3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2007
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_LP_BASE_H
20 #define LEMON_LP_BASE_H
28 #include<lemon/error.h>
29 #include<lemon/bits/invalid.h>
30 #include<lemon/bits/utility.h>
31 #include<lemon/bits/lp_id.h>
34 ///\brief The interface of the LP solver interface.
38 ///Common base class for LP solvers
40 ///\todo Much more docs
51 ///Possible outcomes of an LP solving procedure
52 enum SolveExitStatus {
53 ///This means that the problem has been successfully solved: either
54 ///an optimal solution has been found or infeasibility/unboundedness
57 ///Any other case (including the case when some user specified
58 ///limit has been exceeded)
64 ///Feasible solution hasn't been found (but may exist).
66 ///\todo NOTFOUND might be a better name.
69 ///The problem has no feasible solution
71 ///Feasible solution found
73 ///Optimal solution exists and found
75 ///The cost function is unbounded
77 ///\todo Give a feasible solution and an infinite ray (and the
78 ///corresponding bases)
82 ///\e The type of the investigated LP problem
84 ///Primal-dual feasible
85 PRIMAL_DUAL_FEASIBLE = 0,
86 ///Primal feasible dual infeasible
87 PRIMAL_FEASIBLE_DUAL_INFEASIBLE = 1,
88 ///Primal infeasible dual feasible
89 PRIMAL_INFEASIBLE_DUAL_FEASIBLE = 2,
90 ///Primal-dual infeasible
91 PRIMAL_DUAL_INFEASIBLE = 3,
92 ///Could not determine so far
96 ///The floating point type used by the solver
98 ///The infinity constant
99 static const Value INF;
100 ///The not a number constant
101 static const Value NaN;
103 static inline bool isNaN(const Value& v) { return v!=v; }
109 ///Refer to a column of the LP.
111 ///This type is used to refer to a column of the LP.
113 ///Its value remains valid and correct even after the addition or erase of
116 ///\todo Document what can one do with a Col (INVALID, comparing,
117 ///it is similar to Node/Edge)
121 friend class LpSolverBase;
122 friend class MipSolverBase;
123 explicit Col(int _id) : id(_id) {}
125 typedef Value ExprValue;
126 typedef True LpSolverCol;
128 Col(const Invalid&) : id(-1) {}
129 bool operator< (Col c) const {return id< c.id;}
130 bool operator> (Col c) const {return id> c.id;}
131 bool operator==(Col c) const {return id==c.id;}
132 bool operator!=(Col c) const {return id!=c.id;}
135 class ColIt : public Col {
136 const LpSolverBase *_lp;
139 ColIt(const LpSolverBase &lp) : _lp(&lp)
141 _lp->cols.firstFix(id);
143 ColIt(const Invalid&) : Col(INVALID) {}
146 _lp->cols.nextFix(id);
151 static int id(const Col& col) { return col.id; }
154 ///Refer to a row of the LP.
156 ///This type is used to refer to a row of the LP.
158 ///Its value remains valid and correct even after the addition or erase of
161 ///\todo Document what can one do with a Row (INVALID, comparing,
162 ///it is similar to Node/Edge)
166 friend class LpSolverBase;
167 explicit Row(int _id) : id(_id) {}
169 typedef Value ExprValue;
170 typedef True LpSolverRow;
172 Row(const Invalid&) : id(-1) {}
174 bool operator< (Row c) const {return id< c.id;}
175 bool operator> (Row c) const {return id> c.id;}
176 bool operator==(Row c) const {return id==c.id;}
177 bool operator!=(Row c) const {return id!=c.id;}
180 class RowIt : public Row {
181 const LpSolverBase *_lp;
184 RowIt(const LpSolverBase &lp) : _lp(&lp)
186 _lp->rows.firstFix(id);
188 RowIt(const Invalid&) : Row(INVALID) {}
191 _lp->rows.nextFix(id);
196 static int id(const Row& row) { return row.id; }
200 int _lpId(const Col& c) const {
201 return cols.floatingId(id(c));
204 int _lpId(const Row& r) const {
205 return rows.floatingId(id(r));
208 Col _item(int i, Col) const {
209 return Col(cols.fixId(i));
212 Row _item(int i, Row) const {
213 return Row(rows.fixId(i));
219 ///Linear expression of variables and a constant component
221 ///This data structure stores a linear expression of the variables
222 ///(\ref Col "Col"s) and also has a constant component.
224 ///There are several ways to access and modify the contents of this
226 ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
227 ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
228 ///read and modify the coefficients like
235 ///or you can also iterate through its elements.
238 ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
241 ///(This code computes the sum of all coefficients).
242 ///- Numbers (<tt>double</tt>'s)
243 ///and variables (\ref Col "Col"s) directly convert to an
244 ///\ref Expr and the usual linear operations are defined, so
247 ///2*v-3.12*(v-w/2)+2
248 ///v*2.1+(3*v+(v*12+w+6)*3)/2
250 ///are valid \ref Expr "Expr"essions.
