lemon/network_simplex.h
author deba
Tue, 02 Oct 2007 14:15:18 +0000
changeset 2486 0c498f2239a8
parent 2457 8c791ee69a45
child 2509 a8081c9cd96a
permissions -rw-r--r--
Doc bug fix
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_NETWORK_SIMPLEX_H
    20 #define LEMON_NETWORK_SIMPLEX_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief The network simplex algorithm for finding a minimum cost
    26 /// flow.
    27 
    28 #include <limits>
    29 #include <lemon/smart_graph.h>
    30 #include <lemon/graph_utils.h>
    31 
    32 /// \brief The pivot rule used in the algorithm.
    33 //#define FIRST_ELIGIBLE_PIVOT
    34 //#define BEST_ELIGIBLE_PIVOT
    35 #define EDGE_BLOCK_PIVOT
    36 //#define CANDIDATE_LIST_PIVOT
    37 //#define SORTED_LIST_PIVOT
    38 
    39 //#define _DEBUG_ITER_
    40 
    41 
    42 /// \brief State constant for edges at their lower bounds.
    43 #define LOWER	1
    44 /// \brief State constant for edges in the spanning tree.
    45 #define TREE	0
    46 /// \brief State constant for edges at their upper bounds.
    47 #define UPPER	-1
    48 
    49 #ifdef EDGE_BLOCK_PIVOT
    50   #include <cmath>
    51   /// \brief Lower bound for the size of blocks.
    52   #define MIN_BLOCK_SIZE	10
    53 #endif
    54 
    55 #ifdef CANDIDATE_LIST_PIVOT
    56   #include <vector>
    57   #define LIST_LENGTH_DIV           50
    58   #define MINOR_LIMIT_DIV           200
    59 #endif
    60 
    61 #ifdef SORTED_LIST_PIVOT
    62   #include <vector>
    63   #include <algorithm>
    64   #define LIST_LENGTH_DIV       100
    65   #define LOWER_DIV		4
    66 #endif
    67 
    68 namespace lemon {
    69 
    70   /// \addtogroup min_cost_flow
    71   /// @{
    72 
    73   /// \brief Implementation of the network simplex algorithm for
    74   /// finding a minimum cost flow.
    75   ///
    76   /// \ref lemon::NetworkSimplex "NetworkSimplex" implements the
    77   /// network simplex algorithm for finding a minimum cost flow.
    78   ///
    79   /// \param Graph The directed graph type the algorithm runs on.
    80   /// \param LowerMap The type of the lower bound map.
    81   /// \param CapacityMap The type of the capacity (upper bound) map.
    82   /// \param CostMap The type of the cost (length) map.
    83   /// \param SupplyMap The type of the supply map.
    84   ///
    85   /// \warning
    86   /// - Edge capacities and costs should be nonnegative integers.
    87   ///	However \c CostMap::Value should be signed type.
    88   /// - Supply values should be integers.
    89   /// - \c LowerMap::Value must be convertible to
    90   ///	\c CapacityMap::Value and \c CapacityMap::Value must be
    91   ///	convertible to \c SupplyMap::Value.
    92   ///
    93   /// \author Peter Kovacs
    94 
    95 template < typename Graph,
    96 	   typename LowerMap = typename Graph::template EdgeMap<int>,
    97 	   typename CapacityMap = LowerMap,
    98 	   typename CostMap = typename Graph::template EdgeMap<int>,
    99 	   typename SupplyMap = typename Graph::template NodeMap
   100 				<typename CapacityMap::Value> >
   101   class NetworkSimplex
   102   {
   103     typedef typename LowerMap::Value Lower;
   104     typedef typename CapacityMap::Value Capacity;
   105     typedef typename CostMap::Value Cost;
   106     typedef typename SupplyMap::Value Supply;
   107 
   108     typedef SmartGraph SGraph;
   109     typedef typename SGraph::Node Node;
   110     typedef typename SGraph::NodeIt NodeIt;
   111     typedef typename SGraph::Edge Edge;
   112     typedef typename SGraph::EdgeIt EdgeIt;
   113     typedef typename SGraph::InEdgeIt InEdgeIt;
   114     typedef typename SGraph::OutEdgeIt OutEdgeIt;
   115 
   116     typedef typename SGraph::template EdgeMap<Lower> SLowerMap;
   117     typedef typename SGraph::template EdgeMap<Capacity> SCapacityMap;
   118     typedef typename SGraph::template EdgeMap<Cost> SCostMap;
   119     typedef typename SGraph::template NodeMap<Supply> SSupplyMap;
   120     typedef typename SGraph::template NodeMap<Cost> SPotentialMap;
   121 
   122     typedef typename SGraph::template NodeMap<int> IntNodeMap;
   123     typedef typename SGraph::template NodeMap<bool> BoolNodeMap;
   124     typedef typename SGraph::template NodeMap<Node> NodeNodeMap;
   125     typedef typename SGraph::template NodeMap<Edge> EdgeNodeMap;
   126     typedef typename SGraph::template EdgeMap<int> IntEdgeMap;
   127 
   128     typedef typename Graph::template NodeMap<Node> NodeRefMap;
   129     typedef typename Graph::template EdgeMap<Edge> EdgeRefMap;
   130 
   131   public:
   132 
   133     /// \brief The type of the flow map.
