As initial value of a new map expression with ()+-/* operators can be given. These operators work on numbers, or on maps. If maps are given, then the new value for a given graph element will be calculated using the value from the given maps that belong to that graph element.
2 #include <lemon/lp_skeleton.h>
3 #include "test_tools.h"
11 #include <lemon/lp_glpk.h>
15 #include <lemon/lp_cplex.h>
18 using namespace lemon;
20 void lpTest(LpSolverBase & lp)
25 typedef LpSolverBase LP;
27 std::vector<LP::Col> x(10);
28 // for(int i=0;i<10;i++) x.push_back(lp.addCol());
33 std::vector<LP::Col> y(10);
36 std::map<int,LP::Col> z;
38 z.insert(std::make_pair(12,INVALID));
39 z.insert(std::make_pair(2,INVALID));
40 z.insert(std::make_pair(7,INVALID));
41 z.insert(std::make_pair(5,INVALID));
47 LP::Col p1,p2,p3,p4,p5;
83 e=((p1+p2)+(p1-p2)+(p1+12)+(12+p1)+(p1-12)+(12-p1)+
84 (f+12)+(12+f)+(p1+f)+(f+p1)+(f+g)+
85 (f-12)+(12-f)+(p1-f)+(f-p1)+(f-g)+
143 lp.addRow(LP::INF,e,23);
144 lp.addRow(LP::INF,3.0*(x[1]+x[2]/2)-x[3],23);
145 lp.addRow(LP::INF,3.0*(x[1]+x[2]*2-5*x[3]+12-x[4]/3)+2*x[4]-4,23);
147 lp.addRow(x[1]+x[3]<=x[5]-3);
148 lp.addRow(-7<=x[1]+x[3]-12<=3);
149 lp.addRow(x[1]<=x[5]);
154 LP::Row p1,p2,p3,p4,p5;
179 2.2*p1+p1*2.2+p1/2.2+
187 void solveAndCheck(LpSolverBase& lp, LpSolverBase::SolutionStatus stat,
192 std::ostringstream buf;
193 buf << "Primalstatus should be: " << int(stat);
195 // itoa(stat,buf1, 10);
196 check(lp.primalStatus()==stat, buf.str());
198 if (stat == LpSolverBase::OPTIMAL) {
199 std::ostringstream buf;
200 buf << "Wrong optimal value: the right optimum is " << exp_opt;
201 check(std::abs(lp.primalValue()-exp_opt) < 1e-3, buf.str());
206 void aTest(LpSolverBase & lp)
208 typedef LpSolverBase LP;
210 //The following example is very simple
212 typedef LpSolverBase::Row Row;
213 typedef LpSolverBase::Col Col;
216 Col x1 = lp.addCol();
217 Col x2 = lp.addCol();
221 Row upright=lp.addRow(x1+x2 <=1);
222 lp.addRow(x1+x2 >=-1);
223 lp.addRow(x1-x2 <=1);
224 lp.addRow(x1-x2 >=-1);
225 //Nonnegativity of the variables
226 lp.colLowerBound(x1, 0);
227 lp.colLowerBound(x2, 0);
233 //Maximization of x1+x2
234 //over the triangle with vertices (0,0) (0,1) (1,0)
235 double expected_opt=1;
236 solveAndCheck(lp, LpSolverBase::OPTIMAL, expected_opt);
241 solveAndCheck(lp, LpSolverBase::OPTIMAL, expected_opt);
243 //Vertex (-1,0) instead of (0,0)
244 lp.colLowerBound(x1, -LpSolverBase::INF);
246 solveAndCheck(lp, LpSolverBase::OPTIMAL, expected_opt);
248 //Erase one constraint and return to maximization
249 lp.eraseRow(upright);
251 expected_opt=LpSolverBase::INF;
252 solveAndCheck(lp, LpSolverBase::INFINITE, expected_opt);
255 lp.addRow(x1+x2 <=-2);
256 solveAndCheck(lp, LpSolverBase::INFEASIBLE, expected_opt);
258 //Change problem and forget to solve
260 check(lp.primalStatus()==LpSolverBase::UNDEFINED,"Primalstatus should be UNDEFINED");
263 // if (lp.primalStatus()==LpSolverBase::OPTIMAL){
264 // std::cout<< "Z = "<<lp.primalValue()
265 // << " (error = " << lp.primalValue()-expected_opt
266 // << "); x1 = "<<lp.primal(x1)
267 // << "; x2 = "<<lp.primal(x2)
272 // std::cout<<lp.primalStatus()<<std::endl;
273 // std::cout<<"Optimal solution not found!"<<std::endl;
287 LpGlpk lp_glpk1,lp_glpk2;
293 LpCplex lp_cplex1,lp_cplex2;