251 ///The usual assignment operations are also defined.
254 ///e+=2*v-3.12*(v-w/2)+2;
258 ///- The constant member can be set and read by \ref constComp()
261 ///double c=e.constComp();
264 ///\note \ref clear() not only sets all coefficients to 0 but also
265 ///clears the constant components.
269 class Expr : public std::map<Col,Value>
272 typedef LpSolverBase::Col Key;
273 typedef LpSolverBase::Value Value;
276 typedef std::map<Col,Value> Base;
280 typedef True IsLinExpression;
282 Expr() : Base(), const_comp(0) { }
284 Expr(const Key &v) : const_comp(0) {
285 Base::insert(std::make_pair(v, 1));
288 Expr(const Value &v) : const_comp(v) {}
290 void set(const Key &v,const Value &c) {
291 Base::insert(std::make_pair(v, c));
294 Value &constComp() { return const_comp; }
296 const Value &constComp() const { return const_comp; }
298 ///Removes the components with zero coefficient.
300 for (Base::iterator i=Base::begin(); i!=Base::end();) {
303 if ((*i).second==0) Base::erase(i);
308 void simplify() const {
309 const_cast<Expr*>(this)->simplify();
312 ///Removes the coefficients closer to zero than \c tolerance.
313 void simplify(double &tolerance) {
314 for (Base::iterator i=Base::begin(); i!=Base::end();) {
317 if (std::fabs((*i).second)<tolerance) Base::erase(i);
322 ///Sets all coefficients and the constant component to 0.
329 Expr &operator+=(const Expr &e) {
330 for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
331 (*this)[j->first]+=j->second;
332 const_comp+=e.const_comp;
336 Expr &operator-=(const Expr &e) {
337 for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
338 (*this)[j->first]-=j->second;
339 const_comp-=e.const_comp;
343 Expr &operator*=(const Value &c) {
344 for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
350 Expr &operator/=(const Value &c) {
351 for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
358 void prettyPrint(std::ostream &os) {
359 //std::fmtflags os.flags();
360 //os.setf(std::ios::showpos);
361 Base::iterator j=Base::begin();
363 os<<j->second<<"*x["<<id(j->first)<<"]";
365 for (; j!=Base::end(); ++j){
368 os<<j->second<<"*x["<<id(j->first)<<"]";
370 //Nem valami korrekt, de nem talaltam meg, hogy kell
371 //os.unsetf(std::ios::showpos);
380 ///This data stucture represents a linear constraint in the LP.
381 ///Basically it is a linear expression with a lower or an upper bound
382 ///(or both). These parts of the constraint can be obtained by the member
383 ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
385 ///There are two ways to construct a constraint.
386 ///- You can set the linear expression and the bounds directly
387 /// by the functions above.
388 ///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt>
389 /// are defined between expressions, or even between constraints whenever
390 /// it makes sense. Therefore if \c e and \c f are linear expressions and
391 /// \c s and \c t are numbers, then the followings are valid expressions
392 /// and thus they can be used directly e.g. in \ref addRow() whenever
401 ///\warning The validity of a constraint is checked only at run time, so
402 ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
403 ///\ref LogicError exception.
407 typedef LpSolverBase::Expr Expr;
408 typedef Expr::Key Key;
409 typedef Expr::Value Value;
416 Constr() : _expr(), _lb(NaN), _ub(NaN) {}
418 Constr(Value lb,const Expr &e,Value ub) :
419 _expr(e), _lb(lb), _ub(ub) {}
421 Constr(const Expr &e,Value ub) :
422 _expr(e), _lb(NaN), _ub(ub) {}
424 Constr(Value lb,const Expr &e) :
425 _expr(e), _lb(lb), _ub(NaN) {}
427 Constr(const Expr &e) :
428 _expr(e), _lb(NaN), _ub(NaN) {}
436 ///Reference to the linear expression
437 Expr &expr() { return _expr; }
438 ///Cont reference to the linear expression
439 const Expr &expr() const { return _expr; }
440 ///Reference to the lower bound.
443 ///- \ref INF "INF": the constraint is lower unbounded.
444 ///- \ref NaN "NaN": lower bound has not been set.
445 ///- finite number: the lower bound
446 Value &lowerBound() { return _lb; }
447 ///The const version of \ref lowerBound()
448 const Value &lowerBound() const { return _lb; }
449 ///Reference to the upper bound.
452 ///- \ref INF "INF": the constraint is upper unbounded.
453 ///- \ref NaN "NaN": upper bound has not been set.
454 ///- finite number: the upper bound
455 Value &upperBound() { return _ub; }
456 ///The const version of \ref upperBound()
457 const Value &upperBound() const { return _ub; }
458 ///Is the constraint lower bounded?
459 bool lowerBounded() const {
463 ///Is the constraint upper bounded?
464 bool upperBounded() const {
469 void prettyPrint(std::ostream &os) {
470 if (_lb==-LpSolverBase::INF||isNaN(_lb))
474 _expr.prettyPrint(os);
475 if (_ub==LpSolverBase::INF)
484 ///Linear expression of rows
486 ///This data structure represents a column of the matrix,
487 ///thas is it strores a linear expression of the dual variables
488 ///(\ref Row "Row"s).
