A trial to make the last test platform independent.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
21 ///\brief Computing maximum number of edge-disjoint shortest paths
23 /// This program computes a maximum number of edge-disjoint shortest paths
24 /// between nodes \c s and \c t.
26 /// \include sub_graph_adaptor_demo.cc
28 // Use a DIMACS max flow file as input.
29 // sub_graph_adaptor_demo < dimacs_max_flow_file
30 // Modified to eat lemon graph format!
36 #include <lemon/smart_graph.h>
37 #include <lemon/dijkstra.h>
38 #include <lemon/maps.h>
39 #include <lemon/graph_adaptor.h>
40 #include <lemon/dimacs.h>
41 #include <lemon/preflow.h>
42 #include "tight_edge_filter_map.h"
44 #include <lemon/graph_reader.h>
47 using namespace lemon;
52 int main(int argc, char *argv[])
56 std::cerr << "USAGE: sub_graph_adaptor_demo input_file.lgf" << std::endl;
57 std::cerr << "The file 'input_file.lgf' has to contain a max flow "
58 << "instance in \n LEMON format "
59 << "(e.g. sub_gad_input.lgf is such a file)."
65 //input stream to read the graph from
66 std::ifstream is(argv[1]);
68 typedef SmartGraph Graph;
70 typedef Graph::Edge Edge;
71 typedef Graph::Node Node;
72 typedef Graph::EdgeIt EdgeIt;
73 typedef Graph::NodeIt NodeIt;
74 typedef Graph::EdgeMap<int> LengthMap;
80 //readDimacs(is, g, length, s, t);
83 GraphReader<SmartGraph> reader(is,g);
84 reader.readNode("source",s).readNode("target",t)
85 .readEdgeMap("length",length).run();
87 cout << "edges with lengths (of form id, source--length->target): " << endl;
88 for(EdgeIt e(g); e!=INVALID; ++e)
89 cout << " " << g.id(e) << ", " << g.id(g.source(e)) << "--"
90 << length[e] << "->" << g.id(g.target(e)) << endl;
92 cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
94 typedef Dijkstra<Graph, LengthMap> Dijkstra;
95 Dijkstra dijkstra(g, length);
98 // This map returns true exactly for those edges which are
99 // tight w.r.t the length funcion and the potential
100 // given by the dijkstra algorithm.
101 typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap>
103 TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
105 // ConstMap<Node, bool> const_true_map(true);
106 // This graph contains exaclty the tight edges.
107 // typedef SubGraphAdaptor<Graph, ConstMap<Node, bool>, TightEdgeFilter> SubGW;
108 typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW;
109 SubGW gw(g, tight_edge_filter);
111 ConstMap<Edge, int> const_1_map(1);
112 Graph::EdgeMap<int> flow(g, 0);
113 // Max flow between s and t in the graph of tight edges.
114 Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> >
115 preflow(gw, s, t, const_1_map, flow);
118 cout << "maximum number of edge-disjoint shortest paths: "
119 << preflow.flowValue() << endl;
120 cout << "edges of the maximum number of edge-disjoint shortest s-t paths: "
122 for(EdgeIt e(g); e!=INVALID; ++e)
124 cout << " " << g.id(e) << ", "
125 << g.id(g.source(e)) << "--"
126 << length[e] << "->" << g.id(g.target(e)) << endl;