lemon/lp_base.h
author deba
Fri, 04 Nov 2005 10:55:13 +0000
changeset 1759 0bb3fb3baffd
parent 1610 893dacc1866c
child 1766 6c59b1386fe8
permissions -rw-r--r--
Increment and decrement operator for IterableIntMap::Reference
     1 /* -*- C++ -*-
     2  * lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_LP_BASE_H
    18 #define LEMON_LP_BASE_H
    19 
    20 #include<vector>
    21 #include<map>
    22 #include<limits>
    23 #include<cmath>
    24 
    25 #include<lemon/utility.h>
    26 #include<lemon/error.h>
    27 #include<lemon/invalid.h>
    28 
    29 ///\file
    30 ///\brief The interface of the LP solver interface.
    31 ///\ingroup gen_opt_group
    32 namespace lemon {
    33   
    34   ///Internal data structure to convert floating id's to fix one's
    35     
    36   ///\todo This might be implemented to be also usable in other places.
    37   class _FixId 
    38   {
    39     std::vector<int> index;
    40     std::vector<int> cross;
    41     int first_free;
    42   public:
    43     _FixId() : first_free(-1) {};
    44     ///Convert a floating id to a fix one
    45 
    46     ///\param n is a floating id
    47     ///\return the corresponding fix id
    48     int fixId(int n) const {return cross[n];}
    49     ///Convert a fix id to a floating one
    50 
    51     ///\param n is a fix id
    52     ///\return the corresponding floating id
    53     int floatingId(int n) const { return index[n];}
    54     ///Add a new floating id.
    55 
    56     ///\param n is a floating id
    57     ///\return the fix id of the new value
    58     ///\todo Multiple additions should also be handled.
    59     int insert(int n)
    60     {
    61       if(n>=int(cross.size())) {
    62 	cross.resize(n+1);
    63 	if(first_free==-1) {
    64 	  cross[n]=index.size();
    65 	  index.push_back(n);
    66 	}
    67 	else {
    68 	  cross[n]=first_free;
    69 	  int next=index[first_free];
    70 	  index[first_free]=n;
    71 	  first_free=next;
    72 	}
    73 	return cross[n];
    74       }
    75       ///\todo Create an own exception type.
    76       else throw LogicError(); //floatingId-s must form a continuous range;
    77     }
    78     ///Remove a fix id.
    79 
    80     ///\param n is a fix id
    81     ///
    82     void erase(int n) 
    83     {
    84       int fl=index[n];
    85       index[n]=first_free;
    86       first_free=n;
    87       for(int i=fl+1;i<int(cross.size());++i) {
    88 	cross[i-1]=cross[i];
    89 	index[cross[i]]--;
    90       }
    91       cross.pop_back();
    92     }
    93     ///An upper bound on the largest fix id.
    94 
    95     ///\todo Do we need this?
    96     ///
    97     std::size_t maxFixId() { return cross.size()-1; }
    98   
    99   };
   100     
   101   ///Common base class for LP solvers
   102   
   103   ///\todo Much more docs
   104   ///\ingroup gen_opt_group
   105   class LpSolverBase {
   106 
   107   public:
   108 
   109     ///Possible outcomes of an LP solving procedure
   110     enum SolveExitStatus {
   111       ///This means that the problem has been successfully solved: either
   112       ///an optimal solution has been found or infeasibility/unboundedness
   113       ///has been proved.
   114       SOLVED = 0,
   115       ///Any other case (including the case when some user specified limit has been exceeded)
   116       UNSOLVED = 1
   117     };
   118       
   119       ///\e
   120     enum SolutionStatus {
   121       ///Feasible solution has'n been found (but may exist).
   122 
   123       ///\todo NOTFOUND might be a better name.
   124       ///
   125       UNDEFINED = 0,
   126       ///The problem has no feasible solution
   127       INFEASIBLE = 1,
   128       ///Feasible solution found
   129       FEASIBLE = 2,
   130       ///Optimal solution exists and found
   131       OPTIMAL = 3,
   132       ///The cost function is unbounded
   133 
   134       ///\todo Give a feasible solution and an infinite ray (and the
   135       ///corresponding bases)
   136       INFINITE = 4
   137     };
   138 
   139     ///\e The type of the investigated LP problem
   140     enum ProblemTypes {
   141       ///Primal-dual feasible
   142       PRIMAL_DUAL_FEASIBLE = 0,
   143       ///Primal feasible dual infeasible
   144       PRIMAL_FEASIBLE_DUAL_INFEASIBLE = 1,
   145       ///Primal infeasible dual feasible
   146       PRIMAL_INFEASIBLE_DUAL_FEASIBLE = 2,
   147       ///Primal-dual infeasible
   148       PRIMAL_DUAL_INFEASIBLE = 3,
   149       ///Could not determine so far
   150       UNKNOWN = 4
   151     };
   152 
   153     ///The floating point type used by the solver
   154     typedef double Value;
   155     ///The infinity constant
   156     static const Value INF;
   157     ///The not a number constant
   158     static const Value NaN;
   159     
   160     ///Refer to a column of the LP.
   161 
   162     ///This type is used to refer to a column of the LP.
