src/benchmark/bench_tools.h
author jacint
Tue, 20 Jul 2004 14:29:16 +0000
changeset 714 104069336039
child 718 75d36edc6bc4
permissions -rw-r--r--
without stl stack we are faster
     1 // -*- mode:C++ -*-
     2 #ifndef HUGO_BENCH_TEST_H
     3 #define HUGO_BENCH_TEST_H
     4 
     5 #include<vector>
     6 
     7 ///An experimental typedef factory
     8 #define GRAPH_TYPEDEF_FACTORY(Graph) \
     9    typedef typename Graph::   Node      Node;\
    10    typedef typename Graph::   NodeIt    NodeIn;\
    11    typedef typename Graph::   Edge      Edge;\
    12    typedef typename Graph::   EdgeIt    EdgeIt;\
    13    typedef typename Graph:: InEdgeIt  InEdgeIt;\
    14    typedef typename Graph::OutEdgeIt OutEdgeIt;
    15 
    16 #define GRAPH_TYPEDEF_FACTORY_NOTYPENAME(Graph) \
    17    typedef Graph::   Node      Node;\
    18    typedef Graph::   NodeIt    NodeIn;\
    19    typedef Graph::   Edge      Edge;\
    20    typedef Graph::   EdgeIt    EdgeIt;\
    21    typedef Graph:: InEdgeIt  InEdgeIt;\
    22    typedef Graph::OutEdgeIt OutEdgeIt;
    23  
    24 
    25 ///A primitive primtest
    26 bool isPrim(int n)
    27 {
    28   if(n%2) {
    29     for(int k=3;n/k>=k;k+=2)
    30       if(!(n%k)) return false;
    31     return true;
    32   }
    33   return false;
    34 }
    35 
    36 ///Finds the smallest prime not less then \c n.
    37 int nextPrim(int n)
    38 {
    39   for(n+=!(n%2);!isPrim(n);n+=2) ;
    40   return n;
    41 }
    42 
    43 
    44 /// Class to generate consecutive primes
    45 class Primes 
    46 {
    47   std::vector<int> primes;
    48   int n;
    49   
    50   bool isPrime(int m) 
    51   {
    52     for(int i=0;m<primes[i]*primes[i];i++) if(!(m%primes[i])) return false;
    53     return true;
    54   }
    55 public:
    56   Primes() : n(1) {}
    57   
    58   int operator() ()
    59     {
    60       if(primes.size()==0) {
    61 	primes.push_back(2);
    62 	return 2;
    63       }
    64       else {
    65 	do n+=2; while(!isPrime(n));
    66 	primes.push_back(n);
    67 	return n;
    68       }
    69     }
    70 };
    71 
    72 
    73 #endif