   134     typedef typename Graph::template EdgeMap<Capacity> FlowMap;
   135     /// \brief The type of the potential map.
   136     typedef typename Graph::template NodeMap<Cost> PotentialMap;
   137 
   138   protected:
   139 
   140     /// \brief Map adaptor class for handling reduced edge costs.
   141     class ReducedCostMap : public MapBase<Edge, Cost>
   142     {
   143     private:
   144 
   145       const SGraph &gr;
   146       const SCostMap &cost_map;
   147       const SPotentialMap &pot_map;
   148 
   149     public:
   150 
   151       typedef typename MapBase<Edge, Cost>::Value Value;
   152       typedef typename MapBase<Edge, Cost>::Key Key;
   153 
   154       ReducedCostMap( const SGraph &_gr,
   155 		      const SCostMap &_cm,
   156 		      const SPotentialMap &_pm ) :
   157 	gr(_gr), cost_map(_cm), pot_map(_pm) {}
   158 
   159       Value operator[](const Key &e) const {
   160 	return cost_map[e] - pot_map[gr.source(e)] + pot_map[gr.target(e)];
   161       }
   162 
   163     }; //class ReducedCostMap
   164 
   165   protected:
   166 
   167     /// \brief The directed graph the algorithm runs on.
   168     SGraph graph;
   169     /// \brief The original graph.
   170     const Graph &graph_ref;
   171     /// \brief The original lower bound map.
   172     const LowerMap *lower;
   173     /// \brief The capacity map.
   174     SCapacityMap capacity;
   175     /// \brief The cost map.
   176     SCostMap cost;
   177     /// \brief The supply map.
   178     SSupplyMap supply;
   179     /// \brief The reduced cost map.
   180     ReducedCostMap red_cost;
   181     /// \brief The sum of supply values equals zero.
   182     bool valid_supply;
   183 
   184     /// \brief The edge map of the current flow.
   185     SCapacityMap flow;
   186     /// \brief The edge map of the found flow on the original graph.
   187     FlowMap flow_result;
   188     /// \brief The potential node map.
   189     SPotentialMap potential;
   190     /// \brief The potential node map on the original graph.
   191     PotentialMap potential_result;
   192 
   193     /// \brief Node reference for the original graph.
   194     NodeRefMap node_ref;
   195     /// \brief Edge reference for the original graph.
   196     EdgeRefMap edge_ref;
   197 
   198     /// \brief The depth node map of the spanning tree structure.
   199     IntNodeMap depth;
   200     /// \brief The parent node map of the spanning tree structure.
   201     NodeNodeMap parent;
   202     /// \brief The pred_edge node map of the spanning tree structure.
   203     EdgeNodeMap pred_edge;
   204     /// \brief The thread node map of the spanning tree structure.
   205     NodeNodeMap thread;
   206     /// \brief The forward node map of the spanning tree structure.
   207     BoolNodeMap forward;
   208     /// \brief The state edge map.
   209     IntEdgeMap state;
   210 
   211 
   212 #ifdef EDGE_BLOCK_PIVOT
   213     /// \brief The size of blocks for the "Edge Block" pivot rule.
   214     int block_size;
   215 #endif
   216 #ifdef CANDIDATE_LIST_PIVOT
   217     /// \brief The list of candidate edges for the "Candidate List"
   218     /// pivot rule.
   219     std::vector<Edge> candidates;
   220     /// \brief The maximum length of the edge list for the
   221     /// "Candidate List" pivot rule.
   222     int list_length;
   223     /// \brief The maximum number of minor iterations between two major
   224     /// itarations.
   225     int minor_limit;
   226     /// \brief The number of minor iterations.
   227     int minor_count;
   228 #endif
   229 #ifdef SORTED_LIST_PIVOT
   230     /// \brief The list of candidate edges for the "Sorted List"
   231     /// pivot rule.
