   736   /// Class to copy an undirected graph to another graph (duplicate a graph).
   737   /// The simplest way of using it is through the \c copyUGraph() function.
   738   template <typename Target, typename Source>
   739   class UGraphCopy {
   740   public: 
   741     typedef typename Source::Node Node;
   742     typedef typename Source::NodeIt NodeIt;
   743     typedef typename Source::Edge Edge;
   744     typedef typename Source::EdgeIt EdgeIt;
   745     typedef typename Source::UEdge UEdge;
   746     typedef typename Source::UEdgeIt UEdgeIt;
   747 
   748     typedef typename Source::
   749     template NodeMap<typename Target::Node> NodeRefMap;
   750     
   751     typedef typename Source::
   752     template UEdgeMap<typename Target::UEdge> UEdgeRefMap;
   753 
   754   private:
   755 
   756     struct EdgeRefMap {
   757       EdgeRefMap(UGraphCopy& _gc) : gc(_gc) {}
   758       typedef typename Source::Edge Key;
   759       typedef typename Target::Edge Value;
   760 
   761       Value operator[](const Key& key) {
   762 	return gc.target.direct(gc.uEdgeRef[key], 
   763 				gc.target.direction(key));
   764       }
   765       
   766       UGraphCopy& gc;
   767     };
   768     
   769   public:
   770 
   771     /// \brief Constructor for the UGraphCopy.
   772     ///
   773     /// It copies the content of the \c _source graph into the
   774     /// \c _target graph. It creates also two references, one beetween
   775     /// the two nodeset and one beetween the two edgesets.
   776     UGraphCopy(Target& _target, const Source& _source) 
   777       : source(_source), target(_target), 
   778 	nodeRefMap(_source), edgeRefMap(*this), uEdgeRefMap(_source) {
   779       for (NodeIt it(source); it != INVALID; ++it) {
   780 	nodeRefMap[it] = target.addNode();
   781       }
   782       for (UEdgeIt it(source); it != INVALID; ++it) {
   783 	uEdgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
   784 					nodeRefMap[source.target(it)]);
   785       }
   786     }
   787 
   788     /// \brief Copies the node references into the given map.
   789     ///
   790     /// Copies the node references into the given map.
   791     template <typename NodeRef>
   792     const UGraphCopy& nodeRef(NodeRef& map) const {
   793       for (NodeIt it(source); it != INVALID; ++it) {
   794 	map.set(it, nodeRefMap[it]);
   795       }
   796       return *this;
   797     }
   798 
   799     /// \brief Reverse and copies the node references into the given map.
   800     ///
   801     /// Reverse and copies the node references into the given map.
   802     template <typename NodeRef>
   803     const UGraphCopy& nodeCrossRef(NodeRef& map) const {
   804       for (NodeIt it(source); it != INVALID; ++it) {
   805 	map.set(nodeRefMap[it], it);
   806       }
   807       return *this;
   808     }
   809 
   810     /// \brief Copies the edge references into the given map.
   811     ///
   812     /// Copies the edge references into the given map.
   813     template <typename EdgeRef>
   814     const UGraphCopy& edgeRef(EdgeRef& map) const {
   815       for (EdgeIt it(source); it != INVALID; ++it) {
   816 	map.set(edgeRefMap[it], it);
   817       }
   818       return *this;
   819     }
   820 
   821     /// \brief Reverse and copies the undirected edge references into the 
   822     /// given map.
   823     ///
   824     /// Reverse and copies the undirected edge references into the given map.
   825     template <typename EdgeRef>
   826     const UGraphCopy& edgeCrossRef(EdgeRef& map) const {
   827       for (EdgeIt it(source); it != INVALID; ++it) {
   828 	map.set(it, edgeRefMap[it]);
   829       }
   830       return *this;
   831     }
   832 
   833     /// \brief Copies the undirected edge references into the given map.
   834     ///
   835     /// Copies the undirected edge references into the given map.
   836     template <typename EdgeRef>
   837     const UGraphCopy& uEdgeRef(EdgeRef& map) const {
   838       for (UEdgeIt it(source); it != INVALID; ++it) {
   839 	map.set(it, uEdgeRefMap[it]);
   840       }
   841       return *this;
   842     }
   843 
   844     /// \brief Reverse and copies the undirected edge references into the 
   845     /// given map.
   846     ///
   847     /// Reverse and copies the undirected edge references into the given map.
   848     template <typename EdgeRef>
   849     const UGraphCopy& uEdgeCrossRef(EdgeRef& map) const {
   850       for (UEdgeIt it(source); it != INVALID; ++it) {
   851 	map.set(uEdgeRefMap[it], it);
   852       }
   853       return *this;
   854     }
   855 
   856     /// \brief Make copy of the given map.
   857     ///
   858     /// Makes copy of the given map for the newly created graph. 
   859     /// The new map's key type is the target graph's node type,
   860     /// and the copied map's key type is the source graph's node
   861     /// type.  
   862     template <typename TargetMap, typename SourceMap>
   863     const UGraphCopy& nodeMap(TargetMap& tMap, 
   864 				  const SourceMap& sMap) const {
   865       copyMap(tMap, sMap, NodeIt(source), nodeRefMap);
   866       return *this;
   867     }
   868 
   869     /// \brief Make copy of the given map.
   870     ///
   871     /// Makes copy of the given map for the newly created graph. 
   872     /// The new map's key type is the target graph's edge type,
   873     /// and the copied map's key type is the source graph's edge
   874     /// type.  
   875     template <typename TargetMap, typename SourceMap>
   876     const UGraphCopy& edgeMap(TargetMap& tMap, 
   877 				  const SourceMap& sMap) const {
   878       copyMap(tMap, sMap, EdgeIt(source), edgeRefMap);
   879       return *this;
   880     }
   881 
   882     /// \brief Make copy of the given map.
   883     ///
   884     /// Makes copy of the given map for the newly created graph. 
   885     /// The new map's key type is the target graph's edge type,
   886     /// and the copied map's key type is the source graph's edge
   887     /// type.  
