lemon/simann.h
author alpar
Tue, 17 Oct 2006 11:02:30 +0000
changeset 2252 133028e83940
parent 2229 4dbb6dd2dd4b
child 2304 108d6db4f32a
permissions -rw-r--r--
A trial to make the last test platform independent.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_SIMANN_H
    20 #define LEMON_SIMANN_H
    21 
    22 /// \ingroup experimental
    23 /// \file
    24 /// \brief Simulated annealing framework.
    25 ///
    26 /// \todo A test and some demo should be added
    27 /// \todo Doc should be improved
    28 /// \author Akos Ladanyi
    29 
    30 #include <cstdlib>
    31 #include <cmath>
    32 #include <limits>
    33 #include <lemon/time_measure.h>
    34 #include <lemon/random.h>
    35 
    36 namespace lemon {
    37 
    38 /// \addtogroup experimental
    39 /// @{
    40 
    41   class SimAnnBase;
    42 
    43   /// \brief A base class for controllers.
    44   class ControllerBase {
    45   public:
    46     friend class SimAnnBase;
    47     /// \brief Pointer to the simulated annealing base class.
    48     SimAnnBase *simann;
    49     /// \brief Initializes the controller.
    50     virtual void init() {}
    51     /// \brief This is called by the simulated annealing class when a
    52     /// neighbouring state gets accepted.
    53     virtual void acceptEvent() {}
    54     /// \brief This is called by the simulated annealing class when the
    55     /// accepted neighbouring state's cost is less than the best found one's.
    56     virtual void improveEvent() {}
    57     /// \brief This is called by the simulated annealing class when a
    58     /// neighbouring state gets rejected.
    59     virtual void rejectEvent() {}
    60     /// \brief Decides whether to continue the annealing process or not.
    61     virtual bool next() = 0;
    62     /// \brief Decides whether to accept the current solution or not.
    63     virtual bool accept() = 0;
    64     /// \brief Destructor.
    65     virtual ~ControllerBase() {}
    66   };
    67 
    68   /// \brief Skeleton of an entity class.
    69   class EntityBase {
    70   public:
    71     /// \brief Makes a minor change to the entity.
    72     /// \return the new cost
    73     virtual double mutate() = 0;
    74     /// \brief Restores the entity to its previous state i.e. reverts the
    75     /// effects of the last mutate().
    76     virtual void revert() = 0;
    77     /// \brief Makes a copy of the entity.
    78     virtual EntityBase* clone() = 0;
    79     /// \brief Makes a major change to the entity.
    80     virtual void randomize() = 0;
    81     /// \brief Destructor.
    82     virtual ~EntityBase() {}
    83   };
    84 
    85   /// \brief Simulated annealing abstract base class.
    86   /// Can be used to derive a custom simulated annealing class if \ref SimAnn
    87   /// doesn't fit your needs.
    88   class SimAnnBase {
    89   private:
    90     /// \brief Pointer to the controller.
    91     ControllerBase *controller;
    92     /// \brief Cost of the current solution.
    93     double curr_cost;
    94     /// \brief Cost of the best solution.
    95     double best_cost;
    96     /// \brief Cost of the previous solution.
    97     double prev_cost;
    98     /// \brief Cost of the solution preceding the previous one.
    99     double prev_prev_cost;
   100     /// \brief Number of iterations.
   101     long iter;
   102     /// \brief Number of iterations which did not improve the solution since
   103     /// the last improvement.
   104     long last_impr;
   105   protected:
   106     /// \brief Step to a neighbouring state.
   107     virtual double mutate() = 0;
   108     /// \brief Reverts the last mutate().
   109     virtual void revert() = 0;
   110     /// \brief Saves the current solution as the best one.
   111     virtual void saveAsBest() = 0;
   112     /// \brief Does initializations before each run.
   113     virtual void init() {
   114       controller->init();
   115       curr_cost = prev_cost = prev_prev_cost = best_cost =
   116         std::numeric_limits<double>::infinity();
   117       iter = last_impr = 0;
   118     }
   119   public:
   120     /// \brief Sets the controller class to use.
   121     void setController(ControllerBase &_controller) {
   122       controller = &_controller;
   123       controller->simann = this;
   124     }
   125     /// \brief Returns the cost of the current solution.
   126     double getCurrCost() const { return curr_cost; }
   127     /// \brief Returns the cost of the previous solution.
   128     double getPrevCost() const { return prev_cost; }
   129     /// \brief Returns the cost of the best solution.
   130     double getBestCost() const { return best_cost; }
   131     /// \brief Returns the number of iterations done.