490 ///There are several ways to access and modify the contents of this
492 ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
493 ///if \c e is an DualExpr and \c v
494 ///and \c w are of type \ref Row, then you can
495 ///read and modify the coefficients like
502 ///or you can also iterate through its elements.
505 ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
508 ///(This code computes the sum of all coefficients).
509 ///- Numbers (<tt>double</tt>'s)
510 ///and variables (\ref Row "Row"s) directly convert to an
511 ///\ref DualExpr and the usual linear operations are defined, so
515 ///v*2.1+(3*v+(v*12+w)*3)/2
517 ///are valid \ref DualExpr "DualExpr"essions.
518 ///The usual assignment operations are also defined.
521 ///e+=2*v-3.12*(v-w/2);
528 class DualExpr : public std::map<Row,Value>
531 typedef LpSolverBase::Row Key;
532 typedef LpSolverBase::Value Value;
535 typedef std::map<Row,Value> Base;
538 typedef True IsLinExpression;
540 DualExpr() : Base() { }
542 DualExpr(const Key &v) {
543 Base::insert(std::make_pair(v, 1));
546 void set(const Key &v,const Value &c) {
547 Base::insert(std::make_pair(v, c));
550 ///Removes the components with zero coefficient.
552 for (Base::iterator i=Base::begin(); i!=Base::end();) {
555 if ((*i).second==0) Base::erase(i);
560 void simplify() const {
561 const_cast<DualExpr*>(this)->simplify();
564 ///Removes the coefficients closer to zero than \c tolerance.
565 void simplify(double &tolerance) {
566 for (Base::iterator i=Base::begin(); i!=Base::end();) {
569 if (std::fabs((*i).second)<tolerance) Base::erase(i);
574 ///Sets all coefficients to 0.
580 DualExpr &operator+=(const DualExpr &e) {
581 for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
582 (*this)[j->first]+=j->second;
586 DualExpr &operator-=(const DualExpr &e) {
587 for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
588 (*this)[j->first]-=j->second;
592 DualExpr &operator*=(const Value &c) {
593 for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
598 DualExpr &operator/=(const Value &c) {
599 for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
608 template <typename _Expr>
609 class MappedOutputIterator {
612 typedef std::insert_iterator<_Expr> Base;
614 typedef std::output_iterator_tag iterator_category;
615 typedef void difference_type;
616 typedef void value_type;
617 typedef void reference;
618 typedef void pointer;
620 MappedOutputIterator(const Base& _base, const LpSolverBase& _lp)
621 : base(_base), lp(_lp) {}
623 MappedOutputIterator& operator*() {
627 MappedOutputIterator& operator=(const std::pair<int, Value>& value) {
628 *base = std::make_pair(lp._item(value.first, typename _Expr::Key()),
633 MappedOutputIterator& operator++() {
638 MappedOutputIterator operator++(int) {
639 MappedOutputIterator tmp(*this);
644 bool operator==(const MappedOutputIterator& it) const {
645 return base == it.base;
648 bool operator!=(const MappedOutputIterator& it) const {
649 return base != it.base;
654 const LpSolverBase& lp;
657 template <typename Expr>
658 class MappedInputIterator {
661 typedef typename Expr::const_iterator Base;
663 typedef typename Base::iterator_category iterator_category;
664 typedef typename Base::difference_type difference_type;
665 typedef const std::pair<int, Value> value_type;
666 typedef value_type reference;
669 pointer(value_type& _value) : value(_value) {}
670 value_type* operator->() { return &value; }
675 MappedInputIterator(const Base& _base, const LpSolverBase& _lp)
676 : base(_base), lp(_lp) {}
678 reference operator*() {
679 return std::make_pair(lp._lpId(base->first), base->second);
682 pointer operator->() {
683 return pointer(operator*());
686 MappedInputIterator& operator++() {
691 MappedInputIterator operator++(int) {
692 MappedInputIterator tmp(*this);
697 bool operator==(const MappedInputIterator& it) const {
698 return base == it.base;
701 bool operator!=(const MappedInputIterator& it) const {
702 return base != it.base;
707 const LpSolverBase& lp;
712 /// STL compatible iterator for lp col
713 typedef MappedInputIterator<Expr> ConstRowIterator;
714 /// STL compatible iterator for lp row
715 typedef MappedInputIterator<DualExpr> ConstColIterator;
717 /// STL compatible iterator for lp col
718 typedef MappedOutputIterator<Expr> RowIterator;
719 /// STL compatible iterator for lp row
720 typedef MappedOutputIterator<DualExpr> ColIterator;
722 //Abstract virtual functions
723 virtual LpSolverBase &_newLp() = 0;
724 virtual LpSolverBase &_copyLp(){
725 ///\todo This should be implemented here, too, when we have
726 ///problem retrieving routines. It can be overriden.
