IncEdgeIt goes through on loop edges twice.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_KRUSKAL_H
20 #define LEMON_KRUSKAL_H
24 #include <lemon/unionfind.h>
25 #include <lemon/bits/utility.h>
26 #include <lemon/bits/traits.h>
29 @defgroup spantree Minimum Cost Spanning Tree Algorithms
31 \brief This group containes the algorithms for finding a minimum cost spanning
34 This group containes the algorithms for finding a minimum cost spanning
40 ///\brief Kruskal's algorithm to compute a minimum cost tree
42 ///Kruskal's algorithm to compute a minimum cost tree.
44 ///\todo The file still needs some clean-up.
48 /// \addtogroup spantree
51 /// Kruskal's algorithm to find a minimum cost tree of a graph.
53 /// This function runs Kruskal's algorithm to find a minimum cost tree.
54 /// Due to hard C++ hacking, it accepts various input and output types.
56 /// \param g The graph the algorithm runs on.
57 /// It can be either \ref concept::StaticGraph "directed" or
58 /// \ref concept::UGraph "undirected".
59 /// If the graph is directed, the algorithm consider it to be
60 /// undirected by disregarding the direction of the edges.
62 /// \param in This object is used to describe the edge costs. It can be one
63 /// of the following choices.
64 /// - An STL compatible 'Forward Container'
65 /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
66 /// where \c X is the type of the costs. The pairs indicates the edges along
67 /// with the assigned cost. <em>They must be in a
68 /// cost-ascending order.</em>
69 /// - Any readable Edge map. The values of the map indicate the edge costs.
71 /// \retval out Here we also have a choise.
72 /// - Is can be a writable \c bool edge map.
73 /// After running the algorithm
74 /// this will contain the found minimum cost spanning tree: the value of an
75 /// edge will be set to \c true if it belongs to the tree, otherwise it will
76 /// be set to \c false. The value of each edge will be set exactly once.
77 /// - It can also be an iteraror of an STL Container with
78 /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
79 /// The algorithm copies the elements of the found tree into this sequence.
80 /// For example, if we know that the spanning tree of the graph \c g has
81 /// say 53 edges, then
82 /// we can put its edges into a STL vector \c tree with a code like this.
84 /// std::vector<Edge> tree(53);
85 /// kruskal(g,cost,tree.begin());
87 /// Or if we don't know in advance the size of the tree, we can write this.
89 /// std::vector<Edge> tree;
90 /// kruskal(g,cost,std::back_inserter(tree));
93 /// \return The cost of the found tree.
95 /// \warning If kruskal is run on an
96 /// \ref lemon::concept::UGraph "undirected graph", be sure that the
97 /// map storing the tree is also undirected
98 /// (e.g. ListUGraph::UEdgeMap<bool>, otherwise the values of the
99 /// half of the edges will not be set.
101 /// \todo Discuss the case of undirected graphs: In this case the algorithm
102 /// also require <tt>Edge</tt>s instead of <tt>UEdge</tt>s, as some
103 /// people would expect. So, one should be careful not to add both of the
104 /// <tt>Edge</tt>s belonging to a certain <tt>UEdge</tt>.
105 /// (\ref kruskal() and \ref KruskalMapInput are kind enough to do so.)
108 template <class GR, class IN, class OUT>
109 typename IN::value_type::second_type
110 kruskal(GR const& g, IN const& in,
113 template <class GR, class IN, class OUT>
114 typename IN::value_type::second_type
115 kruskal(GR const& g, IN const& in,
117 // typename IN::value_type::first_type = typename GR::Edge()
118 // ,typename OUT::Key = OUT::Key()
119 // //,typename OUT::Key = typename GR::Edge()
120 const typename IN::value_type::first_type * =
121 (const typename IN::value_type::first_type *)(0),
122 const typename OUT::Key * = (const typename OUT::Key *)(0)
126 typedef typename IN::value_type::second_type EdgeCost;
127 typedef typename GR::template NodeMap<int> NodeIntMap;
128 typedef typename GR::Node Node;
130 NodeIntMap comp(g, -1);
131 UnionFind<Node,NodeIntMap> uf(comp);
133 EdgeCost tot_cost = 0;
134 for (typename IN::const_iterator p = in.begin();
136 if ( uf.join(g.target((*p).first),
137 g.source((*p).first)) ) {
138 out.set((*p).first, true);
139 tot_cost += (*p).second;
142 out.set((*p).first, false);
152 /* A work-around for running Kruskal with const-reference bool maps... */
154 /// Helper class for calling kruskal with "constant" output map.