   132     long getIter() const { return iter; }
   133     /// \brief Returns the ordinal number of the last iteration when the
   134     /// solution was improved.
   135     long getLastImpr() const { return last_impr; }
   136     /// \brief Performs one iteration.
   137     bool step() {
   138       iter++;
   139       prev_prev_cost = prev_cost;
   140       prev_cost = curr_cost;
   141       curr_cost = mutate();
   142       if (controller->accept()) {
   143         controller->acceptEvent();
   144         last_impr = iter;
   145         if (curr_cost < best_cost) {
   146           best_cost = curr_cost;
   147           saveAsBest();
   148           controller->improveEvent();
   149         }
   150       }
   151       else {
   152         revert();
   153         curr_cost = prev_cost;
   154         prev_cost = prev_prev_cost;
   155         controller->rejectEvent();
   156       }
   157       return controller->next();
   158     }
   159     /// \brief Performs a given number of iterations.
   160     /// \param n the number of iterations
   161     bool step(int n) {
   162       for(; n > 0 && step(); --n) ;
   163       return !n;
   164     }
   165     /// \brief Starts the annealing process.
   166     void run() {
   167       init();
   168       do { } while (step());
   169     }
   170     /// \brief Destructor.
   171     virtual ~SimAnnBase() {}
   172   };
   173 
   174   /// \brief Simulated annealing class.
   175   class SimAnn : public SimAnnBase {
   176   private:
   177     /// \brief Pointer to the current entity.
   178     EntityBase *curr_ent;
   179     /// \brief Pointer to the best entity.
   180     EntityBase *best_ent;
   181     /// \brief Does initializations before each run.
   182     void init() {
   183       SimAnnBase::init();
   184       if (best_ent) delete best_ent;
   185       best_ent = NULL;
   186       curr_ent->randomize();
   187     }
   188   public:
   189     /// \brief Constructor.
   190     SimAnn() : curr_ent(NULL), best_ent(NULL) {}
   191     /// \brief Destructor.
   192     virtual ~SimAnn() {
   193       if (best_ent) delete best_ent;
   194     }
   195     /// \brief Step to a neighbouring state.
   196     double mutate() {
   197       return curr_ent->mutate();
   198     }
   199     /// \brief Reverts the last mutate().
   200     void revert() {
   201       curr_ent->revert();
   202     }
   203     /// \brief Saves the current solution as the best one.
   204     void saveAsBest() { 
   205       if (best_ent) delete best_ent;
   206       best_ent = curr_ent->clone();
   207     }
   208     /// \brief Sets the current entity.
   209     void setEntity(EntityBase &_ent) {
   210       curr_ent = &_ent;
   211     }
   212     /// \brief Returns a copy of the best found entity.
   213     EntityBase* getBestEntity() { return best_ent->clone(); }
   214   };
   215 
   216   /// \brief A simple controller for the simulated annealing class.
   217   /// This controller starts from a given initial temperature and evenly
   218   /// decreases it.
   219   class SimpleController : public ControllerBase {
   220   private:
   221     /// \brief Maximum number of iterations.
   222     long max_iter;
   223     /// \brief Maximum number of iterations which do not improve the
   224     /// solution.
   225     long max_no_impr;
   226     /// \brief Temperature.
   227     double temp;
   228     /// \brief Annealing factor.
   229     double ann_fact;
   230     /// \brief Constructor.
   231     /// \param _max_iter maximum number of iterations
   232     /// \param _max_no_impr maximum number of consecutive iterations which do
   233     ///        not yield a better solution
   234     /// \param _temp initial temperature
   235     /// \param _ann_fact annealing factor
   236   public:
   237     SimpleController(long _max_iter = 500000, long _max_no_impr = 20000,
   238     double _temp = 1000.0, double _ann_fact = 0.9999) : max_iter(_max_iter),
   239       max_no_impr(_max_no_impr), temp(_temp), ann_fact(_ann_fact)
   240     {
   241     }
   242     /// \brief This is called when a neighbouring state gets accepted.
   243     void acceptEvent() {}
   244     /// \brief This is called when the accepted neighbouring state's cost is
   245     /// less than the best found one's.
   246     void improveEvent() {}
   247     /// \brief This is called when a neighbouring state gets rejected.
   248     void rejectEvent() {}
   249     /// \brief Decides whether to continue the annealing process or not. Also
   250     /// decreases the temperature.
   251     bool next() {
   252       temp *= ann_fact;
   253       bool quit = (simann->getIter() > max_iter) ||
   254         (simann->getIter() - simann->getLastImpr() > max_no_impr);
   255       return !quit;
   256     }
   257     /// \brief Decides whether to accept the current solution or not.