729 LpSolverBase & newlp(_newLp());
731 //return *(LpSolverBase*)0;
734 virtual int _addCol() = 0;
735 virtual int _addRow() = 0;
737 virtual void _eraseCol(int col) = 0;
738 virtual void _eraseRow(int row) = 0;
740 virtual void _getColName(int col, std::string & name) const = 0;
741 virtual void _setColName(int col, const std::string & name) = 0;
742 virtual int _colByName(const std::string& name) const = 0;
744 virtual void _setRowCoeffs(int i, ConstRowIterator b,
745 ConstRowIterator e) = 0;
746 virtual void _getRowCoeffs(int i, RowIterator b) const = 0;
747 virtual void _setColCoeffs(int i, ConstColIterator b,
748 ConstColIterator e) = 0;
749 virtual void _getColCoeffs(int i, ColIterator b) const = 0;
750 virtual void _setCoeff(int row, int col, Value value) = 0;
751 virtual Value _getCoeff(int row, int col) const = 0;
752 virtual void _setColLowerBound(int i, Value value) = 0;
753 virtual Value _getColLowerBound(int i) const = 0;
754 virtual void _setColUpperBound(int i, Value value) = 0;
755 virtual Value _getColUpperBound(int i) const = 0;
756 virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
757 virtual void _getRowBounds(int i, Value &lower, Value &upper) const = 0;
759 virtual void _setObjCoeff(int i, Value obj_coef) = 0;
760 virtual Value _getObjCoeff(int i) const = 0;
761 virtual void _clearObj()=0;
763 virtual SolveExitStatus _solve() = 0;
764 virtual Value _getPrimal(int i) const = 0;
765 virtual Value _getDual(int i) const = 0;
766 virtual Value _getPrimalValue() const = 0;
767 virtual bool _isBasicCol(int i) const = 0;
768 virtual SolutionStatus _getPrimalStatus() const = 0;
769 virtual SolutionStatus _getDualStatus() const = 0;
770 virtual ProblemTypes _getProblemType() const = 0;
772 virtual void _setMax() = 0;
773 virtual void _setMin() = 0;
776 virtual bool _isMax() const = 0;
778 //Own protected stuff
780 //Constant component of the objective function
781 Value obj_const_comp;
786 LpSolverBase() : obj_const_comp(0) {}
789 virtual ~LpSolverBase() {}
791 ///Creates a new LP problem
792 LpSolverBase &newLp() {return _newLp();}
793 ///Makes a copy of the LP problem
794 LpSolverBase ©Lp() {return _copyLp();}
796 ///\name Build up and modify the LP
800 ///Add a new empty column (i.e a new variable) to the LP
801 Col addCol() { Col c; _addCol(); c.id = cols.addId(); return c;}
803 ///\brief Adds several new columns
804 ///(i.e a variables) at once
806 ///This magic function takes a container as its argument
807 ///and fills its elements
808 ///with new columns (i.e. variables)
810 ///- a standard STL compatible iterable container with
811 ///\ref Col as its \c values_type
814 ///std::vector<LpSolverBase::Col>
815 ///std::list<LpSolverBase::Col>
817 ///- a standard STL compatible iterable container with
818 ///\ref Col as its \c mapped_type
821 ///std::map<AnyType,LpSolverBase::Col>
823 ///- an iterable lemon \ref concepts::WriteMap "write map" like
825 ///ListGraph::NodeMap<LpSolverBase::Col>
826 ///ListGraph::EdgeMap<LpSolverBase::Col>
828 ///\return The number of the created column.
831 int addColSet(T &t) { return 0;}
834 typename enable_if<typename T::value_type::LpSolverCol,int>::type
835 addColSet(T &t,dummy<0> = 0) {
837 for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
841 typename enable_if<typename T::value_type::second_type::LpSolverCol,
843 addColSet(T &t,dummy<1> = 1) {
845 for(typename T::iterator i=t.begin();i!=t.end();++i) {
852 typename enable_if<typename T::MapIt::Value::LpSolverCol,
854 addColSet(T &t,dummy<2> = 2) {
856 for(typename T::MapIt i(t); i!=INVALID; ++i)
865 ///Set a column (i.e a dual constraint) of the LP
867 ///\param c is the column to be modified
868 ///\param e is a dual linear expression (see \ref DualExpr)
870 void col(Col c,const DualExpr &e) {
872 _setColCoeffs(_lpId(c), ConstColIterator(e.begin(), *this),
873 ConstColIterator(e.end(), *this));
876 ///Get a column (i.e a dual constraint) of the LP
878 ///\param r is the column to get
879 ///\return the dual expression associated to the column
880 DualExpr col(Col c) const {
882 _getColCoeffs(_lpId(c), ColIterator(std::inserter(e, e.end()), *this));
886 ///Add a new column to the LP
888 ///\param e is a dual linear expression (see \ref DualExpr)
889 ///\param obj is the corresponding component of the objective
890 ///function. It is 0 by default.
891 ///\return The created column.