   888     template <typename TargetMap, typename SourceMap>
   889     const UGraphCopy& uEdgeMap(TargetMap& tMap, 
   890 				  const SourceMap& sMap) const {
   891       copyMap(tMap, sMap, UEdgeIt(source), uEdgeRefMap);
   892       return *this;
   893     }
   894 
   895     /// \brief Gives back the stored node references.
   896     ///
   897     /// Gives back the stored node references.
   898     const NodeRefMap& nodeRef() const {
   899       return nodeRefMap;
   900     }
   901 
   902     /// \brief Gives back the stored edge references.
   903     ///
   904     /// Gives back the stored edge references.
   905     const EdgeRefMap& edgeRef() const {
   906       return edgeRefMap;
   907     }
   908 
   909     /// \brief Gives back the stored uedge references.
   910     ///
   911     /// Gives back the stored uedge references.
   912     const UEdgeRefMap& uEdgeRef() const {
   913       return uEdgeRefMap;
   914     }
   915 
   916     void run() const {}
   917 
   918   private:
   919     
   920     const Source& source;
   921     Target& target;
   922 
   923     NodeRefMap nodeRefMap;
   924     EdgeRefMap edgeRefMap;
   925     UEdgeRefMap uEdgeRefMap;
   926   };
   927 
   928   /// \brief Copy a graph to another graph.
   929   ///
   930   /// Copy a graph to another graph.
   931   /// The usage of the function:
   932   /// 
   933   ///\code
   934   /// copyUGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr);
   935   ///\endcode
   936   /// 
   937   /// After the copy the \c nr map will contain the mapping from the
   938   /// source graph's nodes to the target graph's nodes and the \c ecr will
   939   /// contain the mapping from the target graph's edges to the source's
   940   /// edges.
   941   template <typename Target, typename Source>
   942   UGraphCopy<Target, Source> 
   943   copyUGraph(Target& target, const Source& source) {
   944     return UGraphCopy<Target, Source>(target, source);
   945   }
   946 
   947 
   948   /// @}
   949 
   950   /// \addtogroup graph_maps
   951   /// @{
   952 
   953   /// Provides an immutable and unique id for each item in the graph.
   954 
   955   /// The IdMap class provides a unique and immutable id for each item of the
   956   /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
   957   /// different items (nodes) get different ids <li>\b immutable: the id of an
   958   /// item (node) does not change (even if you delete other nodes).  </ul>
   959   /// Through this map you get access (i.e. can read) the inner id values of
   960   /// the items stored in the graph. This map can be inverted with its member
   961   /// class \c InverseMap.
   962   ///
   963   template <typename _Graph, typename _Item>
   964   class IdMap {
   965   public:
   966     typedef _Graph Graph;
   967     typedef int Value;
   968     typedef _Item Item;
   969     typedef _Item Key;
   970 
   971     /// \brief Constructor.
   972     ///
   973     /// Constructor for creating id map.
   974     IdMap(const Graph& _graph) : graph(&_graph) {}
   975 
   976     /// \brief Gives back the \e id of the item.
   977     ///
   978     /// Gives back the immutable and unique \e id of the map.
   979     int operator[](const Item& item) const { return graph->id(item);}
   980 
   981 
   982   private:
   983     const Graph* graph;
   984 
   985   public:
   986 
   987     /// \brief The class represents the inverse of its owner (IdMap).
   988     ///
   989     /// The class represents the inverse of its owner (IdMap).
   990     /// \see inverse()
   991     class InverseMap {
   992     public:
   993 
   994       /// \brief Constructor.
   995       ///
   996       /// Constructor for creating an id-to-item map.
   997       InverseMap(const Graph& _graph) : graph(&_graph) {}
   998 
   999       /// \brief Constructor.
  1000       ///
  1001       /// Constructor for creating an id-to-item map.
  1002       InverseMap(const IdMap& idMap) : graph(idMap.graph) {}
  1003 
  1004       /// \brief Gives back the given item from its id.
  1005       ///
  1006       /// Gives back the given item from its id.
  1007       /// 
  1008       Item operator[](int id) const { return graph->fromId(id, Item());}
  1009     private:
  1010       const Graph* graph;
  1011     };
  1012 
  1013     /// \brief Gives back the inverse of the map.
  1014     ///
  1015     /// Gives back the inverse of the IdMap.
  1016     InverseMap inverse() const { return InverseMap(*graph);} 
  1017 
  1018   };
  1019 
  1020   
  1021   /// \brief General invertable graph-map type.
  1022 
  1023   /// This type provides simple invertable graph-maps. 
  1024   /// The InvertableMap wraps an arbitrary ReadWriteMap 
  1025   /// and if a key is set to a new value then store it
  1026   /// in the inverse map.
  1027   ///
  1028   /// The values of the map can be accessed
  1029   /// with stl compatible forward iterator.
  1030   ///
  1031   /// \param _Graph The graph type.
  1032   /// \param _Item The item type of the graph.
  1033   /// \param _Value The value type of the map.
  1034   ///
  1035   /// \see IterableValueMap
  1036 #ifndef DOXYGEN
  1037   /// \param _Map A ReadWriteMap mapping from the item type to integer.
  1038   template <
  1039     typename _Graph, typename _Item, typename _Value, 
  1040     typename _Map = DefaultMap<_Graph, _Item, _Value>
  1041   >
  1042 #else
  1043   template <typename _Graph, typename _Item, typename _Value>
  1044 #endif
  1045   class InvertableMap : protected _Map {
  1046   public:
  1047 
  1048     /// The key type of InvertableMap (Node, Edge, UEdge).
  1049     typedef typename _Map::Key Key;
  1050     /// The value type of the InvertableMap.
  1051     typedef typename _Map::Value Value;
  1052 
  1053   private:
  1054     
  1055     typedef _Map Map;
  1056     typedef _Graph Graph;
  1057 
  1058     typedef std::map<Value, Key> Container;
  1059     Container invMap;    
  1060 
  1061   public:
  1062  
  1063 
  1064 
  1065     /// \brief Constructor.
  1066     ///
  1067     /// Construct a new InvertableMap for the graph.