   163     ///
   164     ///Its value remains valid and correct even after the addition or erase of
   165     ///other columns.
   166     ///
   167     ///\todo Document what can one do with a Col (INVALID, comparing,
   168     ///it is similar to Node/Edge)
   169     class Col {
   170     protected:
   171       int id;
   172       friend class LpSolverBase;
   173     public:
   174       typedef Value ExprValue;
   175       typedef True LpSolverCol;
   176       Col() {}
   177       Col(const Invalid&) : id(-1) {}
   178       bool operator<(Col c) const  {return id<c.id;}
   179       bool operator==(Col c) const  {return id==c.id;}
   180       bool operator!=(Col c) const  {return id==c.id;}
   181     };
   182 
   183     ///Refer to a row of the LP.
   184 
   185     ///This type is used to refer to a row of the LP.
   186     ///
   187     ///Its value remains valid and correct even after the addition or erase of
   188     ///other rows.
   189     ///
   190     ///\todo Document what can one do with a Row (INVALID, comparing,
   191     ///it is similar to Node/Edge)
   192     class Row {
   193     protected:
   194       int id;
   195       friend class LpSolverBase;
   196     public:
   197       typedef Value ExprValue;
   198       typedef True LpSolverRow;
   199       Row() {}
   200       Row(const Invalid&) : id(-1) {}
   201 
   202       bool operator<(Row c) const  {return id<c.id;}
   203       bool operator==(Row c) const  {return id==c.id;}
   204       bool operator!=(Row c) const  {return id==c.id;} 
   205    };
   206     
   207     ///Linear expression of variables and a constant component
   208     
   209     ///This data structure strores a linear expression of the variables
   210     ///(\ref Col "Col"s) and also has a constant component.
   211     ///
   212     ///There are several ways to access and modify the contents of this
   213     ///container.
   214     ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   215     ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
   216     ///read and modify the coefficients like
   217     ///these.
   218     ///\code
   219     ///e[v]=5;
   220     ///e[v]+=12;
   221     ///e.erase(v);
   222     ///\endcode
   223     ///or you can also iterate through its elements.
   224     ///\code
   225     ///double s=0;
   226     ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   227     ///  s+=i->second;
   228     ///\endcode
   229     ///(This code computes the sum of all coefficients).
   230     ///- Numbers (<tt>double</tt>'s)
   231     ///and variables (\ref Col "Col"s) directly convert to an
   232     ///\ref Expr and the usual linear operations are defined so  
   233     ///\code
   234     ///v+w
   235     ///2*v-3.12*(v-w/2)+2
   236     ///v*2.1+(3*v+(v*12+w+6)*3)/2
   237     ///\endcode
   238     ///are valid \ref Expr "Expr"essions.
   239     ///The usual assignment operations are also defined.
   240     ///\code
   241     ///e=v+w;
   242     ///e+=2*v-3.12*(v-w/2)+2;
   243     ///e*=3.4;
   244     ///e/=5;
   245     ///\endcode
   246     ///- The constant member can be set and read by \ref constComp()
   247     ///\code
   248     ///e.constComp()=12;
   249     ///double c=e.constComp();
   250     ///\endcode
   251     ///
   252     ///\note \ref clear() not only sets all coefficients to 0 but also
   253     ///clears the constant components.
   254     ///
   255     ///\sa Constr
   256     ///
   257     class Expr : public std::map<Col,Value>
   258     {
   259     public:
   260       typedef LpSolverBase::Col Key; 
   261       typedef LpSolverBase::Value Value;
   262       
   263     protected:
   264       typedef std::map<Col,Value> Base;
   265       
   266       Value const_comp;
   267   public:
   268       typedef True IsLinExpression;
   269       ///\e
   270       Expr() : Base(), const_comp(0) { }
   271       ///\e
   272       Expr(const Key &v) : const_comp(0) {
   273 	Base::insert(std::make_pair(v, 1));
   274       }
   275       ///\e
   276       Expr(const Value &v) : const_comp(v) {}
   277       ///\e
   278       void set(const Key &v,const Value &c) {
   279 	Base::insert(std::make_pair(v, c));
   280       }
   281       ///\e
   282       Value &constComp() { return const_comp; }
   283       ///\e
   284       const Value &constComp() const { return const_comp; }
   285       
   286       ///Removes the components with zero coefficient.
   287       void simplify() {
   288 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   289 	  Base::iterator j=i;
   290 	  ++j;
   291 	  if ((*i).second==0) Base::erase(i);
   292 	  j=i;
   293 	}
   294       }
   295 
   296       ///Sets all coefficients and the constant component to 0.
   297       void clear() {
   298 	Base::clear();
   299 	const_comp=0;
   300       }
   301 
   302       ///\e
   303       Expr &operator+=(const Expr &e) {
   304 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   305 	  (*this)[j->first]+=j->second;
   306 	///\todo it might be speeded up using "hints"
   307 	const_comp+=e.const_comp;
   308 	return *this;
   309       }
   310       ///\e
   311       Expr &operator-=(const Expr &e) {
   312 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   313 	  (*this)[j->first]-=j->second;
   314 	const_comp-=e.const_comp;
   315 	return *this;
   316       }
   317       ///\e
   318       Expr &operator*=(const Value &c) {
   319 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   320 	  j->second*=c;
   321 	const_comp*=c;
   322 	return *this;
   323       }
   324       ///\e
   325       Expr &operator/=(const Value &c) {
   326 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   327 	  j->second/=c;
   328 	const_comp/=c;
   329 	return *this;
   330       }
   331     };
   332     
   333     ///Linear constraint
   334 
   335     ///This data stucture represents a linear constraint in the LP.