156 /// Helper class for calling kruskal with output maps constructed
159 /// A typical examle is the following call:
160 /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
161 /// Here, the third argument is a temporary object (which wraps around an
162 /// iterator with a writable bool map interface), and thus by rules of C++
163 /// is a \c const object. To enable call like this exist this class and
164 /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
167 class NonConstMapWr {
170 typedef typename Map::Key Key;
171 typedef typename Map::Value Value;
173 NonConstMapWr(const Map &_m) : m(_m) {}
176 void set(Key const& k, Value const &v) const { m.set(k,v); }
179 template <class GR, class IN, class OUT>
181 typename IN::value_type::second_type
182 kruskal(GR const& g, IN const& edges, OUT const& out_map,
183 // typename IN::value_type::first_type = typename GR::Edge(),
184 // typename OUT::Key = GR::Edge()
185 const typename IN::value_type::first_type * =
186 (const typename IN::value_type::first_type *)(0),
187 const typename OUT::Key * = (const typename OUT::Key *)(0)
190 NonConstMapWr<OUT> map_wr(out_map);
191 return kruskal(g, edges, map_wr);
194 /* ** ** Input-objects ** ** */
196 /// Kruskal's input source.
198 /// Kruskal's input source.
200 /// In most cases you possibly want to use the \ref kruskal() instead.
202 /// \sa makeKruskalMapInput()
204 ///\param GR The type of the graph the algorithm runs on.
205 ///\param Map An edge map containing the cost of the edges.
207 ///The cost type can be any type satisfying
208 ///the STL 'LessThan comparable'
209 ///concept if it also has an operator+() implemented. (It is necessary for
210 ///computing the total cost of the tree).
212 template<class GR, class Map>
213 class KruskalMapInput
214 : public std::vector< std::pair<typename GR::Edge,
215 typename Map::Value> > {
218 typedef std::vector< std::pair<typename GR::Edge,
219 typename Map::Value> > Parent;
220 typedef typename Parent::value_type value_type;
225 bool operator()(const value_type& a,
226 const value_type& b) {
227 return a.second < b.second;
232 typename enable_if<UndirectedTagIndicator<_GR>,void>::type
233 fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0)
235 for(typename GR::UEdgeIt e(g);e!=INVALID;++e)
236 push_back(value_type(g.direct(e, true), m[e]));
240 typename disable_if<UndirectedTagIndicator<_GR>,void>::type
241 fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1)
243 for(typename GR::EdgeIt e(g);e!=INVALID;++e)
244 push_back(value_type(e, m[e]));
251 std::sort(this->begin(), this->end(), comparePair());
254 KruskalMapInput(GR const& g, Map const& m) {
260 /// Creates a KruskalMapInput object for \ref kruskal()
262 /// It makes easier to use
263 /// \ref KruskalMapInput by making it unnecessary
264 /// to explicitly give the type of the parameters.
266 /// In most cases you possibly
267 /// want to use \ref kruskal() instead.
269 ///\param g The type of the graph the algorithm runs on.
270 ///\param m An edge map containing the cost of the edges.
272 ///The cost type can be any type satisfying the
273 ///STL 'LessThan Comparable'
274 ///concept if it also has an operator+() implemented. (It is necessary for
275 ///computing the total cost of the tree).
277 ///\return An appropriate input source for \ref kruskal().