  1068     ///
  1069     InvertableMap(const Graph& graph) : Map(graph) {} 
  1070 
  1071     /// \brief Forward iterator for values.
  1072     ///
  1073     /// This iterator is an stl compatible forward
  1074     /// iterator on the values of the map. The values can
  1075     /// be accessed in the [beginValue, endValue) range.
  1076     ///
  1077     class ValueIterator 
  1078       : public std::iterator<std::forward_iterator_tag, Value> {
  1079       friend class InvertableMap;
  1080     private:
  1081       ValueIterator(typename Container::const_iterator _it) 
  1082         : it(_it) {}
  1083     public:
  1084       
  1085       ValueIterator() {}
  1086 
  1087       ValueIterator& operator++() { ++it; return *this; }
  1088       ValueIterator operator++(int) { 
  1089         ValueIterator tmp(*this); 
  1090         operator++();
  1091         return tmp; 
  1092       }
  1093 
  1094       const Value& operator*() const { return it->first; }
  1095       const Value* operator->() const { return &(it->first); }
  1096 
  1097       bool operator==(ValueIterator jt) const { return it == jt.it; }
  1098       bool operator!=(ValueIterator jt) const { return it != jt.it; }
  1099       
  1100     private:
  1101       typename Container::const_iterator it;
  1102     };
  1103 
  1104     /// \brief Returns an iterator to the first value.
  1105     ///
  1106     /// Returns an stl compatible iterator to the 
  1107     /// first value of the map. The values of the
  1108     /// map can be accessed in the [beginValue, endValue)
  1109     /// range.
  1110     ValueIterator beginValue() const {
  1111       return ValueIterator(invMap.begin());
  1112     }
  1113 
  1114     /// \brief Returns an iterator after the last value.
  1115     ///
  1116     /// Returns an stl compatible iterator after the 
  1117     /// last value of the map. The values of the
  1118     /// map can be accessed in the [beginValue, endValue)
  1119     /// range.
  1120     ValueIterator endValue() const {
  1121       return ValueIterator(invMap.end());
  1122     }
  1123     
  1124     /// \brief The setter function of the map.
  1125     ///
  1126     /// Sets the mapped value.
  1127     void set(const Key& key, const Value& val) {
  1128       Value oldval = Map::operator[](key);
  1129       typename Container::iterator it = invMap.find(oldval);
  1130       if (it != invMap.end() && it->second == key) {
  1131 	invMap.erase(it);
  1132       }      
  1133       invMap.insert(make_pair(val, key));
  1134       Map::set(key, val);
  1135     }
  1136 
  1137     /// \brief The getter function of the map.
  1138     ///
  1139     /// It gives back the value associated with the key.
  1140     typename MapTraits<Map>::ConstReturnValue 
  1141     operator[](const Key& key) const {
  1142       return Map::operator[](key);
  1143     }
  1144 
  1145   protected:
  1146 
  1147     /// \brief Erase the key from the map.
  1148     ///
  1149     /// Erase the key to the map. It is called by the
  1150     /// \c AlterationNotifier.
  1151     virtual void erase(const Key& key) {
  1152       Value val = Map::operator[](key);
  1153       typename Container::iterator it = invMap.find(val);
  1154       if (it != invMap.end() && it->second == key) {
  1155 	invMap.erase(it);
  1156       }
  1157       Map::erase(key);
  1158     }
  1159 
  1160     /// \brief Erase more keys from the map.
  1161     ///
  1162     /// Erase more keys from the map. It is called by the
  1163     /// \c AlterationNotifier.
  1164     virtual void erase(const std::vector<Key>& keys) {
  1165       for (int i = 0; i < (int)keys.size(); ++i) {
  1166 	Value val = Map::operator[](keys[i]);
  1167 	typename Container::iterator it = invMap.find(val);
  1168 	if (it != invMap.end() && it->second == keys[i]) {
  1169 	  invMap.erase(it);
  1170 	}
  1171       }
  1172       Map::erase(keys);
  1173     }
  1174 
  1175     /// \brief Clear the keys from the map and inverse map.
  1176     ///
  1177     /// Clear the keys from the map and inverse map. It is called by the
  1178     /// \c AlterationNotifier.
  1179     virtual void clear() {
  1180       invMap.clear();
  1181       Map::clear();
  1182     }
  1183 
  1184   public:
  1185 
  1186     /// \brief The inverse map type.
  1187     ///
  1188     /// The inverse of this map. The subscript operator of the map
  1189     /// gives back always the item what was last assigned to the value. 
  1190     class InverseMap {
  1191     public:
  1192       /// \brief Constructor of the InverseMap.
  1193       ///
  1194       /// Constructor of the InverseMap.
  1195       InverseMap(const InvertableMap& _inverted) : inverted(_inverted) {}
  1196 
  1197       /// The value type of the InverseMap.
  1198       typedef typename InvertableMap::Key Value;
  1199       /// The key type of the InverseMap.
  1200       typedef typename InvertableMap::Value Key; 
  1201 
  1202       /// \brief Subscript operator. 
  1203       ///
  1204       /// Subscript operator. It gives back always the item 
  1205       /// what was last assigned to the value.
  1206       Value operator[](const Key& key) const {
  1207 	typename Container::const_iterator it = inverted.invMap.find(key);
  1208 	return it->second;
  1209       }
  1210       
  1211     private:
  1212       const InvertableMap& inverted;
  1213     };
  1214 
  1215     /// \brief It gives back the just readable inverse map.
  1216     ///
  1217     /// It gives back the just readable inverse map.
  1218     InverseMap inverse() const {
  1219       return InverseMap(*this);
  1220     } 
  1221 
  1222 
  1223     
  1224   };
  1225 
  1226   /// \brief Provides a mutable, continuous and unique descriptor for each 
  1227   /// item in the graph.
  1228   ///
  1229   /// The DescriptorMap class provides a unique and continuous (but mutable)
  1230   /// descriptor (id) for each item of the same type (e.g. node) in the
  1231   /// graph. This id is <ul><li>\b unique: different items (nodes) get
  1232   /// different ids <li>\b continuous: the range of the ids is the set of
  1233   /// integers between 0 and \c n-1, where \c n is the number of the items of
  1234   /// this type (e.g. nodes) (so the id of a node can change if you delete an
  1235   /// other node, i.e. this id is mutable).  </ul> This map can be inverted
  1236   /// with its member class \c InverseMap.