   232     std::vector<Edge> candidates;
   233     /// \brief The maximum length of the edge list for the
   234     /// "Sorted List" pivot rule.
   235     int list_length;
   236     int list_index;
   237 #endif
   238 
   239     // Root node of the starting spanning tree.
   240     Node root;
   241     // The entering edge of the current pivot iteration.
   242     Edge in_edge;
   243     // Temporary nodes used in the current pivot iteration.
   244     Node join, u_in, v_in, u_out, v_out;
   245     Node right, first, second, last;
   246     Node stem, par_stem, new_stem;
   247     // The maximum augment amount along the cycle in the current pivot
   248     // iteration.
   249     Capacity delta;
   250 
   251   public :
   252 
   253     /// \brief General constructor of the class (with lower bounds).
   254     ///
   255     /// General constructor of the class (with lower bounds).
   256     ///
   257     /// \param _graph The directed graph the algorithm runs on.
   258     /// \param _lower The lower bounds of the edges.
   259     /// \param _capacity The capacities (upper bounds) of the edges.
   260     /// \param _cost The cost (length) values of the edges.
   261     /// \param _supply The supply values of the nodes (signed).
   262     NetworkSimplex( const Graph &_graph,
   263 		    const LowerMap &_lower,
   264 		    const CapacityMap &_capacity,
   265 		    const CostMap &_cost,
   266 		    const SupplyMap &_supply ) :
   267       graph_ref(_graph), lower(&_lower), capacity(graph), cost(graph),
   268       supply(graph), flow(graph), flow_result(_graph), potential(graph),
   269       potential_result(_graph), depth(graph), parent(graph),
   270       pred_edge(graph), thread(graph), forward(graph), state(graph),
   271       node_ref(graph_ref), edge_ref(graph_ref),
   272       red_cost(graph, cost, potential)
   273     {
   274       // Checking the sum of supply values
   275       Supply sum = 0;
   276       for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n)
   277 	sum += _supply[n];
   278       if (!(valid_supply = sum == 0)) return;
   279 
   280       // Copying graph_ref to graph
   281       graph.reserveNode(countNodes(graph_ref) + 1);
   282       graph.reserveEdge(countEdges(graph_ref) + countNodes(graph_ref));
   283       copyGraph(graph, graph_ref)
   284 	.edgeMap(cost, _cost)
   285 	.nodeRef(node_ref)
   286 	.edgeRef(edge_ref)
   287 	.run();
   288 
   289       // Removing nonzero lower bounds
   290       for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e) {
   291 	capacity[edge_ref[e]] = _capacity[e] - _lower[e];
   292       }
   293       for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n) {
   294 	Supply s = _supply[n];
   295 	for (typename Graph::InEdgeIt e(graph_ref, n); e != INVALID; ++e)
   296 	  s += _lower[e];
   297 	for (typename Graph::OutEdgeIt e(graph_ref, n); e != INVALID; ++e)
   298 	  s -= _lower[e];
   299 	supply[node_ref[n]] = s;
   300       }
   301     }
   302 
   303     /// \brief General constructor of the class (without lower bounds).
   304     ///
   305     /// General constructor of the class (without lower bounds).
   306     ///
   307     /// \param _graph The directed graph the algorithm runs on.
   308     /// \param _capacity The capacities (upper bounds) of the edges.
   309     /// \param _cost The cost (length) values of the edges.
   310     /// \param _supply The supply values of the nodes (signed).
   311     NetworkSimplex( const Graph &_graph,
   312 		    const CapacityMap &_capacity,
   313 		    const CostMap &_cost,
   314 		    const SupplyMap &_supply ) :
   315       graph_ref(_graph), lower(NULL), capacity(graph), cost(graph),
   316       supply(graph), flow(graph), flow_result(_graph), potential(graph),
   317       potential_result(_graph), depth(graph), parent(graph),
   318       pred_edge(graph), thread(graph), forward(graph), state(graph),
   319       node_ref(graph_ref), edge_ref(graph_ref),
   320       red_cost(graph, cost, potential)
   321     {
   322       // Checking the sum of supply values
   323       Supply sum = 0;
   324       for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n)
   325 	sum += _supply[n];
   326       if (!(valid_supply = sum == 0)) return;
   327 
   328       // Copying graph_ref to graph
   329       copyGraph(graph, graph_ref)
   330 	.edgeMap(capacity, _capacity)
   331 	.edgeMap(cost, _cost)
   332 	.nodeMap(supply, _supply)
   333 	.nodeRef(node_ref)
   334 	.edgeRef(edge_ref)
   335 	.run();
   336     }
   337 
   338     /// \brief Simple constructor of the class (with lower bounds).