892 Col addCol(const DualExpr &e, Value o = 0) {
899 ///Add a new empty row (i.e a new constraint) to the LP
901 ///This function adds a new empty row (i.e a new constraint) to the LP.
902 ///\return The created row
903 Row addRow() { Row r; _addRow(); r.id = rows.addId(); return r;}
905 ///\brief Add several new rows
906 ///(i.e a constraints) at once
908 ///This magic function takes a container as its argument
909 ///and fills its elements
910 ///with new row (i.e. variables)
912 ///- a standard STL compatible iterable container with
913 ///\ref Row as its \c values_type
916 ///std::vector<LpSolverBase::Row>
917 ///std::list<LpSolverBase::Row>
919 ///- a standard STL compatible iterable container with
920 ///\ref Row as its \c mapped_type
923 ///std::map<AnyType,LpSolverBase::Row>
925 ///- an iterable lemon \ref concepts::WriteMap "write map" like
927 ///ListGraph::NodeMap<LpSolverBase::Row>
928 ///ListGraph::EdgeMap<LpSolverBase::Row>
930 ///\return The number of rows created.
933 int addRowSet(T &t) { return 0;}
936 typename enable_if<typename T::value_type::LpSolverRow,int>::type
937 addRowSet(T &t,dummy<0> = 0) {
939 for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
943 typename enable_if<typename T::value_type::second_type::LpSolverRow,
945 addRowSet(T &t,dummy<1> = 1) {
947 for(typename T::iterator i=t.begin();i!=t.end();++i) {
954 typename enable_if<typename T::MapIt::Value::LpSolverRow,
956 addRowSet(T &t,dummy<2> = 2) {
958 for(typename T::MapIt i(t); i!=INVALID; ++i)
967 ///Set a row (i.e a constraint) of the LP
969 ///\param r is the row to be modified
970 ///\param l is lower bound (-\ref INF means no bound)
971 ///\param e is a linear expression (see \ref Expr)
972 ///\param u is the upper bound (\ref INF means no bound)
973 ///\bug This is a temporary function. The interface will change to
975 ///\todo Option to control whether a constraint with a single variable is
977 void row(Row r, Value l, const Expr &e, Value u) {
979 _setRowCoeffs(_lpId(r), ConstRowIterator(e.begin(), *this),
980 ConstRowIterator(e.end(), *this));
981 _setRowBounds(_lpId(r),l-e.constComp(),u-e.constComp());
984 ///Set a row (i.e a constraint) of the LP
986 ///\param r is the row to be modified
987 ///\param c is a linear expression (see \ref Constr)
988 void row(Row r, const Constr &c) {
989 row(r, c.lowerBounded()?c.lowerBound():-INF,
990 c.expr(), c.upperBounded()?c.upperBound():INF);
994 ///Get a row (i.e a constraint) of the LP
996 ///\param r is the row to get
997 ///\return the expression associated to the row
998 Expr row(Row r) const {
1000 _getRowCoeffs(_lpId(r), RowIterator(std::inserter(e, e.end()), *this));
1004 ///Add a new row (i.e a new constraint) to the LP
1006 ///\param l is the lower bound (-\ref INF means no bound)
1007 ///\param e is a linear expression (see \ref Expr)
1008 ///\param u is the upper bound (\ref INF means no bound)
1009 ///\return The created row.
1010 ///\bug This is a temporary function. The interface will change to
1012 Row addRow(Value l,const Expr &e, Value u) {
1018 ///Add a new row (i.e a new constraint) to the LP
1020 ///\param c is a linear expression (see \ref Constr)
1021 ///\return The created row.
1022 Row addRow(const Constr &c) {
1027 ///Erase a coloumn (i.e a variable) from the LP
1029 ///\param c is the coloumn to be deleted
1030 ///\todo Please check this
1031 void eraseCol(Col c) {
1032 _eraseCol(_lpId(c));
1035 ///Erase a row (i.e a constraint) from the LP
1037 ///\param r is the row to be deleted
1038 ///\todo Please check this
1039 void eraseRow(Row r) {
1040 _eraseRow(_lpId(r));
1044 /// Get the name of a column
1046 ///\param c is the coresponding coloumn
1047 ///\return The name of the colunm
1048 std::string colName(Col c) const {
1050 _getColName(_lpId(c), name);
1054 /// Set the name of a column
1056 ///\param c is the coresponding coloumn
1057 ///\param name The name to be given
1058 void colName(Col c, const std::string& name) {
1059 _setColName(_lpId(c), name);
1062 /// Get the column by its name
1064 ///\param name The name of the column
1065 ///\return the proper column or \c INVALID
1066 Col colByName(const std::string& name) const {
1067 int k = _colByName(name);
1068 return k != -1 ? Col(cols.fixId(k)) : Col(INVALID);
1071 /// Set an element of the coefficient matrix of the LP
1073 ///\param r is the row of the element to be modified
1074 ///\param c is the coloumn of the element to be modified
1075 ///\param val is the new value of the coefficient
1077 void coeff(Row r, Col c, Value val) {
1078 _setCoeff(_lpId(r),_lpId(c), val);
1081 /// Get an element of the coefficient matrix of the LP
1083 ///\param r is the row of the element in question
1084 ///\param c is the coloumn of the element in question
1085 ///\return the corresponding coefficient
1087 Value coeff(Row r, Col c) const {
1088 return _getCoeff(_lpId(r),_lpId(c));
1091 /// Set the lower bound of a column (i.e a variable)
1093 /// The lower bound of a variable (column) has to be given by an
1094 /// extended number of type Value, i.e. a finite number of type
1095 /// Value or -\ref INF.