   336     ///Basically it is a linear expression with a lower or an upper bound
   337     ///(or both). These parts of the constraint can be obtained by the member
   338     ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
   339     ///respectively.
   340     ///There are two ways to construct a constraint.
   341     ///- You can set the linear expression and the bounds directly
   342     ///  by the functions above.
   343     ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
   344     ///  are defined between expressions, or even between constraints whenever
   345     ///  it makes sense. Therefore if \c e and \c f are linear expressions and
   346     ///  \c s and \c t are numbers, then the followings are valid expressions
   347     ///  and thus they can be used directly e.g. in \ref addRow() whenever
   348     ///  it makes sense.
   349     ///  \code
   350     ///  e<=s
   351     ///  e<=f
   352     ///  s<=e<=t
   353     ///  e>=t
   354     ///  \endcode
   355     ///\warning The validity of a constraint is checked only at run time, so
   356     ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
   357     ///\ref LogicError exception.
   358     class Constr
   359     {
   360     public:
   361       typedef LpSolverBase::Expr Expr;
   362       typedef Expr::Key Key;
   363       typedef Expr::Value Value;
   364       
   365 //       static const Value INF;
   366 //       static const Value NaN;
   367 
   368     protected:
   369       Expr _expr;
   370       Value _lb,_ub;
   371     public:
   372       ///\e
   373       Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   374       ///\e
   375       Constr(Value lb,const Expr &e,Value ub) :
   376 	_expr(e), _lb(lb), _ub(ub) {}
   377       ///\e
   378       Constr(const Expr &e,Value ub) : 
   379 	_expr(e), _lb(NaN), _ub(ub) {}
   380       ///\e
   381       Constr(Value lb,const Expr &e) :
   382 	_expr(e), _lb(lb), _ub(NaN) {}
   383       ///\e
   384       Constr(const Expr &e) : 
   385 	_expr(e), _lb(NaN), _ub(NaN) {}
   386       ///\e
   387       void clear() 
   388       {
   389 	_expr.clear();
   390 	_lb=_ub=NaN;
   391       }
   392 
   393       ///Reference to the linear expression 
   394       Expr &expr() { return _expr; }
   395       ///Cont reference to the linear expression 
   396       const Expr &expr() const { return _expr; }
   397       ///Reference to the lower bound.
   398 
   399       ///\return
   400       ///- \ref INF "INF": the constraint is lower unbounded.
   401       ///- \ref NaN "NaN": lower bound has not been set.
   402       ///- finite number: the lower bound
   403       Value &lowerBound() { return _lb; }
   404       ///The const version of \ref lowerBound()
   405       const Value &lowerBound() const { return _lb; }
   406       ///Reference to the upper bound.
   407 
   408       ///\return
   409       ///- \ref INF "INF": the constraint is upper unbounded.
   410       ///- \ref NaN "NaN": upper bound has not been set.
   411       ///- finite number: the upper bound
   412       Value &upperBound() { return _ub; }
   413       ///The const version of \ref upperBound()
   414       const Value &upperBound() const { return _ub; }
   415       ///Is the constraint lower bounded?
   416       bool lowerBounded() const { 
   417 	using namespace std;
   418 	return finite(_lb);
   419       }
   420       ///Is the constraint upper bounded?
   421       bool upperBounded() const {
   422 	using namespace std;
   423 	return finite(_ub);
   424       }
   425     };
   426     
   427     ///Linear expression of rows
   428     
   429     ///This data structure represents a column of the matrix,
   430     ///thas is it strores a linear expression of the dual variables
   431     ///(\ref Row "Row"s).
   432     ///
   433     ///There are several ways to access and modify the contents of this
   434     ///container.
   435     ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
   436     ///if \c e is an DualExpr and \c v
   437     ///and \c w are of type \ref Row, then you can
   438     ///read and modify the coefficients like
   439     ///these.
   440     ///\code
   441     ///e[v]=5;
   442     ///e[v]+=12;
   443     ///e.erase(v);
   444     ///\endcode
   445     ///or you can also iterate through its elements.
   446     ///\code
   447     ///double s=0;
   448     ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
   449     ///  s+=i->second;
   450     ///\endcode
   451     ///(This code computes the sum of all coefficients).
   452     ///- Numbers (<tt>double</tt>'s)
   453     ///and variables (\ref Row "Row"s) directly convert to an
   454     ///\ref DualExpr and the usual linear operations are defined so  
   455     ///\code
   456     ///v+w
   457     ///2*v-3.12*(v-w/2)
   458     ///v*2.1+(3*v+(v*12+w)*3)/2
   459     ///\endcode
   460     ///are valid \ref DualExpr "DualExpr"essions.
   461     ///The usual assignment operations are also defined.