   339     ///
   340     /// Simple constructor of the class (with lower bounds).
   341     ///
   342     /// \param _graph The directed graph the algorithm runs on.
   343     /// \param _lower The lower bounds of the edges.
   344     /// \param _capacity The capacities (upper bounds) of the edges.
   345     /// \param _cost The cost (length) values of the edges.
   346     /// \param _s The source node.
   347     /// \param _t The target node.
   348     /// \param _flow_value The required amount of flow from node \c _s
   349     /// to node \c _t (i.e. the supply of \c _s and the demand of
   350     /// \c _t).
   351     NetworkSimplex( const Graph &_graph,
   352 		    const LowerMap &_lower,
   353 		    const CapacityMap &_capacity,
   354 		    const CostMap &_cost,
   355 		    typename Graph::Node _s,
   356 		    typename Graph::Node _t,
   357 		    typename SupplyMap::Value _flow_value ) :
   358       graph_ref(_graph), lower(&_lower), capacity(graph), cost(graph),
   359       supply(graph), flow(graph), flow_result(_graph), potential(graph),
   360       potential_result(_graph), depth(graph), parent(graph),
   361       pred_edge(graph), thread(graph), forward(graph), state(graph),
   362       node_ref(graph_ref), edge_ref(graph_ref),
   363       red_cost(graph, cost, potential)
   364     {
   365       // Copying graph_ref to graph
   366       copyGraph(graph, graph_ref)
   367 	.edgeMap(cost, _cost)
   368 	.nodeRef(node_ref)
   369 	.edgeRef(edge_ref)
   370 	.run();
   371 
   372       // Removing nonzero lower bounds
   373       for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e) {
   374 	capacity[edge_ref[e]] = _capacity[e] - _lower[e];
   375       }
   376       for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n) {
   377 	Supply s = 0;
   378 	if (n == _s) s =  _flow_value;
   379 	if (n == _t) s = -_flow_value;
   380 	for (typename Graph::InEdgeIt e(graph_ref, n); e != INVALID; ++e)
   381 	  s += _lower[e];
   382 	for (typename Graph::OutEdgeIt e(graph_ref, n); e != INVALID; ++e)
   383 	  s -= _lower[e];
   384 	supply[node_ref[n]] = s;
   385       }
   386       valid_supply = true;
   387     }
   388 
   389     /// \brief Simple constructor of the class (without lower bounds).
   390     ///
   391     /// Simple constructor of the class (without lower bounds).
   392     ///
   393     /// \param _graph The directed graph the algorithm runs on.
   394     /// \param _capacity The capacities (upper bounds) of the edges.
   395     /// \param _cost The cost (length) values of the edges.
   396     /// \param _s The source node.
   397     /// \param _t The target node.
   398     /// \param _flow_value The required amount of flow from node \c _s
   399     /// to node \c _t (i.e. the supply of \c _s and the demand of
   400     /// \c _t).
   401     NetworkSimplex( const Graph &_graph,
   402 		    const CapacityMap &_capacity,
   403 		    const CostMap &_cost,
   404 		    typename Graph::Node _s,
   405 		    typename Graph::Node _t,
   406 		    typename SupplyMap::Value _flow_value ) :
   407       graph_ref(_graph), lower(NULL), capacity(graph), cost(graph),
   408       supply(graph, 0), flow(graph), flow_result(_graph), potential(graph),
   409       potential_result(_graph), depth(graph), parent(graph),
   410       pred_edge(graph), thread(graph), forward(graph), state(graph),
   411       node_ref(graph_ref), edge_ref(graph_ref),
   412       red_cost(graph, cost, potential)
   413     {
   414       // Copying graph_ref to graph
   415       copyGraph(graph, graph_ref)
   416 	.edgeMap(capacity, _capacity)
   417 	.edgeMap(cost, _cost)
   418 	.nodeRef(node_ref)
   419 	.edgeRef(edge_ref)
   420 	.run();
   421       supply[node_ref[_s]] =  _flow_value;
   422       supply[node_ref[_t]] = -_flow_value;
   423       valid_supply = true;
   424     }
   425 
   426     /// \brief Returns a const reference to the flow map.
   427     ///
   428     /// Returns a const reference to the flow map.
   429     ///
   430     /// \pre \ref run() must be called before using this function.
   431     const FlowMap& flowMap() const {
   432       return flow_result;
   433     }
   434 
   435     /// \brief Returns a const reference to the potential map (the dual
   436     /// solution).