1096 void colLowerBound(Col c, Value value) {
1097 _setColLowerBound(_lpId(c),value);
1100 /// Get the lower bound of a column (i.e a variable)
1102 /// This function returns the lower bound for column (variable) \t c
1103 /// (this might be -\ref INF as well).
1104 ///\return The lower bound for coloumn \t c
1105 Value colLowerBound(Col c) const {
1106 return _getColLowerBound(_lpId(c));
1109 ///\brief Set the lower bound of several columns
1110 ///(i.e a variables) at once
1112 ///This magic function takes a container as its argument
1113 ///and applies the function on all of its elements.
1114 /// The lower bound of a variable (column) has to be given by an
1115 /// extended number of type Value, i.e. a finite number of type
1116 /// Value or -\ref INF.
1119 void colLowerBound(T &t, Value value) { return 0;}
1122 typename enable_if<typename T::value_type::LpSolverCol,void>::type
1123 colLowerBound(T &t, Value value,dummy<0> = 0) {
1124 for(typename T::iterator i=t.begin();i!=t.end();++i) {
1125 colLowerBound(*i, value);
1129 typename enable_if<typename T::value_type::second_type::LpSolverCol,
1131 colLowerBound(T &t, Value value,dummy<1> = 1) {
1132 for(typename T::iterator i=t.begin();i!=t.end();++i) {
1133 colLowerBound(i->second, value);
1137 typename enable_if<typename T::MapIt::Value::LpSolverCol,
1139 colLowerBound(T &t, Value value,dummy<2> = 2) {
1140 for(typename T::MapIt i(t); i!=INVALID; ++i){
1141 colLowerBound(*i, value);
1146 /// Set the upper bound of a column (i.e a variable)
1148 /// The upper bound of a variable (column) has to be given by an
1149 /// extended number of type Value, i.e. a finite number of type
1150 /// Value or \ref INF.
1151 void colUpperBound(Col c, Value value) {
1152 _setColUpperBound(_lpId(c),value);
1155 /// Get the upper bound of a column (i.e a variable)
1157 /// This function returns the upper bound for column (variable) \t c
1158 /// (this might be \ref INF as well).
1159 ///\return The upper bound for coloumn \t c
1160 Value colUpperBound(Col c) const {
1161 return _getColUpperBound(_lpId(c));
1164 ///\brief Set the upper bound of several columns
1165 ///(i.e a variables) at once
1167 ///This magic function takes a container as its argument
1168 ///and applies the function on all of its elements.
1169 /// The upper bound of a variable (column) has to be given by an
1170 /// extended number of type Value, i.e. a finite number of type
1171 /// Value or \ref INF.
1174 void colUpperBound(T &t, Value value) { return 0;}
1177 typename enable_if<typename T::value_type::LpSolverCol,void>::type
1178 colUpperBound(T &t, Value value,dummy<0> = 0) {
1179 for(typename T::iterator i=t.begin();i!=t.end();++i) {
1180 colUpperBound(*i, value);
1184 typename enable_if<typename T::value_type::second_type::LpSolverCol,
1186 colUpperBound(T &t, Value value,dummy<1> = 1) {
1187 for(typename T::iterator i=t.begin();i!=t.end();++i) {
1188 colUpperBound(i->second, value);
1192 typename enable_if<typename T::MapIt::Value::LpSolverCol,
1194 colUpperBound(T &t, Value value,dummy<2> = 2) {
1195 for(typename T::MapIt i(t); i!=INVALID; ++i){
1196 colUpperBound(*i, value);
1201 /// Set the lower and the upper bounds of a column (i.e a variable)
1203 /// The lower and the upper bounds of
1204 /// a variable (column) have to be given by an
1205 /// extended number of type Value, i.e. a finite number of type
1206 /// Value, -\ref INF or \ref INF.
1207 void colBounds(Col c, Value lower, Value upper) {
1208 _setColLowerBound(_lpId(c),lower);
1209 _setColUpperBound(_lpId(c),upper);
1212 ///\brief Set the lower and the upper bound of several columns
1213 ///(i.e a variables) at once
1215 ///This magic function takes a container as its argument
1216 ///and applies the function on all of its elements.
1217 /// The lower and the upper bounds of
1218 /// a variable (column) have to be given by an
1219 /// extended number of type Value, i.e. a finite number of type
1220 /// Value, -\ref INF or \ref INF.