  1237   ///
  1238   /// \param _Graph The graph class the \c DescriptorMap belongs to.
  1239   /// \param _Item The Item is the Key of the Map. It may be Node, Edge or 
  1240   /// UEdge.
  1241 #ifndef DOXYGEN
  1242   /// \param _Map A ReadWriteMap mapping from the item type to integer.
  1243   template <
  1244     typename _Graph, typename _Item,
  1245     typename _Map = DefaultMap<_Graph, _Item, int>
  1246   >
  1247 #else
  1248   template <typename _Graph, typename _Item>
  1249 #endif
  1250   class DescriptorMap : protected _Map {
  1251 
  1252     typedef _Item Item;
  1253     typedef _Map Map;
  1254 
  1255   public:
  1256     /// The graph class of DescriptorMap.
  1257     typedef _Graph Graph;
  1258 
  1259     /// The key type of DescriptorMap (Node, Edge, UEdge).
  1260     typedef typename _Map::Key Key;
  1261     /// The value type of DescriptorMap.
  1262     typedef typename _Map::Value Value;
  1263 
  1264     /// \brief Constructor.
  1265     ///
  1266     /// Constructor for descriptor map.
  1267     DescriptorMap(const Graph& _graph) : Map(_graph) {
  1268       Item it;
  1269       const typename Map::Notifier* notifier = Map::getNotifier(); 
  1270       for (notifier->first(it); it != INVALID; notifier->next(it)) {
  1271 	Map::set(it, invMap.size());
  1272 	invMap.push_back(it);	
  1273       }      
  1274     }
  1275 
  1276   protected:
  1277 
  1278     /// \brief Add a new key to the map.
  1279     ///
  1280     /// Add a new key to the map. It is called by the
  1281     /// \c AlterationNotifier.
  1282     virtual void add(const Item& item) {
  1283       Map::add(item);
  1284       Map::set(item, invMap.size());
  1285       invMap.push_back(item);
  1286     }
  1287 
  1288     /// \brief Add more new keys to the map.
  1289     ///
  1290     /// Add more new keys to the map. It is called by the
  1291     /// \c AlterationNotifier.
  1292     virtual void add(const std::vector<Item>& items) {
  1293       Map::add(items);
  1294       for (int i = 0; i < (int)items.size(); ++i) {
  1295 	Map::set(items[i], invMap.size());
  1296 	invMap.push_back(items[i]);
  1297       }
  1298     }
  1299 
  1300     /// \brief Erase the key from the map.
  1301     ///
  1302     /// Erase the key from the map. It is called by the
  1303     /// \c AlterationNotifier.
  1304     virtual void erase(const Item& item) {
  1305       Map::set(invMap.back(), Map::operator[](item));
  1306       invMap[Map::operator[](item)] = invMap.back();
  1307       invMap.pop_back();
  1308       Map::erase(item);
  1309     }
  1310 
  1311     /// \brief Erase more keys from the map.
  1312     ///
  1313     /// Erase more keys from the map. It is called by the
  1314     /// \c AlterationNotifier.
  1315     virtual void erase(const std::vector<Item>& items) {
  1316       for (int i = 0; i < (int)items.size(); ++i) {
  1317 	Map::set(invMap.back(), Map::operator[](items[i]));
  1318 	invMap[Map::operator[](items[i])] = invMap.back();
  1319 	invMap.pop_back();
  1320       }
  1321       Map::erase(items);
  1322     }
  1323 
  1324     /// \brief Build the unique map.
  1325     ///
  1326     /// Build the unique map. It is called by the
  1327     /// \c AlterationNotifier.
  1328     virtual void build() {
  1329       Map::build();
  1330       Item it;
  1331       const typename Map::Notifier* notifier = Map::getNotifier(); 
  1332       for (notifier->first(it); it != INVALID; notifier->next(it)) {
  1333 	Map::set(it, invMap.size());
  1334 	invMap.push_back(it);	
  1335       }      
  1336     }
  1337     
  1338     /// \brief Clear the keys from the map.
  1339     ///
  1340     /// Clear the keys from the map. It is called by the
  1341     /// \c AlterationNotifier.
  1342     virtual void clear() {
  1343       invMap.clear();
  1344       Map::clear();
  1345     }
  1346 
  1347   public:
  1348 
  1349     /// \brief Returns the maximal value plus one.
  1350     ///
  1351     /// Returns the maximal value plus one in the map.
  1352     unsigned int size() const {
  1353       return invMap.size();
  1354     }
  1355 
  1356     /// \brief Swaps the position of the two items in the map.
  1357     ///
  1358     /// Swaps the position of the two items in the map.
  1359     void swap(const Item& p, const Item& q) {
  1360       int pi = Map::operator[](p);
  1361       int qi = Map::operator[](q);
  1362       Map::set(p, qi);
  1363       invMap[qi] = p;
  1364       Map::set(q, pi);
  1365       invMap[pi] = q;
  1366     }
  1367 
  1368     /// \brief Gives back the \e descriptor of the item.
  1369     ///
  1370     /// Gives back the mutable and unique \e descriptor of the map.
  1371     int operator[](const Item& item) const {
  1372       return Map::operator[](item);
  1373     }
  1374     
  1375   private:
  1376 
  1377     typedef std::vector<Item> Container;
  1378     Container invMap;
  1379 
  1380   public:
  1381     /// \brief The inverse map type of DescriptorMap.
  1382     ///
  1383     /// The inverse map type of DescriptorMap.
  1384     class InverseMap {
  1385     public:
  1386       /// \brief Constructor of the InverseMap.
  1387       ///
  1388       /// Constructor of the InverseMap.
  1389       InverseMap(const DescriptorMap& _inverted) 
  1390 	: inverted(_inverted) {}
  1391 
  1392 
  1393       /// The value type of the InverseMap.