   437     ///
   438     /// Returns a const reference to the potential map (the dual
   439     /// solution).
   440     ///
   441     /// \pre \ref run() must be called before using this function.
   442     const PotentialMap& potentialMap() const {
   443       return potential_result;
   444     }
   445 
   446     /// \brief Returns the total cost of the found flow.
   447     ///
   448     /// Returns the total cost of the found flow. The complexity of the
   449     /// function is \f$ O(e) \f$.
   450     ///
   451     /// \pre \ref run() must be called before using this function.
   452     Cost totalCost() const {
   453       Cost c = 0;
   454       for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e)
   455 	c += flow_result[e] * cost[edge_ref[e]];
   456       return c;
   457     }
   458 
   459     /// \brief Runs the algorithm.
   460     ///
   461     /// Runs the algorithm.
   462     ///
   463     /// \return \c true if a feasible flow can be found.
   464     bool run() {
   465       return init() && start();
   466     }
   467 
   468   protected:
   469 
   470     /// \brief Extends the underlaying graph and initializes all the
   471     /// node and edge maps.
   472     bool init() {
   473       if (!valid_supply) return false;
   474 
   475       // Initializing state and flow maps
   476       for (EdgeIt e(graph); e != INVALID; ++e) {
   477 	flow[e] = 0;
   478 	state[e] = LOWER;
   479       }
   480 
   481       // Adding an artificial root node to the graph
   482       root = graph.addNode();
   483       parent[root] = INVALID;
   484       pred_edge[root] = INVALID;
   485       depth[root] = 0;
   486       supply[root] = 0;
   487       potential[root] = 0;
   488 
   489       // Adding artificial edges to the graph and initializing the node
   490       // maps of the spanning tree data structure
   491       Supply sum = 0;
   492       Node last = root;
   493       Edge e;
   494       Cost max_cost = std::numeric_limits<Cost>::max() / 4;
   495       for (NodeIt u(graph); u != INVALID; ++u) {
   496 	if (u == root) continue;
   497 	thread[last] = u;
   498 	last = u;
   499 	parent[u] = root;
   500 	depth[u] = 1;
   501 	sum += supply[u];
   502 	if (supply[u] >= 0) {
   503 	  e = graph.addEdge(u, root);
   504 	  flow[e] = supply[u];
   505 	  forward[u] = true;
   506 	  potential[u] = max_cost;
   507 	} else {
   508 	  e = graph.addEdge(root, u);
   509 	  flow[e] = -supply[u];
   510 	  forward[u] = false;
   511 	  potential[u] = -max_cost;
   512 	}
   513 	cost[e] = max_cost;
   514 	capacity[e] = std::numeric_limits<Capacity>::max();
   515 	state[e] = TREE;
   516 	pred_edge[u] = e;
   517       }
   518       thread[last] = root;
   519 
   520 #ifdef EDGE_BLOCK_PIVOT
   521       // Initializing block_size for the edge block pivot rule
   522       int edge_num = countEdges(graph);
   523       block_size = 2 * int(sqrt(countEdges(graph)));
   524       if (block_size < MIN_BLOCK_SIZE) block_size = MIN_BLOCK_SIZE;
   525 //      block_size = edge_num >= BLOCK_NUM * MIN_BLOCK_SIZE ?
   526 //                   edge_num / BLOCK_NUM : MIN_BLOCK_SIZE;
   527 #endif
   528 #ifdef CANDIDATE_LIST_PIVOT
   529       int edge_num = countEdges(graph);
   530       minor_count = 0;
   531       list_length = edge_num / LIST_LENGTH_DIV;
   532       minor_limit = edge_num / MINOR_LIMIT_DIV;
   533 #endif
   534 #ifdef SORTED_LIST_PIVOT
   535       int edge_num = countEdges(graph);
   536       list_index = 0;
   537       list_length = edge_num / LIST_LENGTH_DIV;
   538 #endif
   539 
   540       return sum == 0;
   541     }
   542 
   543 #ifdef FIRST_ELIGIBLE_PIVOT
   544     /// \brief Finds entering edge according to the "First Eligible"
   545     /// pivot rule.
   546     bool findEnteringEdge(EdgeIt &next_edge) {
   547       for (EdgeIt e = next_edge; e != INVALID; ++e) {
   548 	if (state[e] * red_cost[e] < 0) {
   549 	  in_edge = e;
   550 	  next_edge = ++e;
   551 	  return true;
   552 	}
   553       }
   554       for (EdgeIt e(graph); e != next_edge; ++e) {
   555 	if (state[e] * red_cost[e] < 0) {
   556 	  in_edge = e;
   557 	  next_edge = ++e;
   558 	  return true;
   559 	}
   560       }
   561       return false;
   562     }
   563 #endif
   564 
   565 #ifdef BEST_ELIGIBLE_PIVOT
   566     /// \brief Finds entering edge according to the "Best Eligible"
   567     /// pivot rule.
