src/include/xy.h
author marci
Wed, 28 Apr 2004 09:59:23 +0000
changeset 455 14a1d11ddf21
parent 431 79a5641f2dbc
child 458 2df1fee6c866
permissions -rw-r--r--
for checking bipartiteness
     1 // -*- c++ -*-
     2 #ifndef HUGO_XY_H
     3 #define HUGO_XY_H
     4 
     5 #include <iostream>
     6 
     7 ///ingroup misc
     8 ///\file
     9 ///\brief A simple two dimensional vector and a bounding box implementation 
    10 ///
    11 /// The class \ref hugo::xy "xy" implements
    12 ///a two dimensional vector with the usual
    13 /// operations.
    14 ///
    15 /// The class \ref hugo::BoundingBox "BoundingBox" can be used to determine
    16 /// the rectangular bounding box a set of \ref hugo::xy "xy"'s.
    17 
    18 
    19 namespace hugo {
    20 
    21   /// \addtogroup misc
    22   /// @{
    23 
    24 /** \brief
    25 2 dimensional vector (plainvector) implementation
    26 
    27 */
    28   template<typename T>
    29     class xy {
    30 
    31     public:
    32 
    33       T x,y;     
    34       
    35       ///Default constructor: both coordinates become 0
    36       xy() : x(0), y(0) {}
    37 
    38       ///Constructing the instance from coordinates
    39       xy(T a, T b) : x(a), y(a) { }
    40 
    41 
    42       ///Gives back the square of the norm of the vector
    43       T normSquare(){
    44 	return x*x+y*y;
    45       };
    46   
    47       ///Increments the left hand side by u
    48       xy<T>& operator +=(const xy<T>& u){
    49 	x += u.x;
    50 	y += u.y;
    51 	return *this;
    52       };
    53   
    54       ///Decrements the left hand side by u
    55       xy<T>& operator -=(const xy<T>& u){
    56 	x -= u.x;
    57 	y -= u.y;
    58 	return *this;
    59       };
    60 
    61       ///Multiplying the left hand side with a scalar
    62       xy<T>& operator *=(const T &u){
    63 	x *= u;
    64 	y *= u;
    65 	return *this;
    66       };
    67 
    68       ///Dividing the left hand side by a scalar
    69       xy<T>& operator /=(const T &u){
    70 	x /= u;
    71 	y /= u;
    72 	return *this;
    73       };
    74   
    75       ///Returns the scalar product of two vectors
    76       T operator *(const xy<T>& u){
    77 	return x*u.x+y*u.y;
    78       };
    79   
    80       ///Returns the sum of two vectors
    81       xy<T> operator+(const xy<T> &u) const {
    82 	xy<T> b=*this;
    83 	return b+=u;
    84       };
    85 
    86       ///Returns the difference of two vectors
    87       xy<T> operator-(const xy<T> &u) const {
    88 	xy<T> b=*this;
    89 	return b-=u;
    90       };
    91 
    92       ///Returns a vector multiplied by a scalar
    93       xy<T> operator*(const T &u) const {
    94 	xy<T> b=*this;
    95 	return b*=u;
    96       };
    97 
    98       ///Returns a vector divided by a scalar
    99       xy<T> operator/(const T &u) const {
   100 	xy<T> b=*this;
   101 	return b/=u;
   102       };
   103 
   104       ///Testing equality
   105       bool operator==(const xy<T> &u){
   106 	return (x==u.x) && (y==u.y);
   107       };
   108 
   109       ///Testing inequality
   110       bool operator!=(xy u){
   111 	return  (x!=u.x) || (y!=u.y);
   112       };
   113 
   114     };
   115 
   116   ///Reading a plainvector from a stream
   117   template<typename T>
   118   inline
   119   std::istream& operator>>(std::istream &is, xy<T> &z)
   120   {
   121 
   122     is >> z.x >> z.y;
   123     return is;
   124   }
   125 
   126   ///Outputting a plainvector to a stream
   127   template<typename T>
   128   inline
   129   std::ostream& operator<<(std::ostream &os, xy<T> z)
   130   {
   131     os << "(" << z.x << ", " << z.y << ")";
   132     return os;
   133   }
   134 
   135 
   136   /** \brief
   137      Implementation of a bounding box of plainvectors.
   138      
   139   */
   140   template<typename T>
   141     class BoundingBox {
   142       xy<T> bottom_left, top_right;
   143       bool _empty;
   144     public:
   145       
   146       ///Default constructor: an empty bounding box
   147       BoundingBox() { _empty = true; }
   148 
   149       ///Constructing the instance from one point
   150       BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; }
   151 
   152       ///Is there any point added
   153       bool empty() const {
   154 	return _empty;
   155       }
   156 
   157       ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined) 
   158       xy<T> bottomLeft() const {
   159 	return bottom_left;
   160       };
   161 
   162       ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined) 
   163       xy<T> topRight() const {
   164 	return top_right;
   165       };
   166 
   167       ///Checks whether a point is inside a bounding box
   168       bool inside(const xy<T>& u){
   169 	if (_empty)
   170 	  return false;
   171 	else{
   172 	  return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
   173 		  (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
   174 	}
   175       }
   176   
   177       ///Increments a bounding box with a point
   178       BoundingBox& operator +=(const xy<T>& u){
   179 	if (_empty){
   180 	  bottom_left=top_right=u;
   181 	  _empty = false;
   182 	}
   183 	else{
   184 	  if (bottom_left.x > u.x) bottom_left.x = u.x;
   185 	  if (bottom_left.y > u.y) bottom_left.y = u.y;
   186 	  if (top_right.x < u.x) top_right.x = u.x;
   187 	  if (top_right.y < u.y) top_right.y = u.y;
   188 	}
   189 	return *this;
   190       };
   191   
   192       ///Sums a bounding box and a point
   193       BoundingBox operator +(const xy<T>& u){
   194 	BoundingBox b = *this;
   195 	return b += u;
   196       };
   197 
   198       ///Increments a bounding box with an other bounding box
   199       BoundingBox& operator +=(const BoundingBox &u){
   200 	if ( !u.empty() ){
   201 	  *this += u.bottomLeft();
   202 	  *this += u.topRight();
   203 	}
   204 	return *this;
   205       };
   206   
   207       ///Sums two bounding boxes
   208       BoundingBox operator +(const BoundingBox& u){
   209 	BoundingBox b = *this;
   210 	return b += u;
   211       };
   212 
   213     };//class Boundingbox
   214 
   215 
   216   /// @}
   217 
   218 
   219 } //namespace hugo
   220 
   221 #endif //HUGO_XY_H