  1394       typedef typename DescriptorMap::Key Value;
  1395       /// The key type of the InverseMap.
  1396       typedef typename DescriptorMap::Value Key; 
  1397 
  1398       /// \brief Subscript operator. 
  1399       ///
  1400       /// Subscript operator. It gives back the item 
  1401       /// that the descriptor belongs to currently.
  1402       Value operator[](const Key& key) const {
  1403 	return inverted.invMap[key];
  1404       }
  1405 
  1406       /// \brief Size of the map.
  1407       ///
  1408       /// Returns the size of the map.
  1409       unsigned int size() const {
  1410 	return inverted.invMap.size();
  1411       }
  1412       
  1413     private:
  1414       const DescriptorMap& inverted;
  1415     };
  1416 
  1417     /// \brief Gives back the inverse of the map.
  1418     ///
  1419     /// Gives back the inverse of the map.
  1420     const InverseMap inverse() const {
  1421       return InverseMap(*this);
  1422     }
  1423   };
  1424 
  1425   /// \brief Returns the source of the given edge.
  1426   ///
  1427   /// The SourceMap gives back the source Node of the given edge. 
  1428   /// \author Balazs Dezso
  1429   template <typename Graph>
  1430   class SourceMap {
  1431   public:
  1432 
  1433     typedef typename Graph::Node Value;
  1434     typedef typename Graph::Edge Key;
  1435 
  1436     /// \brief Constructor
  1437     ///
  1438     /// Constructor
  1439     /// \param _graph The graph that the map belongs to.
  1440     SourceMap(const Graph& _graph) : graph(_graph) {}
  1441 
  1442     /// \brief The subscript operator.
  1443     ///
  1444     /// The subscript operator.
  1445     /// \param edge The edge 
  1446     /// \return The source of the edge 
  1447     Value operator[](const Key& edge) const {
  1448       return graph.source(edge);
  1449     }
  1450 
  1451   private:
  1452     const Graph& graph;
  1453   };
  1454 
  1455   /// \brief Returns a \ref SourceMap class
  1456   ///
  1457   /// This function just returns an \ref SourceMap class.
  1458   /// \relates SourceMap
  1459   template <typename Graph>
  1460   inline SourceMap<Graph> sourceMap(const Graph& graph) {
  1461     return SourceMap<Graph>(graph);
  1462   } 
  1463 
  1464   /// \brief Returns the target of the given edge.
  1465   ///
  1466   /// The TargetMap gives back the target Node of the given edge. 
  1467   /// \author Balazs Dezso
  1468   template <typename Graph>
  1469   class TargetMap {
  1470   public:
  1471 
  1472     typedef typename Graph::Node Value;
  1473     typedef typename Graph::Edge Key;
  1474 
  1475     /// \brief Constructor
  1476     ///
  1477     /// Constructor
  1478     /// \param _graph The graph that the map belongs to.
  1479     TargetMap(const Graph& _graph) : graph(_graph) {}
  1480 
  1481     /// \brief The subscript operator.
  1482     ///
  1483     /// The subscript operator.
  1484     /// \param e The edge 
  1485     /// \return The target of the edge 
  1486     Value operator[](const Key& e) const {
  1487       return graph.target(e);
  1488     }
  1489 
  1490   private:
  1491     const Graph& graph;
  1492   };
  1493 
  1494   /// \brief Returns a \ref TargetMap class
  1495   ///
  1496   /// This function just returns a \ref TargetMap class.
  1497   /// \relates TargetMap
  1498   template <typename Graph>
  1499   inline TargetMap<Graph> targetMap(const Graph& graph) {
  1500     return TargetMap<Graph>(graph);
  1501   }
  1502 
  1503   /// \brief Returns the "forward" directed edge view of an undirected edge.
  1504   ///
  1505   /// Returns the "forward" directed edge view of an undirected edge.
  1506   /// \author Balazs Dezso
  1507   template <typename Graph>
  1508   class ForwardMap {
  1509   public:
  1510 
  1511     typedef typename Graph::Edge Value;
  1512     typedef typename Graph::UEdge Key;
  1513 
  1514     /// \brief Constructor
  1515     ///
  1516     /// Constructor
  1517     /// \param _graph The graph that the map belongs to.
  1518     ForwardMap(const Graph& _graph) : graph(_graph) {}
  1519 
  1520     /// \brief The subscript operator.
  1521     ///
  1522     /// The subscript operator.
  1523     /// \param key An undirected edge 
  1524     /// \return The "forward" directed edge view of undirected edge 
  1525     Value operator[](const Key& key) const {
  1526       return graph.direct(key, true);
  1527     }
  1528 
  1529   private:
  1530     const Graph& graph;
  1531   };
  1532 
  1533   /// \brief Returns a \ref ForwardMap class
  1534   ///
  1535   /// This function just returns an \ref ForwardMap class.
  1536   /// \relates ForwardMap
  1537   template <typename Graph>
  1538   inline ForwardMap<Graph> forwardMap(const Graph& graph) {
  1539     return ForwardMap<Graph>(graph);
  1540   }
  1541 
  1542   /// \brief Returns the "backward" directed edge view of an undirected edge.
  1543   ///
  1544   /// Returns the "backward" directed edge view of an undirected edge.
  1545   /// \author Balazs Dezso
  1546   template <typename Graph>
  1547   class BackwardMap {
  1548   public:
  1549 
  1550     typedef typename Graph::Edge Value;
  1551     typedef typename Graph::UEdge Key;
  1552 
  1553     /// \brief Constructor
  1554     ///
  1555     /// Constructor
  1556     /// \param _graph The graph that the map belongs to.
  1557     BackwardMap(const Graph& _graph) : graph(_graph) {}
  1558 
  1559     /// \brief The subscript operator.
  1560     ///
  1561     /// The subscript operator.
  1562     /// \param key An undirected edge 
  1563     /// \return The "backward" directed edge view of undirected edge 
  1564     Value operator[](const Key& key) const {
  1565       return graph.direct(key, false);
  1566     }
  1567 
  1568   private:
  1569     const Graph& graph;
  1570   };
  1571 
  1572   /// \brief Returns a \ref BackwardMap class
  1573 
  1574   /// This function just returns a \ref BackwardMap class.