   462     ///\code
   463     ///e=v+w;
   464     ///e+=2*v-3.12*(v-w/2);
   465     ///e*=3.4;
   466     ///e/=5;
   467     ///\endcode
   468     ///
   469     ///\sa Expr
   470     ///
   471     class DualExpr : public std::map<Row,Value>
   472     {
   473     public:
   474       typedef LpSolverBase::Row Key; 
   475       typedef LpSolverBase::Value Value;
   476       
   477     protected:
   478       typedef std::map<Row,Value> Base;
   479       
   480     public:
   481       typedef True IsLinExpression;
   482       ///\e
   483       DualExpr() : Base() { }
   484       ///\e
   485       DualExpr(const Key &v) {
   486 	Base::insert(std::make_pair(v, 1));
   487       }
   488       ///\e
   489       void set(const Key &v,const Value &c) {
   490 	Base::insert(std::make_pair(v, c));
   491       }
   492       
   493       ///Removes the components with zero coefficient.
   494       void simplify() {
   495 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   496 	  Base::iterator j=i;
   497 	  ++j;
   498 	  if ((*i).second==0) Base::erase(i);
   499 	  j=i;
   500 	}
   501       }
   502 
   503       ///Sets all coefficients to 0.
   504       void clear() {
   505 	Base::clear();
   506       }
   507 
   508       ///\e
   509       DualExpr &operator+=(const DualExpr &e) {
   510 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   511 	  (*this)[j->first]+=j->second;
   512 	///\todo it might be speeded up using "hints"
   513 	return *this;
   514       }
   515       ///\e
   516       DualExpr &operator-=(const DualExpr &e) {
   517 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   518 	  (*this)[j->first]-=j->second;
   519 	return *this;
   520       }
   521       ///\e
   522       DualExpr &operator*=(const Value &c) {
   523 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   524 	  j->second*=c;
   525 	return *this;
   526       }
   527       ///\e
   528       DualExpr &operator/=(const Value &c) {
   529 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   530 	  j->second/=c;
   531 	return *this;
   532       }
   533     };
   534     
   535 
   536   protected:
   537     _FixId rows;
   538     _FixId cols;
   539 
   540     //Abstract virtual functions
   541     virtual LpSolverBase &_newLp() = 0;
   542     virtual LpSolverBase &_copyLp(){
   543       ///\todo This should be implemented here, too,  when we have problem retrieving routines. It can be overriden.
   544 
   545       //Starting:
   546       LpSolverBase & newlp(_newLp());
   547       return newlp;
   548       //return *(LpSolverBase*)0;
   549     };
   550 
   551     virtual int _addCol() = 0;
   552     virtual int _addRow() = 0;
   553     virtual void _eraseCol(int col) = 0;
   554     virtual void _eraseRow(int row) = 0;
   555     virtual void _setRowCoeffs(int i, 
   556 			       int length,
   557                                int  const * indices, 
   558                                Value  const * values ) = 0;
   559     virtual void _setColCoeffs(int i, 
   560 			       int length,
   561                                int  const * indices, 
   562                                Value  const * values ) = 0;
   563     virtual void _setCoeff(int row, int col, Value value) = 0;
   564     virtual void _setColLowerBound(int i, Value value) = 0;
   565     virtual void _setColUpperBound(int i, Value value) = 0;
   566 //     virtual void _setRowLowerBound(int i, Value value) = 0;
   567 //     virtual void _setRowUpperBound(int i, Value value) = 0;
   568     virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
   569     virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   570     virtual void _clearObj()=0;
   571 //     virtual void _setObj(int length,
   572 //                          int  const * indices, 
   573 //                          Value  const * values ) = 0;
   574     virtual SolveExitStatus _solve() = 0;
   575     virtual Value _getPrimal(int i) = 0;
   576     virtual Value _getPrimalValue() = 0;
   577     virtual SolutionStatus _getPrimalStatus() = 0;
   578     virtual SolutionStatus _getDualStatus() = 0;
   579     ///\todo This could be implemented here, too, using _getPrimalStatus() and
   580     ///_getDualStatus()
   581     virtual ProblemTypes _getProblemType() = 0;
   582 
   583     virtual void _setMax() = 0;
   584     virtual void _setMin() = 0;
   585     
   586     //Own protected stuff
   587     
   588     //Constant component of the objective function
   589     Value obj_const_comp;
   590     
   591 
   592 
   593     
   594   public:
   595 
   596     ///\e
   597     LpSolverBase() : obj_const_comp(0) {}
   598 
   599     ///\e
   600     virtual ~LpSolverBase() {}
   601 
   602     ///Creates a new LP problem
   603     LpSolverBase &newLp() {return _newLp();}
   604     ///Makes a copy of the LP problem
   605     LpSolverBase &copyLp() {return _copyLp();}
   606     
   607     ///\name Build up and modify the LP
   608 
   609     ///@{
   610 
   611     ///Add a new empty column (i.e a new variable) to the LP
   612     Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
   613 
   614     ///\brief Adds several new columns
   615     ///(i.e a variables) at once
   616     ///
   617     ///This magic function takes a container as its argument
   618     ///and fills its elements
   619     ///with new columns (i.e. variables)
   620     ///\param t can be
   621     ///- a standard STL compatible iterable container with
   622     ///\ref Col as its \c values_type
   623     ///like
   624     ///\code
   625     ///std::vector<LpSolverBase::Col>
   626     ///std::list<LpSolverBase::Col>
   627     ///\endcode
   628     ///- a standard STL compatible iterable container with
   629     ///\ref Col as its \c mapped_type
   630     ///like
   631     ///\code
   632     ///std::map<AnyType,LpSolverBase::Col>
   633     ///\endcode
   634     ///- an iterable lemon \ref concept::WriteMap "write map" like 
   635     ///\code
   636     ///ListGraph::NodeMap<LpSolverBase::Col>
   637     ///ListGraph::EdgeMap<LpSolverBase::Col>
   638     ///\endcode
   639     ///\return The number of the created column.