   568     bool findEnteringEdge() {
   569       Cost min = 0;
   570       for (EdgeIt e(graph); e != INVALID; ++e) {
   571 	if (state[e] * red_cost[e] < min) {
   572 	  min = state[e] * red_cost[e];
   573 	  in_edge = e;
   574 	}
   575       }
   576       return min < 0;
   577     }
   578 #endif
   579 
   580 #ifdef EDGE_BLOCK_PIVOT
   581     /// \brief Finds entering edge according to the "Edge Block"
   582     /// pivot rule.
   583     bool findEnteringEdge(EdgeIt &next_edge) {
   584       // Performing edge block selection
   585       Cost curr, min = 0;
   586       EdgeIt min_edge(graph);
   587       int cnt = 0;
   588       for (EdgeIt e = next_edge; e != INVALID; ++e) {
   589 	if ((curr = state[e] * red_cost[e]) < min) {
   590 	  min = curr;
   591 	  min_edge = e;
   592 	}
   593 	if (++cnt == block_size) {
   594 	  if (min < 0) break;
   595 	  cnt = 0;
   596 	}
   597       }
   598       if (!(min < 0)) {
   599 	for (EdgeIt e(graph); e != next_edge; ++e) {
   600 	  if ((curr = state[e] * red_cost[e]) < min) {
   601 	    min = curr;
   602 	    min_edge = e;
   603 	  }
   604 	  if (++cnt == block_size) {
   605 	    if (min < 0) break;
   606 	    cnt = 0;
   607 	  }
   608 	}
   609       }
   610       in_edge = min_edge;
   611       if ((next_edge = ++min_edge) == INVALID)
   612 	next_edge = EdgeIt(graph);
   613       return min < 0;
   614     }
   615 #endif
   616 
   617 #ifdef CANDIDATE_LIST_PIVOT
   618     /// \brief Finds entering edge according to the "Candidate List"
   619     /// pivot rule.
   620     bool findEnteringEdge() {
   621       typedef typename std::vector<Edge>::iterator ListIt;
   622 
   623       if (minor_count >= minor_limit || candidates.size() == 0) {
   624 	// Major iteration
   625 	candidates.clear();
   626 	for (EdgeIt e(graph); e != INVALID; ++e) {
   627 	  if (state[e] * red_cost[e] < 0) {
   628 	    candidates.push_back(e);
   629 	    if (candidates.size() == list_length) break;
   630 	  }
   631 	}
   632 	if (candidates.size() == 0) return false;
   633       }
   634 
   635       // Minor iteration
   636       ++minor_count;
   637       Cost min = 0;
   638       Edge e;
   639       for (int i = 0; i < candidates.size(); ++i) {
   640         e = candidates[i];
   641 	if (state[e] * red_cost[e] < min) {
   642 	  min = state[e] * red_cost[e];
   643 	  in_edge = e;
   644 	}
   645       }
   646       return true;
   647     }
   648 #endif
   649 
   650 #ifdef SORTED_LIST_PIVOT
   651     /// \brief Functor class to compare edges during sort of the
   652     /// candidate list.
   653     class SortFunc
   654     {
   655     private:
   656       const IntEdgeMap &st;
   657       const ReducedCostMap &rc;
   658     public:
   659       SortFunc(const IntEdgeMap &_st, const ReducedCostMap &_rc) :
   660 	st(_st), rc(_rc) {}
   661       bool operator()(const Edge &e1, const Edge &e2) {
   662 	return st[e1] * rc[e1] < st[e2] * rc[e2];
   663       }
   664     };
   665 
   666     /// \brief Finds entering edge according to the "Sorted List"
   667     /// pivot rule.
   668     bool findEnteringEdge() {
   669       static SortFunc sort_func(state, red_cost);
   670 
   671       // Minor iteration
   672       while (list_index < candidates.size()) {
   673 	in_edge = candidates[list_index++];
   674 	if (state[in_edge] * red_cost[in_edge] < 0) return true;
   675       }
   676 
   677       // Major iteration
   678       candidates.clear();
   679       Cost curr, min = 0;
   680       for (EdgeIt e(graph); e != INVALID; ++e) {
   681 	if ((curr = state[e] * red_cost[e]) < min / LOWER_DIV) {
   682 	  candidates.push_back(e);
   683 	  if (curr < min) min = curr;
   684 	  if (candidates.size() == list_length) break;
   685 	}
   686       }
   687       if (candidates.size() == 0) return false;
   688       sort(candidates.begin(), candidates.end(), sort_func);
   689       in_edge = candidates[0];
   690       list_index = 1;
   691       return true;
   692     }
   693 #endif
   694 
   695     /// \brief Finds the join node.