  1575   /// \relates BackwardMap
  1576   template <typename Graph>
  1577   inline BackwardMap<Graph> backwardMap(const Graph& graph) {
  1578     return BackwardMap<Graph>(graph);
  1579   }
  1580 
  1581   /// \brief Potential difference map
  1582   ///
  1583   /// If there is an potential map on the nodes then we
  1584   /// can get an edge map as we get the substraction of the
  1585   /// values of the target and source.
  1586   template <typename Graph, typename NodeMap>
  1587   class PotentialDifferenceMap {
  1588   public:
  1589     typedef typename Graph::Edge Key;
  1590     typedef typename NodeMap::Value Value;
  1591 
  1592     /// \brief Constructor
  1593     ///
  1594     /// Contructor of the map
  1595     PotentialDifferenceMap(const Graph& _graph, const NodeMap& _potential) 
  1596       : graph(_graph), potential(_potential) {}
  1597 
  1598     /// \brief Const subscription operator
  1599     ///
  1600     /// Const subscription operator
  1601     Value operator[](const Key& edge) const {
  1602       return potential[graph.target(edge)] - potential[graph.source(edge)];
  1603     }
  1604 
  1605   private:
  1606     const Graph& graph;
  1607     const NodeMap& potential;
  1608   };
  1609 
  1610   /// \brief Just returns a PotentialDifferenceMap
  1611   ///
  1612   /// Just returns a PotentialDifferenceMap
  1613   /// \relates PotentialDifferenceMap
  1614   template <typename Graph, typename NodeMap>
  1615   PotentialDifferenceMap<Graph, NodeMap> 
  1616   potentialDifferenceMap(const Graph& graph, const NodeMap& potential) {
  1617     return PotentialDifferenceMap<Graph, NodeMap>(graph, potential);
  1618   }
  1619 
  1620   /// \brief Map of the node in-degrees.
  1621   ///
  1622   /// This map returns the in-degree of a node. Once it is constructed,
  1623   /// the degrees are stored in a standard NodeMap, so each query is done
  1624   /// in constant time. On the other hand, the values are updated automatically
  1625   /// whenever the graph changes.
  1626   ///
  1627   /// \warning Besides addNode() and addEdge(), a graph structure may provide
  1628   /// alternative ways to modify the graph. The correct behavior of InDegMap
  1629   /// is not guarantied if these additional features are used. For example
  1630   /// the functions \ref ListGraph::changeSource() "changeSource()",
  1631   /// \ref ListGraph::changeTarget() "changeTarget()" and
  1632   /// \ref ListGraph::reverseEdge() "reverseEdge()"
  1633   /// of \ref ListGraph will \e not update the degree values correctly.
  1634   ///
  1635   /// \sa OutDegMap
  1636 
  1637   template <typename _Graph>
  1638   class InDegMap  
  1639     : protected ItemSetTraits<_Graph, typename _Graph::Edge>
  1640       ::ItemNotifier::ObserverBase {
  1641 
  1642   public:
  1643     
  1644     typedef _Graph Graph;
  1645     typedef int Value;
  1646     typedef typename Graph::Node Key;
  1647 
  1648     typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
  1649     ::ItemNotifier::ObserverBase Parent;
  1650 
  1651   private:
  1652 
  1653     class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
  1654     public:
  1655 
  1656       typedef DefaultMap<_Graph, Key, int> Parent;
  1657       typedef typename Parent::Graph Graph;
  1658 
  1659       AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
  1660       
  1661       virtual void add(const Key& key) {
  1662 	Parent::add(key);
  1663 	Parent::set(key, 0);
  1664       }
  1665 
  1666       virtual void add(const std::vector<Key>& keys) {
  1667 	Parent::add(keys);
  1668 	for (int i = 0; i < (int)keys.size(); ++i) {
  1669 	  Parent::set(keys[i], 0);
  1670 	}
  1671       }
  1672     };
  1673 
  1674   public:
  1675 
  1676     /// \brief Constructor.
  1677     ///
  1678     /// Constructor for creating in-degree map.
  1679     InDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
  1680       Parent::attach(graph.getNotifier(typename _Graph::Edge()));
  1681       
  1682       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1683 	deg[it] = countInEdges(graph, it);
  1684       }
  1685     }
  1686     
  1687     /// Gives back the in-degree of a Node.
  1688     int operator[](const Key& key) const {
  1689       return deg[key];
  1690     }
  1691 
  1692   protected:
  1693     
  1694     typedef typename Graph::Edge Edge;
  1695 
  1696     virtual void add(const Edge& edge) {
  1697       ++deg[graph.target(edge)];
  1698     }
  1699 
  1700     virtual void add(const std::vector<Edge>& edges) {
  1701       for (int i = 0; i < (int)edges.size(); ++i) {
  1702         ++deg[graph.target(edges[i])];
  1703       }
  1704     }
  1705 
  1706     virtual void erase(const Edge& edge) {
  1707       --deg[graph.target(edge)];
  1708     }
  1709 
  1710     virtual void erase(const std::vector<Edge>& edges) {
  1711       for (int i = 0; i < (int)edges.size(); ++i) {
  1712         --deg[graph.target(edges[i])];
  1713       }
  1714     }
  1715 
  1716     virtual void build() {
  1717       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1718 	deg[it] = countInEdges(graph, it);
  1719       }      
  1720     }
  1721 
  1722     virtual void clear() {
  1723       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1724 	deg[it] = 0;
  1725       }
  1726     }
  1727   private:
  1728     
  1729     const _Graph& graph;
  1730     AutoNodeMap deg;
  1731   };
  1732 
  1733   /// \brief Map of the node out-degrees.
  1734   ///
  1735   /// This map returns the out-degree of a node. Once it is constructed,
  1736   /// the degrees are stored in a standard NodeMap, so each query is done
  1737   /// in constant time. On the other hand, the values are updated automatically
  1738   /// whenever the graph changes.