   640 #ifdef DOXYGEN
   641     template<class T>
   642     int addColSet(T &t) { return 0;} 
   643 #else
   644     template<class T>
   645     typename enable_if<typename T::value_type::LpSolverCol,int>::type
   646     addColSet(T &t,dummy<0> = 0) {
   647       int s=0;
   648       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   649       return s;
   650     }
   651     template<class T>
   652     typename enable_if<typename T::value_type::second_type::LpSolverCol,
   653 		       int>::type
   654     addColSet(T &t,dummy<1> = 1) { 
   655       int s=0;
   656       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   657 	i->second=addCol();
   658 	s++;
   659       }
   660       return s;
   661     }
   662     template<class T>
   663     typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
   664 		       int>::type
   665     addColSet(T &t,dummy<2> = 2) { 
   666       ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
   667       int s=0;
   668       for(typename T::ValueSet::iterator i=t.valueSet().begin();
   669 	  i!=t.valueSet().end();
   670 	  ++i)
   671 	{
   672 	  *i=addCol();
   673 	  s++;
   674 	}
   675       return s;
   676     }
   677 #endif
   678 
   679     ///Set a column (i.e a dual constraint) of the LP
   680 
   681     ///\param c is the column to be modified
   682     ///\param e is a dual linear expression (see \ref DualExpr)
   683     ///\bug This is a temporary function. The interface will change to
   684     ///a better one.
   685     void setCol(Col c,const DualExpr &e) {
   686       std::vector<int> indices;
   687       std::vector<Value> values;
   688       indices.push_back(0);
   689       values.push_back(0);
   690       for(DualExpr::const_iterator i=e.begin(); i!=e.end(); ++i)
   691 	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   692 	  indices.push_back(cols.floatingId((*i).first.id));
   693 	  values.push_back((*i).second);
   694 	}
   695       _setColCoeffs(cols.floatingId(c.id),indices.size()-1,
   696 		    &indices[0],&values[0]);
   697     }
   698 
   699     ///Add a new column to the LP
   700 
   701     ///\param e is a dual linear expression (see \ref DualExpr)
   702     ///\param obj is the corresponding component of the objective
   703     ///function. It is 0 by default.
   704     ///\return The created column.
   705     ///\bug This is a temportary function. The interface will change to
   706     ///a better one.
   707     Col addCol(const DualExpr &e, Value obj=0) {
   708       Col c=addCol();
   709       setCol(c,e);
   710       objCoeff(c,obj);
   711       return c;
   712     }
   713 
   714     ///Add a new empty row (i.e a new constraint) to the LP
   715 
   716     ///This function adds a new empty row (i.e a new constraint) to the LP.
   717     ///\return The created row
   718     Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   719 
   720     ///\brief Add several new rows
   721     ///(i.e a constraints) at once
   722     ///
   723     ///This magic function takes a container as its argument
   724     ///and fills its elements
   725     ///with new row (i.e. variables)
   726     ///\param t can be
   727     ///- a standard STL compatible iterable container with
   728     ///\ref Row as its \c values_type
   729     ///like
   730     ///\code
   731     ///std::vector<LpSolverBase::Row>
   732     ///std::list<LpSolverBase::Row>
   733     ///\endcode
   734     ///- a standard STL compatible iterable container with
   735     ///\ref Row as its \c mapped_type
   736     ///like
   737     ///\code
   738     ///std::map<AnyType,LpSolverBase::Row>
   739     ///\endcode
   740     ///- an iterable lemon \ref concept::WriteMap "write map" like 
   741     ///\code
   742     ///ListGraph::NodeMap<LpSolverBase::Row>
   743     ///ListGraph::EdgeMap<LpSolverBase::Row>
   744     ///\endcode
   745     ///\return The number of rows created.
   746 #ifdef DOXYGEN
   747     template<class T>
   748     int addRowSet(T &t) { return 0;} 
   749 #else
   750     template<class T>
   751     typename enable_if<typename T::value_type::LpSolverRow,int>::type
   752     addRowSet(T &t,dummy<0> = 0) {
   753       int s=0;
   754       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
   755       return s;
   756     }
   757     template<class T>
   758     typename enable_if<typename T::value_type::second_type::LpSolverRow,
   759 		       int>::type
   760     addRowSet(T &t,dummy<1> = 1) { 
   761       int s=0;
   762       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   763 	i->second=addRow();
   764 	s++;
   765       }
   766       return s;
   767     }
   768     template<class T>
   769     typename enable_if<typename T::ValueSet::value_type::LpSolverRow,
   770 		       int>::type
   771     addRowSet(T &t,dummy<2> = 2) { 
   772       ///\bug <tt>return addRowSet(t.valueSet());</tt> should also work.
