src/hugo/dijkstra.h
author alpar
Fri, 07 May 2004 06:35:02 +0000
changeset 566 14355e502338
parent 539 fb261e3a9a0f
child 570 eec0a62979c9
permissions -rw-r--r--
Exit with correct return value
     1 // -*- C++ -*-
     2 #ifndef HUGO_DIJKSTRA_H
     3 #define HUGO_DIJKSTRA_H
     4 
     5 ///\ingroup galgs
     6 ///\file
     7 ///\brief Dijkstra algorithm.
     8 
     9 #include <hugo/bin_heap.h>
    10 #include <hugo/invalid.h>
    11 
    12 namespace hugo {
    13 
    14 /// \addtogroup galgs
    15 /// @{
    16 
    17   ///%Dijkstra algorithm class.
    18 
    19   ///This class provides an efficient implementation of %Dijkstra algorithm.
    20   ///The edge lengths are passed to the algorithm using a
    21   ///\ref ReadMapSkeleton "readable map",
    22   ///so it is easy to change it to any kind of length.
    23   ///
    24   ///The type of the length is determined by the \c ValueType of the length map.
    25   ///
    26   ///It is also possible to change the underlying priority heap.
    27   ///
    28   ///\param Graph The graph type the algorithm runs on.
    29   ///\param LengthMap This read-only
    30   ///EdgeMap
    31   ///determines the
    32   ///lengths of the edges. It is read once for each edge, so the map
    33   ///may involve in relatively time consuming process to compute the edge
    34   ///length if it is necessary. The default map type is
    35   ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
    36   ///\param Heap The heap type used by the %Dijkstra
    37   ///algorithm. The default
    38   ///is using \ref BinHeap "binary heap".
    39   ///
    40   ///\author Jacint Szabo
    41 #ifdef DOXYGEN
    42   template <typename Graph,
    43 	    typename LengthMap,
    44 	    typename Heap>
    45 #else
    46   template <typename Graph,
    47 	    typename LengthMap=typename Graph::template EdgeMap<int>,
    48 	    template <class,class,class,class> class Heap = BinHeap >
    49 #endif
    50   class Dijkstra{
    51   public:
    52     typedef typename Graph::Node Node;
    53     typedef typename Graph::NodeIt NodeIt;
    54     typedef typename Graph::Edge Edge;
    55     typedef typename Graph::OutEdgeIt OutEdgeIt;
    56     
    57     typedef typename LengthMap::ValueType ValueType;
    58     typedef typename Graph::template NodeMap<Edge> PredMap;
    59     typedef typename Graph::template NodeMap<Node> PredNodeMap;
    60     typedef typename Graph::template NodeMap<ValueType> DistMap;
    61 
    62   private:
    63     const Graph& G;
    64     const LengthMap& length;
    65     PredMap predecessor;
    66     PredNodeMap pred_node;
    67     DistMap distance;
    68     
    69   public :
    70     
    71     Dijkstra(const Graph& _G, const LengthMap& _length) :
    72       G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { }
    73     
    74     void run(Node s);
    75     
    76     ///The distance of a node from the root.
    77 
    78     ///Returns the distance of a node from the root.
    79     ///\pre \ref run() must be called before using this function.
    80     ///\warning If node \c v in unreachable from the root the return value
    81     ///of this funcion is undefined.
    82     ValueType dist(Node v) const { return distance[v]; }
    83 
    84     ///Returns the previous edge of the shortest path tree.
    85 
    86     ///For a node \c v it returns the previous edge of the shortest path tree,
    87     ///i.e. it returns the last edge from a shortest path from the root to \c
    88     ///v. It is INVALID if \c v is unreachable from the root or if \c v=s. The
    89     ///shortest path tree used here is equal to the shortest path tree used in
    90     ///\ref predNode(Node v).  \pre \ref run() must be called before using
    91     ///this function.
    92     Edge pred(Node v) const { return predecessor[v]; }
    93 
    94     ///Returns the previous node of the shortest path tree.