   696     Node findJoinNode() {
   697       // Finding the join node
   698       Node u = graph.source(in_edge);
   699       Node v = graph.target(in_edge);
   700       while (u != v) {
   701 	if (depth[u] == depth[v]) {
   702 	  u = parent[u];
   703 	  v = parent[v];
   704 	}
   705 	else if (depth[u] > depth[v]) u = parent[u];
   706 	else v = parent[v];
   707       }
   708       return u;
   709     }
   710 
   711     /// \brief Finds the leaving edge of the cycle. Returns \c true if
   712     /// the leaving edge is not the same as the entering edge.
   713     bool findLeavingEdge() {
   714       // Initializing first and second nodes according to the direction
   715       // of the cycle
   716       if (state[in_edge] == LOWER) {
   717 	first = graph.source(in_edge);
   718 	second	= graph.target(in_edge);
   719       } else {
   720 	first = graph.target(in_edge);
   721 	second	= graph.source(in_edge);
   722       }
   723       delta = capacity[in_edge];
   724       bool result = false;
   725       Capacity d;
   726       Edge e;
   727 
   728       // Searching the cycle along the path form the first node to the
   729       // root node
   730       for (Node u = first; u != join; u = parent[u]) {
   731 	e = pred_edge[u];
   732 	d = forward[u] ? flow[e] : capacity[e] - flow[e];
   733 	if (d < delta) {
   734 	  delta = d;
   735 	  u_out = u;
   736 	  u_in = first;
   737 	  v_in = second;
   738 	  result = true;
   739 	}
   740       }
   741       // Searching the cycle along the path form the second node to the
   742       // root node
   743       for (Node u = second; u != join; u = parent[u]) {
   744 	e = pred_edge[u];
   745 	d = forward[u] ? capacity[e] - flow[e] : flow[e];
   746 	if (d <= delta) {
   747 	  delta = d;
   748 	  u_out = u;
   749 	  u_in = second;
   750 	  v_in = first;
   751 	  result = true;
   752 	}
   753       }
   754       return result;
   755     }
   756 
   757     /// \brief Changes flow and state edge maps.
   758     void changeFlows(bool change) {
   759       // Augmenting along the cycle
   760       if (delta > 0) {
   761 	Capacity val = state[in_edge] * delta;
   762 	flow[in_edge] += val;
   763 	for (Node u = graph.source(in_edge); u != join; u = parent[u]) {
   764 	  flow[pred_edge[u]] += forward[u] ? -val : val;
   765 	}
   766 	for (Node u = graph.target(in_edge); u != join; u = parent[u]) {
   767 	  flow[pred_edge[u]] += forward[u] ? val : -val;
   768 	}
   769       }
   770       // Updating the state of the entering and leaving edges
   771       if (change) {
   772 	state[in_edge] = TREE;
   773 	state[pred_edge[u_out]] =
   774 	  (flow[pred_edge[u_out]] == 0) ? LOWER : UPPER;
   775       } else {
   776 	state[in_edge] = -state[in_edge];
   777       }
   778     }
   779 
   780     /// \brief Updates thread and parent node maps.