   773       int s=0;
   774       for(typename T::ValueSet::iterator i=t.valueSet().begin();
   775 	  i!=t.valueSet().end();
   776 	  ++i)
   777 	{
   778 	  *i=addRow();
   779 	  s++;
   780 	}
   781       return s;
   782     }
   783 #endif
   784 
   785     ///Set a row (i.e a constraint) of the LP
   786 
   787     ///\param r is the row to be modified
   788     ///\param l is lower bound (-\ref INF means no bound)
   789     ///\param e is a linear expression (see \ref Expr)
   790     ///\param u is the upper bound (\ref INF means no bound)
   791     ///\bug This is a temportary function. The interface will change to
   792     ///a better one.
   793     ///\todo Option to control whether a constraint with a single variable is
   794     ///added or not.
   795     void setRow(Row r, Value l,const Expr &e, Value u) {
   796       std::vector<int> indices;
   797       std::vector<Value> values;
   798       indices.push_back(0);
   799       values.push_back(0);
   800       for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
   801 	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   802 	  indices.push_back(cols.floatingId((*i).first.id));
   803 	  values.push_back((*i).second);
   804 	}
   805       _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
   806 		    &indices[0],&values[0]);
   807 //       _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
   808 //       _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
   809        _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp());
   810     }
   811 
   812     ///Set a row (i.e a constraint) of the LP
   813 
   814     ///\param r is the row to be modified
   815     ///\param c is a linear expression (see \ref Constr)
   816     void setRow(Row r, const Constr &c) {
   817       setRow(r,
   818 	     c.lowerBounded()?c.lowerBound():-INF,
   819 	     c.expr(),
   820 	     c.upperBounded()?c.upperBound():INF);
   821     }
   822 
   823     ///Add a new row (i.e a new constraint) to the LP
   824 
   825     ///\param l is the lower bound (-\ref INF means no bound)
   826     ///\param e is a linear expression (see \ref Expr)
   827     ///\param u is the upper bound (\ref INF means no bound)
   828     ///\return The created row.
   829     ///\bug This is a temportary function. The interface will change to
   830     ///a better one.
   831     Row addRow(Value l,const Expr &e, Value u) {
   832       Row r=addRow();
   833       setRow(r,l,e,u);
   834       return r;
   835     }
   836 
   837     ///Add a new row (i.e a new constraint) to the LP
   838 
   839     ///\param c is a linear expression (see \ref Constr)
   840     ///\return The created row.
   841     Row addRow(const Constr &c) {
   842       Row r=addRow();
   843       setRow(r,c);
   844       return r;
   845     }
   846     ///Erase a coloumn (i.e a variable) from the LP
   847 
   848     ///\param c is the coloumn to be deleted
   849     ///\todo Please check this
   850     void eraseCol(Col c) {
   851       _eraseCol(cols.floatingId(c.id));
   852       cols.erase(c.id);
   853     }
   854     ///Erase a  row (i.e a constraint) from the LP
   855 
   856     ///\param r is the row to be deleted
   857     ///\todo Please check this
   858     void eraseRow(Row r) {
   859       _eraseRow(rows.floatingId(r.id));
   860       rows.erase(r.id);
   861     }
   862 
   863     ///Set an element of the coefficient matrix of the LP
   864 
   865     ///\param r is the row of the element to be modified
   866     ///\param c is the coloumn of the element to be modified
   867     ///\param val is the new value of the coefficient
   868     void setCoeff(Row r, Col c, Value val){
   869       _setCoeff(rows.floatingId(r.id),cols.floatingId(c.id), val);
   870     }
   871 
   872     /// Set the lower bound of a column (i.e a variable)
   873 
   874     /// The upper bound of a variable (column) has to be given by an 
   875     /// extended number of type Value, i.e. a finite number of type 
   876     /// Value or -\ref INF.
   877     void colLowerBound(Col c, Value value) {
   878       _setColLowerBound(cols.floatingId(c.id),value);
   879     }
   880     /// Set the upper bound of a column (i.e a variable)
   881 
   882     /// The upper bound of a variable (column) has to be given by an 
   883     /// extended number of type Value, i.e. a finite number of type 
   884     /// Value or \ref INF.
   885     void colUpperBound(Col c, Value value) {
   886       _setColUpperBound(cols.floatingId(c.id),value);
   887     };
   888     /// Set the lower and the upper bounds of a column (i.e a variable)
   889 
   890     /// The lower and the upper bounds of
   891     /// a variable (column) have to be given by an 
   892     /// extended number of type Value, i.e. a finite number of type 
   893     /// Value, -\ref INF or \ref INF.
   894     void colBounds(Col c, Value lower, Value upper) {
   895       _setColLowerBound(cols.floatingId(c.id),lower);
   896       _setColUpperBound(cols.floatingId(c.id),upper);
   897     }
   898     
   899 //     /// Set the lower bound of a row (i.e a constraint)
   900 
   901 //     /// The lower bound of a linear expression (row) has to be given by an 
   902 //     /// extended number of type Value, i.e. a finite number of type 
   903 //     /// Value or -\ref INF.