  1739   ///
  1740   /// \warning Besides addNode() and addEdge(), a graph structure may provide
  1741   /// alternative ways to modify the graph. The correct behavior of OutDegMap
  1742   /// is not guarantied if these additional features are used. For example
  1743   /// the functions \ref ListGraph::changeSource() "changeSource()",
  1744   /// \ref ListGraph::changeTarget() "changeTarget()" and
  1745   /// \ref ListGraph::reverseEdge() "reverseEdge()"
  1746   /// of \ref ListGraph will \e not update the degree values correctly.
  1747   ///
  1748   /// \sa InDegMap
  1749 
  1750   template <typename _Graph>
  1751   class OutDegMap  
  1752     : protected ItemSetTraits<_Graph, typename _Graph::Edge>
  1753       ::ItemNotifier::ObserverBase {
  1754 
  1755   public:
  1756 
  1757     typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
  1758     ::ItemNotifier::ObserverBase Parent;
  1759     
  1760     typedef _Graph Graph;
  1761     typedef int Value;
  1762     typedef typename Graph::Node Key;
  1763 
  1764   private:
  1765 
  1766     class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
  1767     public:
  1768 
  1769       typedef DefaultMap<_Graph, Key, int> Parent;
  1770       typedef typename Parent::Graph Graph;
  1771 
  1772       AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
  1773       
  1774       virtual void add(const Key& key) {
  1775 	Parent::add(key);
  1776 	Parent::set(key, 0);
  1777       }
  1778       virtual void add(const std::vector<Key>& keys) {
  1779 	Parent::add(keys);
  1780 	for (int i = 0; i < (int)keys.size(); ++i) {
  1781 	  Parent::set(keys[i], 0);
  1782 	}
  1783       }
  1784     };
  1785 
  1786   public:
  1787 
  1788     /// \brief Constructor.
  1789     ///
  1790     /// Constructor for creating out-degree map.
  1791     OutDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
  1792       Parent::attach(graph.getNotifier(typename _Graph::Edge()));
  1793       
  1794       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1795 	deg[it] = countOutEdges(graph, it);
  1796       }
  1797     }
  1798 
  1799     /// Gives back the out-degree of a Node.
  1800     int operator[](const Key& key) const {
  1801       return deg[key];
  1802     }
  1803 
  1804   protected:
  1805     
  1806     typedef typename Graph::Edge Edge;
  1807 
  1808     virtual void add(const Edge& edge) {
  1809       ++deg[graph.source(edge)];
  1810     }
  1811 
  1812     virtual void add(const std::vector<Edge>& edges) {
  1813       for (int i = 0; i < (int)edges.size(); ++i) {
  1814         ++deg[graph.source(edges[i])];
  1815       }
  1816     }
  1817 
  1818     virtual void erase(const Edge& edge) {
  1819       --deg[graph.source(edge)];
  1820     }
  1821 
  1822     virtual void erase(const std::vector<Edge>& edges) {
  1823       for (int i = 0; i < (int)edges.size(); ++i) {
  1824         --deg[graph.source(edges[i])];
  1825       }
  1826     }
  1827 
  1828     virtual void build() {
  1829       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1830 	deg[it] = countOutEdges(graph, it);
  1831       }      
  1832     }
  1833 
  1834     virtual void clear() {
  1835       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1836 	deg[it] = 0;
  1837       }
  1838     }
  1839   private:
  1840     
  1841     const _Graph& graph;
  1842     AutoNodeMap deg;
  1843   };
  1844 
  1845 
  1846   ///Fast edge look up between given endpoints.
  1847   
  1848   ///\ingroup gutils
  1849   ///Using this class, you can find an edge in a graph from a given
  1850   ///source to a given target in time <em>O(log d)</em>,
  1851   ///where <em>d</em> is the out-degree of the source node.
  1852   ///
  1853   ///It is not possible to find \e all parallel edges between two nodes.
  1854   ///Use \ref AllEdgeLookUp for this purpose.
  1855   ///
  1856   ///\warning This class is static, so you should refresh() (or at least
  1857   ///refresh(Node)) this data structure
  1858   ///whenever the graph changes. This is a time consuming (superlinearly
  1859   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
  1860   ///
  1861   ///\param G The type of the underlying graph.
  1862   ///
  1863   ///\sa AllEdgeLookUp  
  1864   template<class G>
  1865   class EdgeLookUp 
  1866   {
  1867   public:
  1868     GRAPH_TYPEDEFS(typename G)
  1869     typedef G Graph;
  1870 
  1871   protected:
  1872     const Graph &_g;
  1873     typename Graph::template NodeMap<Edge> _head;
  1874     typename Graph::template EdgeMap<Edge> _left;
  1875     typename Graph::template EdgeMap<Edge> _right;
  1876     
  1877     class EdgeLess {
  1878       const Graph &g;
  1879     public:
  1880       EdgeLess(const Graph &_g) : g(_g) {}
  1881       bool operator()(Edge a,Edge b) const 
  1882       {
  1883 	return g.target(a)<g.target(b);
  1884       }
  1885     };
  1886     
  1887   public:
  1888     
  1889     ///Constructor
  1890 
  1891     ///Constructor.
  1892     ///
  1893     ///It builds up the search database, which remains valid until the graph
  1894     ///changes.
  1895     EdgeLookUp(const Graph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
  1896     
  1897   private:
  1898     Edge refresh_rec(std::vector<Edge> &v,int a,int b) 
  1899     {
  1900       int m=(a+b)/2;
  1901       Edge me=v[m];
  1902       _left[me] = a<m?refresh_rec(v,a,m-1):INVALID;
  1903       _right[me] = m<b?refresh_rec(v,m+1,b):INVALID;
  1904       return me;
  1905     }
  1906   public:
  1907     ///Refresh the data structure at a node.
  1908 
  1909     ///Build up the search database of node \c n.
  1910     ///
  1911     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
  1912     ///the number of the outgoing edges of \c n.