   258     bool accept() {
   259       double cost_diff = simann->getCurrCost() - simann->getPrevCost();
   260       return (rnd() <= exp(-(cost_diff / temp)));
   261     }
   262     /// \brief Destructor.
   263     virtual ~SimpleController() {}
   264   };
   265 
   266   /// \brief A controller with preset running time for the simulated annealing
   267   /// class.
   268   /// With this controller you can set the running time of the annealing
   269   /// process in advance. It works the following way: the controller measures
   270   /// a kind of divergence. The divergence is the difference of the average
   271   /// cost of the recently found solutions the cost of the best found one. In
   272   /// case this divergence is greater than a given threshold, then we decrease
   273   /// the annealing factor, that is we cool the system faster. In case the
   274   /// divergence is lower than the threshold, then we increase the temperature.
   275   /// The threshold is a function of the elapsed time which reaches zero at the
   276   /// desired end time.
   277   class AdvancedController : public ControllerBase {
   278   private:
   279     /// \brief Timer class to measure the elapsed time.
   280     Timer timer;
   281     /// \brief Calculates the threshold value.
   282     /// \param time the elapsed time in seconds
   283     virtual double threshold(double time) {
   284       return (-1.0) * start_threshold / end_time * time + start_threshold;
   285     }
   286     /// \brief Parameter used to calculate the running average.
   287     double alpha;
   288     /// \brief Parameter used to decrease the annealing factor.
   289     double beta;
   290     /// \brief Parameter used to increase the temperature.
   291     double gamma;
   292     /// \brief The time at the end of the algorithm.
   293     double end_time;
   294     /// \brief The time at the start of the algorithm.
   295     double start_time;
   296     /// \brief Starting threshold.
   297     double start_threshold;
   298     /// \brief Average cost of recent solutions.
   299     double avg_cost;
   300     /// \brief Temperature.
   301     double temp;
   302     /// \brief Annealing factor.
   303     double ann_fact;
   304     /// \brief Initial annealing factor.
   305     double init_ann_fact;
   306     /// \brief True when the annealing process has been started.
   307     bool start;
   308   public:
   309     /// \brief Constructor.
   310     /// \param _end_time running time in seconds
   311     /// \param _alpha parameter used to calculate the running average
   312     /// \param _beta parameter used to decrease the annealing factor
   313     /// \param _gamma parameter used to increase the temperature
   314     /// \param _ann_fact initial annealing factor
   315     AdvancedController(double _end_time, double _alpha = 0.2,
   316     double _beta = 0.9, double _gamma = 1.6, double _ann_fact = 0.9999) :
   317     alpha(_alpha), beta(_beta), gamma(_gamma), end_time(_end_time),
   318     ann_fact(_ann_fact), init_ann_fact(_ann_fact), start(false)
   319     {
   320     }
   321     /// \brief Does initializations before each run.
   322     void init() {
   323       avg_cost = simann->getCurrCost();
   324     }
   325     /// \brief This is called when a neighbouring state gets accepted.
   326     void acceptEvent() {
   327       avg_cost = alpha * simann->getCurrCost() + (1.0 - alpha) * avg_cost;
   328       if (!start) {
   329         static int cnt = 0;
   330         cnt++;
   331         if (cnt >= 100) {
   332           // calculate starting threshold and starting temperature
   333           start_threshold = 5.0 * fabs(simann->getBestCost() - avg_cost);
   334           temp = 10000.0;
   335           start = true;
   336           timer.restart();
   337         }
   338       }
   339     }
   340     /// \brief Decides whether to continue the annealing process or not.
   341     bool next() {
   342       if (!start) {
   343         return true;
   344       }
   345       else {
   346         double elapsed_time = timer.realTime();
   347         if (fabs(avg_cost - simann->getBestCost()) > threshold(elapsed_time)) {
   348           // decrease the annealing factor
   349           ann_fact *= beta;
   350         }
   351         else {
   352           // increase the temperature
   353           temp *= gamma;
   354           // reset the annealing factor
   355           ann_fact = init_ann_fact;
   356         }
   357         temp *= ann_fact;
   358         return elapsed_time < end_time;
   359       }
   360     }
   361     /// \brief Decides whether to accept the current solution or not.
   362     bool accept() {
   363       if (!start) {
   364         return true;
   365       }
   366       else {
   367         double cost_diff = simann->getCurrCost() - simann->getPrevCost();
   368         return (rnd() <= exp(-(cost_diff / temp)));
   369       }
   370     }
   371     /// \brief Destructor.
   372     virtual ~AdvancedController() {}
   373   };
   374 
   375 /// @}
   376 
   377 }
   378 
   379 #endif