   904 //     void rowLowerBound(Row r, Value value) {
   905 //       _setRowLowerBound(rows.floatingId(r.id),value);
   906 //     };
   907 //     /// Set the upper bound of a row (i.e a constraint)
   908 
   909 //     /// The upper bound of a linear expression (row) has to be given by an 
   910 //     /// extended number of type Value, i.e. a finite number of type 
   911 //     /// Value or \ref INF.
   912 //     void rowUpperBound(Row r, Value value) {
   913 //       _setRowUpperBound(rows.floatingId(r.id),value);
   914 //     };
   915 
   916     /// Set the lower and the upper bounds of a row (i.e a constraint)
   917 
   918     /// The lower and the upper bounds of
   919     /// a constraint (row) have to be given by an 
   920     /// extended number of type Value, i.e. a finite number of type 
   921     /// Value, -\ref INF or \ref INF.
   922     void rowBounds(Row c, Value lower, Value upper) {
   923       _setRowBounds(rows.floatingId(c.id),lower, upper);
   924       // _setRowUpperBound(rows.floatingId(c.id),upper);
   925     }
   926     
   927     ///Set an element of the objective function
   928     void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
   929     ///Set the objective function
   930     
   931     ///\param e is a linear expression of type \ref Expr.
   932     ///\bug The previous objective function is not cleared!
   933     void setObj(Expr e) {
   934       _clearObj();
   935       for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
   936 	objCoeff((*i).first,(*i).second);
   937       obj_const_comp=e.constComp();
   938     }
   939 
   940     ///Maximize
   941     void max() { _setMax(); }
   942     ///Minimize
   943     void min() { _setMin(); }
   944 
   945     
   946     ///@}
   947 
   948 
   949     ///\name Solve the LP
   950 
   951     ///@{
   952 
   953     ///\e Solve the LP problem at hand
   954     ///
   955     ///\return The result of the optimization procedure. Possible values and their meanings can be found in the documentation of \ref SolveExitStatus.
   956     ///
   957     ///\todo Which method is used to solve the problem
   958     SolveExitStatus solve() { return _solve(); }
   959     
   960     ///@}
   961     
   962     ///\name Obtain the solution
   963 
   964     ///@{
   965 
   966     /// The status of the primal problem (the original LP problem)
   967     SolutionStatus primalStatus() {
   968       return _getPrimalStatus();
   969     }
   970 
   971     /// The status of the dual (of the original LP) problem 
   972     SolutionStatus dualStatus() {
   973       return _getDualStatus();
   974     }
   975 
   976     ///The type of the original LP problem
   977     ProblemTypes problemType() {
   978       return _getProblemType();
   979     }
   980 
   981     ///\e
   982     Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
   983 
   984     ///\e
   985 
   986     ///\return
   987     ///- \ref INF or -\ref INF means either infeasibility or unboundedness
   988     /// of the primal problem, depending on whether we minimize or maximize.
   989     ///- \ref NaN if no primal solution is found.
   990     ///- The (finite) objective value if an optimal solution is found.
   991     Value primalValue() { return _getPrimalValue()+obj_const_comp;}
   992     ///@}
   993     
   994   };  
   995 
   996   ///\e
   997   
   998   ///\relates LpSolverBase::Expr
   999   ///
  1000   inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
  1001 				      const LpSolverBase::Expr &b) 
  1002   {
  1003     LpSolverBase::Expr tmp(a);
  1004     tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
  1005     return tmp;
  1006   }
  1007   ///\e
  1008   
  1009   ///\relates LpSolverBase::Expr
  1010   ///
  1011   inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
  1012 				      const LpSolverBase::Expr &b) 
  1013   {
  1014     LpSolverBase::Expr tmp(a);
  1015     tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
  1016     return tmp;
  1017   }
  1018   ///\e
  1019   
  1020   ///\relates LpSolverBase::Expr
  1021   ///
  1022   inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
  1023 				      const LpSolverBase::Value &b) 
  1024   {
  1025     LpSolverBase::Expr tmp(a);
  1026     tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
  1027     return tmp;
  1028   }
  1029   
  1030   ///\e
  1031   
  1032   ///\relates LpSolverBase::Expr
  1033   ///
  1034   inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
  1035 				      const LpSolverBase::Expr &b) 
  1036   {
  1037     LpSolverBase::Expr tmp(b);
  1038     tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
  1039     return tmp;
  1040   }
  1041   ///\e
  1042   
  1043   ///\relates LpSolverBase::Expr
  1044   ///
  1045   inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
  1046 				      const LpSolverBase::Value &b) 
  1047   {
  1048     LpSolverBase::Expr tmp(a);
  1049     tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
  1050     return tmp;
  1051   }
  1052   
  1053   ///\e
  1054   
  1055   ///\relates LpSolverBase::Constr
  1056   ///
  1057   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1058 					 const LpSolverBase::Expr &f) 