279 template<class GR, class Map>
281 KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
283 return KruskalMapInput<GR,Map>(g,m);
288 /* ** ** Output-objects: simple writable bool maps ** ** */
292 /// A writable bool-map that makes a sequence of "true" keys
294 /// A writable bool-map that creates a sequence out of keys that receives
295 /// the value "true".
297 /// \sa makeKruskalSequenceOutput()
299 /// Very often, when looking for a min cost spanning tree, we want as
300 /// output a container containing the edges of the found tree. For this
301 /// purpose exist this class that wraps around an STL iterator with a
302 /// writable bool map interface. When a key gets value "true" this key
303 /// is added to sequence pointed by the iterator.
307 /// std::vector<Graph::Edge> v;
308 /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
311 /// For the most common case, when the input is given by a simple edge
312 /// map and the output is a sequence of the tree edges, a special
313 /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
315 /// \warning Not a regular property map, as it doesn't know its Key
317 template<class Iterator>
318 class KruskalSequenceOutput {
322 typedef typename std::iterator_traits<Iterator>::value_type Key;
325 KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
327 template<typename Key>
328 void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
331 template<class Iterator>
333 KruskalSequenceOutput<Iterator>
334 makeKruskalSequenceOutput(Iterator it) {
335 return KruskalSequenceOutput<Iterator>(it);
340 /* ** ** Wrapper funtions ** ** */
342 // \brief Wrapper function to kruskal().
343 // Input is from an edge map, output is a plain bool map.
345 // Wrapper function to kruskal().
346 // Input is from an edge map, output is a plain bool map.
348 // \param g The type of the graph the algorithm runs on.
349 // \param in An edge map containing the cost of the edges.
351 // The cost type can be any type satisfying the
352 // STL 'LessThan Comparable'
353 // concept if it also has an operator+() implemented. (It is necessary for
354 // computing the total cost of the tree).
356 // \retval out This must be a writable \c bool edge map.
357 // After running the algorithm
358 // this will contain the found minimum cost spanning tree: the value of an
359 // edge will be set to \c true if it belongs to the tree, otherwise it will
360 // be set to \c false. The value of each edge will be set exactly once.
362 // \return The cost of the found tree.
364 template <class GR, class IN, class RET>
370 // typename IN::Key = typename GR::Edge(),
371 //typename IN::Key = typename IN::Key (),
372 // typename RET::Key = typename GR::Edge()
373 const typename IN::Key * = (const typename IN::Key *)(0),
374 const typename RET::Key * = (const typename RET::Key *)(0)
378 KruskalMapInput<GR,IN>(g,in),
382 // \brief Wrapper function to kruskal().
383 // Input is from an edge map, output is an STL Sequence.
385 // Wrapper function to kruskal().
386 // Input is from an edge map, output is an STL Sequence.
388 // \param g The type of the graph the algorithm runs on.
389 // \param in An edge map containing the cost of the edges.
391 // The cost type can be any type satisfying the
392 // STL 'LessThan Comparable'
393 // concept if it also has an operator+() implemented. (It is necessary for
394 // computing the total cost of the tree).
396 // \retval out This must be an iteraror of an STL Container with
397 // <tt>GR::Edge</tt> as its <tt>value_type</tt>.
398 // The algorithm copies the elements of the found tree into this sequence.
399 // For example, if we know that the spanning tree of the graph \c g has
400 // say 53 edges, then
401 // we can put its edges into a STL vector \c tree with a code like this.
403 // std::vector<Edge> tree(53);
404 // kruskal(g,cost,tree.begin());
406 // Or if we don't know in advance the size of the tree, we can write this.
408 // std::vector<Edge> tree;
409 // kruskal(g,cost,std::back_inserter(tree));
412 // \return The cost of the found tree.
414 // \bug its name does not follow the coding style.
416 template <class GR, class IN, class RET>
422 const typename RET::value_type * =
423 (const typename RET::value_type *)(0)
426 KruskalSequenceOutput<RET> _out(out);
427 return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
430 template <class GR, class IN, class RET>
438 KruskalSequenceOutput<RET*> _out(out);
439 return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
446 #endif //LEMON_KRUSKAL_H