   781     void updateThreadParent() {
   782       Node u;
   783       v_out = parent[u_out];
   784 
   785       // Handling the case when join and v_out coincide
   786       bool par_first = false;
   787       if (join == v_out) {
   788 	for (u = join; u != u_in && u != v_in; u = thread[u]) ;
   789 	if (u == v_in) {
   790 	  par_first = true;
   791 	  while (thread[u] != u_out) u = thread[u];
   792 	  first = u;
   793 	}
   794       }
   795 
   796       // Finding the last successor of u_in (u) and the node after it
   797       // (right) according to the thread index
   798       for (u = u_in; depth[thread[u]] > depth[u_in]; u = thread[u]) ;
   799       right = thread[u];
   800       if (thread[v_in] == u_out) {
   801 	for (last = u; depth[last] > depth[u_out]; last = thread[last]) ;
   802 	if (last == u_out) last = thread[last];
   803       }
   804       else last = thread[v_in];
   805 
   806       // Updating stem nodes
   807       thread[v_in] = stem = u_in;
   808       par_stem = v_in;
   809       while (stem != u_out) {
   810 	thread[u] = new_stem = parent[stem];
   811 
   812 	// Finding the node just before the stem node (u) according to
   813 	// the original thread index
   814 	for (u = new_stem; thread[u] != stem; u = thread[u]) ;
   815 	thread[u] = right;
   816 
   817 	// Changing the parent node of stem and shifting stem and
   818 	// par_stem nodes
   819 	parent[stem] = par_stem;
   820 	par_stem = stem;
   821 	stem = new_stem;
   822 
   823 	// Finding the last successor of stem (u) and the node after it
   824 	// (right) according to the thread index
   825 	for (u = stem; depth[thread[u]] > depth[stem]; u = thread[u]) ;
   826 	right = thread[u];
   827       }
   828       parent[u_out] = par_stem;
   829       thread[u] = last;
   830 
   831       if (join == v_out && par_first) {
   832 	if (first != v_in) thread[first] = right;
   833       } else {
   834 	for (u = v_out; thread[u] != u_out; u = thread[u]) ;
   835 	thread[u] = right;
   836       }
   837     }
   838 
   839     /// \brief Updates pred_edge and forward node maps.
   840     void updatePredEdge() {
   841       Node u = u_out, v;
   842       while (u != u_in) {
   843 	v = parent[u];
   844 	pred_edge[u] = pred_edge[v];
   845 	forward[u] = !forward[v];
   846 	u = v;
   847       }
   848       pred_edge[u_in] = in_edge;
   849       forward[u_in] = (u_in == graph.source(in_edge));
   850     }
   851 
   852     /// \brief Updates depth and potential node maps.
   853     void updateDepthPotential() {
   854       depth[u_in] = depth[v_in] + 1;
   855       potential[u_in] = forward[u_in] ?
   856 	potential[v_in] + cost[pred_edge[u_in]] :
   857 	potential[v_in] - cost[pred_edge[u_in]];
   858 
   859       Node u = thread[u_in], v;
   860       while (true) {
   861 	v = parent[u];
   862 	if (v == INVALID) break;
   863 	depth[u] = depth[v] + 1;
   864 	potential[u] = forward[u] ?
   865 	  potential[v] + cost[pred_edge[u]] :
   866 	  potential[v] - cost[pred_edge[u]];
   867 	if (depth[u] <= depth[v_in]) break;
   868 	u = thread[u];
   869       }
   870     }
   871 
   872     /// \brief Executes the algorithm.
   873     bool start() {
   874       // Processing pivots
   875 #ifdef _DEBUG_ITER_
   876       int iter_num = 0;
   877 #endif
   878 #if defined(FIRST_ELIGIBLE_PIVOT) || defined(EDGE_BLOCK_PIVOT)
   879       EdgeIt next_edge(graph);
   880       while (findEnteringEdge(next_edge))
   881 #else
   882       while (findEnteringEdge())
   883 #endif
   884       {
   885 	join = findJoinNode();
   886 	bool change = findLeavingEdge();
   887 	changeFlows(change);
   888 	if (change) {
   889 	  updateThreadParent();
   890 	  updatePredEdge();
   891 	  updateDepthPotential();
   892 	}
   893 #ifdef _DEBUG_ITER_
   894 	++iter_num;
   895 #endif
   896       }
   897 
   898 #ifdef _DEBUG_ITER_
   899       std::cout << "Network Simplex algorithm finished. " << iter_num
   900 		<< " pivot iterations performed." << std::endl;
   901 #endif
   902 
   903       // Checking if the flow amount equals zero on all the
   904       // artificial edges
   905       for (InEdgeIt e(graph, root); e != INVALID; ++e)
   906 	if (flow[e] > 0) return false;
   907       for (OutEdgeIt e(graph, root); e != INVALID; ++e)
   908 	if (flow[e] > 0) return false;
   909 
   910       // Copying flow values to flow_result
   911       if (lower) {
   912 	for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e)
   913 	  flow_result[e] = (*lower)[e] + flow[edge_ref[e]];
   914       } else {
   915 	for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e)
   916 	  flow_result[e] = flow[edge_ref[e]];
   917       }
   918       // Copying potential values to potential_result
   919       for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n)
   920 	potential_result[n] = potential[node_ref[n]];
   921 
   922       return true;
   923     }
   924 
   925   }; //class NetworkSimplex
   926 
   927   ///@}
   928 
   929 } //namespace lemon
   930 
   931 #endif //LEMON_NETWORK_SIMPLEX_H