  1059   {
  1060     return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
  1061   }
  1062 
  1063   ///\e
  1064   
  1065   ///\relates LpSolverBase::Constr
  1066   ///
  1067   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
  1068 					 const LpSolverBase::Expr &f) 
  1069   {
  1070     return LpSolverBase::Constr(e,f);
  1071   }
  1072 
  1073   ///\e
  1074   
  1075   ///\relates LpSolverBase::Constr
  1076   ///
  1077   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1078 					 const LpSolverBase::Value &f) 
  1079   {
  1080     return LpSolverBase::Constr(e,f);
  1081   }
  1082 
  1083   ///\e
  1084   
  1085   ///\relates LpSolverBase::Constr
  1086   ///
  1087   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1088 					 const LpSolverBase::Expr &f) 
  1089   {
  1090     return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
  1091   }
  1092 
  1093 
  1094   ///\e
  1095   
  1096   ///\relates LpSolverBase::Constr
  1097   ///
  1098   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
  1099 					 const LpSolverBase::Expr &f) 
  1100   {
  1101     return LpSolverBase::Constr(f,e);
  1102   }
  1103 
  1104 
  1105   ///\e
  1106   
  1107   ///\relates LpSolverBase::Constr
  1108   ///
  1109   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1110 					 const LpSolverBase::Value &f) 
  1111   {
  1112     return LpSolverBase::Constr(f,e);
  1113   }
  1114 
  1115   ///\e
  1116   
  1117   ///\relates LpSolverBase::Constr
  1118   ///
  1119   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
  1120 					 const LpSolverBase::Expr &f) 
  1121   {
  1122     return LpSolverBase::Constr(0,e-f,0);
  1123   }
  1124 
  1125   ///\e
  1126   
  1127   ///\relates LpSolverBase::Constr
  1128   ///
  1129   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
  1130 					 const LpSolverBase::Constr&c) 
  1131   {
  1132     LpSolverBase::Constr tmp(c);
  1133     ///\todo Create an own exception type.
  1134     if(!isnan(tmp.lowerBound())) throw LogicError();
  1135     else tmp.lowerBound()=n;
  1136     return tmp;
  1137   }
  1138   ///\e
  1139   
  1140   ///\relates LpSolverBase::Constr
  1141   ///
  1142   inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
  1143 					 const LpSolverBase::Value &n)
  1144   {
  1145     LpSolverBase::Constr tmp(c);
  1146     ///\todo Create an own exception type.
  1147     if(!isnan(tmp.upperBound())) throw LogicError();
  1148     else tmp.upperBound()=n;
  1149     return tmp;
  1150   }
  1151 
  1152   ///\e
  1153   
  1154   ///\relates LpSolverBase::Constr
  1155   ///
  1156   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
  1157 					 const LpSolverBase::Constr&c) 
  1158   {
  1159     LpSolverBase::Constr tmp(c);
  1160     ///\todo Create an own exception type.
  1161     if(!isnan(tmp.upperBound())) throw LogicError();
  1162     else tmp.upperBound()=n;
  1163     return tmp;
  1164   }
  1165   ///\e
  1166   
  1167   ///\relates LpSolverBase::Constr
  1168   ///
  1169   inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
  1170 					 const LpSolverBase::Value &n)
  1171   {
  1172     LpSolverBase::Constr tmp(c);
  1173     ///\todo Create an own exception type.
  1174     if(!isnan(tmp.lowerBound())) throw LogicError();
  1175     else tmp.lowerBound()=n;
  1176     return tmp;
  1177   }
  1178 
  1179   ///\e
  1180   
  1181   ///\relates LpSolverBase::DualExpr
  1182   ///
  1183   inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
  1184 				      const LpSolverBase::DualExpr &b) 
  1185   {
  1186     LpSolverBase::DualExpr tmp(a);
  1187     tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
  1188     return tmp;
  1189   }
  1190   ///\e
  1191   
  1192   ///\relates LpSolverBase::DualExpr
  1193   ///
  1194   inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
  1195 				      const LpSolverBase::DualExpr &b) 
  1196   {
  1197     LpSolverBase::DualExpr tmp(a);
  1198     tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
  1199     return tmp;
  1200   }
  1201   ///\e
  1202   
  1203   ///\relates LpSolverBase::DualExpr
  1204   ///
  1205   inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
  1206 				      const LpSolverBase::Value &b) 
  1207   {
  1208     LpSolverBase::DualExpr tmp(a);
  1209     tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
  1210     return tmp;
  1211   }
  1212   
  1213   ///\e
  1214   
  1215   ///\relates LpSolverBase::DualExpr
  1216   ///
  1217   inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
  1218 				      const LpSolverBase::DualExpr &b) 
  1219   {
  1220     LpSolverBase::DualExpr tmp(b);
  1221     tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
  1222     return tmp;
  1223   }
  1224   ///\e
  1225   
  1226   ///\relates LpSolverBase::DualExpr
  1227   ///
  1228   inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
  1229 				      const LpSolverBase::Value &b) 
  1230   {
  1231     LpSolverBase::DualExpr tmp(a);
  1232     tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
  1233     return tmp;
  1234   }
  1235   
  1236 
  1237 } //namespace lemon
  1238 
  1239 #endif //LEMON_LP_BASE_H