  1913     void refresh(Node n) 
  1914     {
  1915       std::vector<Edge> v;
  1916       for(OutEdgeIt e(_g,n);e!=INVALID;++e) v.push_back(e);
  1917       if(v.size()) {
  1918 	std::sort(v.begin(),v.end(),EdgeLess(_g));
  1919 	_head[n]=refresh_rec(v,0,v.size()-1);
  1920       }
  1921       else _head[n]=INVALID;
  1922     }
  1923     ///Refresh the full data structure.
  1924 
  1925     ///Build up the full search database. In fact, it simply calls
  1926     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  1927     ///
  1928     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
  1929     ///the number of the edges of \c n and <em>D</em> is the maximum
  1930     ///out-degree of the graph.
  1931 
  1932     void refresh() 
  1933     {
  1934       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
  1935     }
  1936     
  1937     ///Find an edge between two nodes.
  1938     
  1939     ///Find an edge between two nodes in time <em>O(</em>log<em>d)</em>, where
  1940     /// <em>d</em> is the number of outgoing edges of \c s.
  1941     ///\param s The source node
  1942     ///\param t The target node
  1943     ///\return An edge from \c s to \c t if there exists,
  1944     ///\ref INVALID otherwise.
  1945     ///
  1946     ///\warning If you change the graph, refresh() must be called before using
  1947     ///this operator. If you change the outgoing edges of
  1948     ///a single node \c n, then
  1949     ///\ref refresh(Node) "refresh(n)" is enough.
  1950     ///
  1951     Edge operator()(Node s, Node t) const
  1952     {
  1953       Edge e;
  1954       for(e=_head[s];
  1955 	  e!=INVALID&&_g.target(e)!=t;
  1956 	  e = t < _g.target(e)?_left[e]:_right[e]) ;
  1957       return e;
  1958     }
  1959 
  1960   };
  1961 
  1962   ///Fast look up of all edges between given endpoints.
  1963   
  1964   ///\ingroup gutils
  1965   ///This class is the same as \ref EdgeLookUp, with the addition
  1966   ///that it makes it possible to find all edges between given endpoints.
  1967   ///
  1968   ///\warning This class is static, so you should refresh() (or at least
  1969   ///refresh(Node)) this data structure
  1970   ///whenever the graph changes. This is a time consuming (superlinearly
  1971   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
  1972   ///
  1973   ///\param G The type of the underlying graph.
  1974   ///
  1975   ///\sa EdgeLookUp  
  1976   template<class G>
  1977   class AllEdgeLookUp : public EdgeLookUp<G>
  1978   {
  1979     using EdgeLookUp<G>::_g;
  1980     using EdgeLookUp<G>::_right;
  1981     using EdgeLookUp<G>::_left;
  1982     using EdgeLookUp<G>::_head;
  1983 
  1984     GRAPH_TYPEDEFS(typename G)
  1985     typedef G Graph;
  1986     
  1987     typename Graph::template EdgeMap<Edge> _next;
  1988     
  1989     Edge refreshNext(Edge head,Edge next=INVALID)
  1990     {
  1991       if(head==INVALID) return next;
  1992       else {
  1993 	next=refreshNext(_right[head],next);
  1994 // 	_next[head]=next;
  1995 	_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
  1996 	  ? next : INVALID;
  1997 	return refreshNext(_left[head],head);
  1998       }
  1999     }
  2000     
  2001     void refreshNext()
  2002     {
  2003       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
  2004     }
  2005     
  2006   public:
  2007     ///Constructor
  2008 
  2009     ///Constructor.
  2010     ///
  2011     ///It builds up the search database, which remains valid until the graph
  2012     ///changes.
  2013     AllEdgeLookUp(const Graph &g) : EdgeLookUp<G>(g), _next(g) {refreshNext();}
  2014 
  2015     ///Refresh the data structure at a node.
  2016 
  2017     ///Build up the search database of node \c n.
  2018     ///
  2019     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
  2020     ///the number of the outgoing edges of \c n.
  2021     
  2022     void refresh(Node n) 
  2023     {
  2024       EdgeLookUp<G>::refresh(n);
  2025       refreshNext(_head[n]);
  2026     }
  2027     
  2028     ///Refresh the full data structure.
  2029 
  2030     ///Build up the full search database. In fact, it simply calls
  2031     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2032     ///
  2033     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
  2034     ///the number of the edges of \c n and <em>D</em> is the maximum
  2035     ///out-degree of the graph.
  2036 
  2037     void refresh() 
  2038     {
  2039       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
  2040     }
  2041     
  2042     ///Find an edge between two nodes.
  2043     
  2044     ///Find an edge between two nodes.
  2045     ///\param s The source node
  2046     ///\param t The target node
  2047     ///\param prev The previous edge between \c s and \c t. It it is INVALID or
  2048     ///not given, the operator finds the first appropriate edge.
  2049     ///\return An edge from \c s to \c t after \prev or
  2050     ///\ref INVALID if there is no more.
  2051     ///
  2052     ///For example, you can count the number of edges from \c u to \c v in the
  2053     ///following way.
  2054     ///\code
  2055     ///AllEdgeLookUp<ListGraph> ae(g);
  2056     ///...
  2057     ///int n=0;
  2058     ///for(Edge e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
  2059     ///\endcode
  2060     ///
  2061     ///Finding the first edge take <em>O(</em>log<em>d)</em> time, where
  2062     /// <em>d</em> is the number of outgoing edges of \c s. Then, the
  2063     ///consecutive edges are found in constant time.
  2064     ///
  2065     ///\warning If you change the graph, refresh() must be called before using
  2066     ///this operator. If you change the outgoing edges of
  2067     ///a single node \c n, then
  2068     ///\ref refresh(Node) "refresh(n)" is enough.
  2069     ///
  2070 #ifdef DOXYGEN
  2071     Edge operator()(Node s, Node t, Edge prev=INVALID) const {}
  2072 #else
  2073     using EdgeLookUp<G>::operator() ;
  2074     Edge operator()(Node s, Node t, Edge prev) const
  2075     {
  2076       return prev==INVALID?(*this)(s,t):_next[prev];
  2077     }
  2078 #endif
  2079       
  2080   };
  2081 
  2082   /// @}
  2083 
  2084 } //END OF NAMESPACE LEMON
  2085 
  2086 #endif