1223 void colBounds(T &t, Value lower, Value upper) { return 0;}
1226 typename enable_if<typename T::value_type::LpSolverCol,void>::type
1227 colBounds(T &t, Value lower, Value upper,dummy<0> = 0) {
1228 for(typename T::iterator i=t.begin();i!=t.end();++i) {
1229 colBounds(*i, lower, upper);
1233 typename enable_if<typename T::value_type::second_type::LpSolverCol,
1235 colBounds(T &t, Value lower, Value upper,dummy<1> = 1) {
1236 for(typename T::iterator i=t.begin();i!=t.end();++i) {
1237 colBounds(i->second, lower, upper);
1241 typename enable_if<typename T::MapIt::Value::LpSolverCol,
1243 colBounds(T &t, Value lower, Value upper,dummy<2> = 2) {
1244 for(typename T::MapIt i(t); i!=INVALID; ++i){
1245 colBounds(*i, lower, upper);
1251 /// Set the lower and the upper bounds of a row (i.e a constraint)
1253 /// The lower and the upper bound of a constraint (row) have to be
1254 /// given by an extended number of type Value, i.e. a finite
1255 /// number of type Value, -\ref INF or \ref INF. There is no
1256 /// separate function for the lower and the upper bound because
1257 /// that would have been hard to implement for CPLEX.
1258 void rowBounds(Row c, Value lower, Value upper) {
1259 _setRowBounds(_lpId(c),lower, upper);
1262 /// Get the lower and the upper bounds of a row (i.e a constraint)
1264 /// The lower and the upper bound of
1265 /// a constraint (row) are
1266 /// extended numbers of type Value, i.e. finite numbers of type
1267 /// Value, -\ref INF or \ref INF.
1268 /// \todo There is no separate function for the
1269 /// lower and the upper bound because we had problems with the
1270 /// implementation of the setting functions for CPLEX:
1271 /// check out whether this can be done for these functions.
1272 void getRowBounds(Row c, Value &lower, Value &upper) const {
1273 _getRowBounds(_lpId(c),lower, upper);
1276 ///Set an element of the objective function
1277 void objCoeff(Col c, Value v) {_setObjCoeff(_lpId(c),v); };
1279 ///Get an element of the objective function
1280 Value objCoeff(Col c) const { return _getObjCoeff(_lpId(c)); };
1282 ///Set the objective function
1284 ///\param e is a linear expression of type \ref Expr.
1287 for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
1288 objCoeff((*i).first,(*i).second);
1289 obj_const_comp=e.constComp();
1292 ///Get the objective function
1294 ///\return the objective function as a linear expression of type \ref Expr.
1297 for (ColIt it(*this); it != INVALID; ++it) {
1298 double c = objCoeff(it);
1300 e.insert(std::make_pair(it, c));
1308 void max() { _setMax(); }
1310 void min() { _setMin(); }
1312 ///Query function: is this a maximization problem?
1313 bool isMax() const {return _isMax(); }
1315 ///Query function: is this a minimization problem?
1316 bool isMin() const {return !isMax(); }
1321 ///\name Solve the LP
1325 ///\e Solve the LP problem at hand
1327 ///\return The result of the optimization procedure. Possible
1328 ///values and their meanings can be found in the documentation of
1329 ///\ref SolveExitStatus.
1331 ///\todo Which method is used to solve the problem
1332 SolveExitStatus solve() { return _solve(); }
1336 ///\name Obtain the solution
1340 /// The status of the primal problem (the original LP problem)
1341 SolutionStatus primalStatus() const {
1342 return _getPrimalStatus();
1345 /// The status of the dual (of the original LP) problem
1346 SolutionStatus dualStatus() const {
1347 return _getDualStatus();
1350 ///The type of the original LP problem
1351 ProblemTypes problemType() const {
1352 return _getProblemType();
1356 Value primal(Col c) const { return _getPrimal(_lpId(c)); }
1359 Value dual(Row r) const { return _getDual(_lpId(r)); }
1362 bool isBasicCol(Col c) const { return _isBasicCol(_lpId(c)); }
1367 ///- \ref INF or -\ref INF means either infeasibility or unboundedness
1368 /// of the primal problem, depending on whether we minimize or maximize.
1369 ///- \ref NaN if no primal solution is found.
1370 ///- The (finite) objective value if an optimal solution is found.
1371 Value primalValue() const { return _getPrimalValue()+obj_const_comp;}
1377 /// \ingroup lp_group
1379 /// \brief Common base class for MIP solvers
1380 /// \todo Much more docs
1381 class MipSolverBase : virtual public LpSolverBase{
1384 ///Possible variable (coloumn) types (e.g. real, integer, binary etc.)
1386 ///Continuous variable
1390 ///Unfortunately, cplex 7.5 somewhere writes something like
1391 ///#define INTEGER 'I'
1393 ///\todo No support for other types yet.
1396 ///Sets the type of the given coloumn to the given type
1398 ///Sets the type of the given coloumn to the given type.
1399 void colType(Col c, ColTypes col_type) {
1400 _colType(_lpId(c),col_type);
1403 ///Gives back the type of the column.