    95 
    96     ///For a node \c v it returns the previous node of the shortest path tree,
    97     ///i.e. it returns the last but one node from a shortest path from the
    98     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
    99     ///\c v=s. The shortest path tree used here is equal to the shortest path
   100     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   101     ///using this function.
   102     Node predNode(Node v) const { return pred_node[v]; }
   103     
   104     ///Returns a reference to the NodeMap of distances.
   105 
   106     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   107     ///be called before using this function.
   108     const DistMap &distMap() const { return distance;}
   109  
   110     ///Returns a reference to the shortest path tree map.
   111 
   112     ///Returns a reference to the NodeMap of the edges of the
   113     ///shortest path tree.
   114     ///\pre \ref run() must be called before using this function.
   115     const PredMap &predMap() const { return predecessor;}
   116  
   117     ///Returns a reference to the map of nodes of shortest paths.
   118 
   119     ///Returns a reference to the NodeMap of the last but one nodes of the
   120     ///shortest path tree.
   121     ///\pre \ref run() must be called before using this function.
   122     const PredNodeMap &predNodeMap() const { return pred_node;}
   123 
   124     ///Checks if a node is reachable from the root.
   125 
   126     ///Returns \c true if \c v is reachable from the root.
   127     ///\warning the root node is reported to be unreached!
   128     ///\todo Is this what we want?
   129     ///\pre \ref run() must be called before using this function.
   130     ///
   131     bool reached(Node v) { return G.valid(predecessor[v]); }
   132     
   133   };
   134   
   135 
   136   // **********************************************************************
   137   //  IMPLEMENTATIONS
   138   // **********************************************************************
   139 
   140   ///Runs %Dijkstra algorithm from node the root.
   141 
   142   ///This method runs the %Dijkstra algorithm from a root node \c s
   143   ///in order to
   144   ///compute the
   145   ///shortest path to each node. The algorithm computes
   146   ///- The shortest path tree.
   147   ///- The distance of each node from the root.
   148   template <typename Graph, typename LengthMap,
   149 	    template<class,class,class,class> class Heap >
   150   void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
   151     
   152     NodeIt u;
   153     for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
   154       predecessor.set(u,INVALID);
   155       pred_node.set(u,INVALID);
   156     }
   157     
   158     typename Graph::template NodeMap<int> heap_map(G,-1);
   159     
   160     typedef Heap<Node, ValueType, typename Graph::template NodeMap<int>,
   161       std::less<ValueType> > 
   162       HeapType;
   163     
   164     HeapType heap(heap_map);
   165     
   166     heap.push(s,0); 
   167     
   168       while ( !heap.empty() ) {
   169 	
   170 	Node v=heap.top(); 
   171 	ValueType oldvalue=heap[v];
   172 	heap.pop();
   173 	distance.set(v, oldvalue);
   174 	
   175 	{ //FIXME this bracket is for e to be local
   176 	  OutEdgeIt e;
   177 	for(G.first(e, v);
   178 	    G.valid(e); G.next(e)) {
   179 	  Node w=G.bNode(e); 
   180 	  
   181 	  switch(heap.state(w)) {
   182 	  case HeapType::PRE_HEAP:
   183 	    heap.push(w,oldvalue+length[e]); 
   184 	    predecessor.set(w,e);
   185 	    pred_node.set(w,v);
   186 	    break;
   187 	  case HeapType::IN_HEAP:
   188 	    if ( oldvalue+length[e] < heap[w] ) {
   189 	      heap.decrease(w, oldvalue+length[e]); 
   190 	      predecessor.set(w,e);
   191 	      pred_node.set(w,v);
   192 	    }
   193 	    break;
   194 	  case HeapType::POST_HEAP:
   195 	    break;
   196 	  }
   197 	}
   198       } //FIXME tis bracket
   199       }
   200   }
   201 
   202 /// @}
   203   
   204 } //END OF NAMESPACE HUGO
   205 
   206 #endif
   207 
   208