1405 ///Gives back the type of the column.
1406 ColTypes colType(Col c) const {
1407 return _colType(_lpId(c));
1410 ///Sets the type of the given Col to integer or remove that property.
1412 ///Sets the type of the given Col to integer or remove that property.
1413 void integer(Col c, bool enable) {
1420 ///Gives back whether the type of the column is integer or not.
1422 ///Gives back the type of the column.
1423 ///\return true if the column has integer type and false if not.
1424 bool integer(Col c) const {
1425 return (colType(c)==INT);
1428 /// The status of the MIP problem
1429 SolutionStatus mipStatus() const {
1430 return _getMipStatus();
1435 virtual ColTypes _colType(int col) const = 0;
1436 virtual void _colType(int col, ColTypes col_type) = 0;
1437 virtual SolutionStatus _getMipStatus() const = 0;
1441 ///\relates LpSolverBase::Expr
1443 inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
1444 const LpSolverBase::Expr &b)
1446 LpSolverBase::Expr tmp(a);
1452 ///\relates LpSolverBase::Expr
1454 inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
1455 const LpSolverBase::Expr &b)
1457 LpSolverBase::Expr tmp(a);
1463 ///\relates LpSolverBase::Expr
1465 inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
1466 const LpSolverBase::Value &b)
1468 LpSolverBase::Expr tmp(a);
1475 ///\relates LpSolverBase::Expr
1477 inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
1478 const LpSolverBase::Expr &b)
1480 LpSolverBase::Expr tmp(b);
1486 ///\relates LpSolverBase::Expr
1488 inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
1489 const LpSolverBase::Value &b)
1491 LpSolverBase::Expr tmp(a);
1498 ///\relates LpSolverBase::Constr
1500 inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
1501 const LpSolverBase::Expr &f)
1503 return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
1508 ///\relates LpSolverBase::Constr
1510 inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
1511 const LpSolverBase::Expr &f)
1513 return LpSolverBase::Constr(e,f);
1518 ///\relates LpSolverBase::Constr
1520 inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
1521 const LpSolverBase::Value &f)
1523 return LpSolverBase::Constr(e,f);
1528 ///\relates LpSolverBase::Constr
1530 inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
1531 const LpSolverBase::Expr &f)
1533 return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
1539 ///\relates LpSolverBase::Constr
1541 inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
1542 const LpSolverBase::Expr &f)
1544 return LpSolverBase::Constr(f,e);
1550 ///\relates LpSolverBase::Constr
1552 inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
1553 const LpSolverBase::Value &f)
1555 return LpSolverBase::Constr(f,e);
1560 ///\relates LpSolverBase::Constr
1562 inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
1563 const LpSolverBase::Value &f)
1565 return LpSolverBase::Constr(f,e,f);
1570 ///\relates LpSolverBase::Constr
1572 inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
1573 const LpSolverBase::Expr &f)
1575 return LpSolverBase::Constr(0,e-f,0);
1580 ///\relates LpSolverBase::Constr
1582 inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
1583 const LpSolverBase::Constr&c)
1585 LpSolverBase::Constr tmp(c);
1586 ///\todo Create an own exception type.
1587 if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError();
1588 else tmp.lowerBound()=n;
1593 ///\relates LpSolverBase::Constr
1595 inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
1596 const LpSolverBase::Value &n)
1598 LpSolverBase::Constr tmp(c);
1599 ///\todo Create an own exception type.
1600 if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError();
1601 else tmp.upperBound()=n;
1607 ///\relates LpSolverBase::Constr
1609 inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
1610 const LpSolverBase::Constr&c)
1612 LpSolverBase::Constr tmp(c);
1613 ///\todo Create an own exception type.
1614 if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError();
1615 else tmp.upperBound()=n;
1620 ///\relates LpSolverBase::Constr
1622 inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
1623 const LpSolverBase::Value &n)
1625 LpSolverBase::Constr tmp(c);
1626 ///\todo Create an own exception type.
1627 if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError();
1628 else tmp.lowerBound()=n;
1634 ///\relates LpSolverBase::DualExpr
1636 inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
1637 const LpSolverBase::DualExpr &b)
1639 LpSolverBase::DualExpr tmp(a);
1645 ///\relates LpSolverBase::DualExpr
1647 inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
1648 const LpSolverBase::DualExpr &b)
1650 LpSolverBase::DualExpr tmp(a);
1656 ///\relates LpSolverBase::DualExpr
1658 inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
1659 const LpSolverBase::Value &b)
1661 LpSolverBase::DualExpr tmp(a);
1668 ///\relates LpSolverBase::DualExpr
1670 inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
1671 const LpSolverBase::DualExpr &b)
1673 LpSolverBase::DualExpr tmp(b);
1679 ///\relates LpSolverBase::DualExpr
1681 inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
1682 const LpSolverBase::Value &b)
1684 LpSolverBase::DualExpr tmp(a);
1692 #endif //LEMON_LP_BASE_H