lemon/johnson.h
author marci
Wed, 30 Nov 2005 17:00:17 +0000
changeset 1840 173b53b28d7c
parent 1765 f15b3c09481c
child 1864 1788205e36af
permissions -rw-r--r--
max flow with lp column generation
     1 /* -*- C++ -*-
     2  * lemon/johnson.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_JOHNSON_H
    18 #define LEMON_JOHNSON_H
    19 
    20 ///\ingroup flowalgs
    21 /// \file
    22 /// \brief Johnson algorithm.
    23 ///
    24 
    25 #include <lemon/list_graph.h>
    26 #include <lemon/graph_utils.h>
    27 #include <lemon/dijkstra.h>
    28 #include <lemon/belmann_ford.h>
    29 #include <lemon/invalid.h>
    30 #include <lemon/error.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/matrix_maps.h>
    33 
    34 #include <limits>
    35 
    36 namespace lemon {
    37 
    38   /// \brief Default OperationTraits for the Johnson algorithm class.
    39   ///  
    40   /// It defines all computational operations and constants which are
    41   /// used in the Floyd-Warshall algorithm. The default implementation
    42   /// is based on the numeric_limits class. If the numeric type does not
    43   /// have infinity value then the maximum value is used as extremal
    44   /// infinity value.
    45   template <
    46     typename Value, 
    47     bool has_infinity = std::numeric_limits<Value>::has_infinity>
    48   struct JohnsonDefaultOperationTraits {
    49     /// \brief Gives back the zero value of the type.
    50     static Value zero() {
    51       return static_cast<Value>(0);
    52     }
    53     /// \brief Gives back the positive infinity value of the type.
    54     static Value infinity() {
    55       return std::numeric_limits<Value>::infinity();
    56     }
    57     /// \brief Gives back the sum of the given two elements.
    58     static Value plus(const Value& left, const Value& right) {
    59       return left + right;
    60     }
    61     /// \brief Gives back true only if the first value less than the second.
    62     static bool less(const Value& left, const Value& right) {
    63       return left < right;
    64     }
    65   };
    66 
    67   template <typename Value>
    68   struct JohnsonDefaultOperationTraits<Value, false> {
    69     static Value zero() {
    70       return static_cast<Value>(0);
    71     }
    72     static Value infinity() {
    73       return std::numeric_limits<Value>::max();
    74     }
    75     static Value plus(const Value& left, const Value& right) {
    76       if (left == infinity() || right == infinity()) return infinity();
    77       return left + right;
    78     }
    79     static bool less(const Value& left, const Value& right) {
    80       return left < right;
    81     }
    82   };
    83   
    84   /// \brief Default traits class of Johnson class.
    85   ///
    86   /// Default traits class of Johnson class.
    87   /// \param _Graph Graph type.
    88   /// \param _LegthMap Type of length map.
    89   template<class _Graph, class _LengthMap>
    90   struct JohnsonDefaultTraits {
    91     /// The graph type the algorithm runs on. 
    92     typedef _Graph Graph;
    93 
    94     /// \brief The type of the map that stores the edge lengths.
    95     ///
    96     /// The type of the map that stores the edge lengths.
    97     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    98     typedef _LengthMap LengthMap;
    99 
   100     // The type of the length of the edges.
   101     typedef typename _LengthMap::Value Value;
   102 
   103     /// \brief Operation traits for belmann-ford algorithm.
   104     ///
   105     /// It defines the infinity type on the given Value type
   106     /// and the used operation.
   107     /// \see JohnsonDefaultOperationTraits
   108     typedef JohnsonDefaultOperationTraits<Value> OperationTraits;
   109 
   110     /// The cross reference type used by heap.
   111 
   112     /// The cross reference type used by heap.
   113     /// Usually it is \c Graph::NodeMap<int>.
   114     typedef typename Graph::template NodeMap<int> HeapCrossRef;
   115 
   116     ///Instantiates a HeapCrossRef.
   117 
   118     ///This function instantiates a \ref HeapCrossRef. 
   119     /// \param graph is the graph, to which we would like to define the 
   120     /// HeapCrossRef.
   121     static HeapCrossRef *createHeapCrossRef(const Graph& graph) {
   122       return new HeapCrossRef(graph);
   123     }
   124     
   125     ///The heap type used by Dijkstra algorithm.
   126 
   127     ///The heap type used by Dijkstra algorithm.
   128     ///
   129     ///\sa BinHeap
   130     ///\sa Dijkstra
   131     typedef BinHeap<typename Graph::Node, typename LengthMap::Value,
   132 		    HeapCrossRef, std::less<Value> > Heap;
   133 
   134     ///Instantiates a Heap.
   135 
   136     ///This function instantiates a \ref Heap. 
   137     /// \param crossRef The cross reference for the heap.
   138     static Heap *createHeap(HeapCrossRef& crossRef) {
   139       return new Heap(crossRef);
   140     }
   141  
   142     /// \brief The type of the matrix map that stores the last edges of the 
   143     /// shortest paths.
   144     /// 
   145     /// The type of the map that stores the last edges of the shortest paths.
   146     /// It must be a matrix map with \c Graph::Edge value type.
   147     ///
   148     typedef DynamicMatrixMap<Graph, typename Graph::Node, 
   149 			     typename Graph::Edge> PredMap;
   150 
   151     /// \brief Instantiates a PredMap.
   152     /// 
   153     /// This function instantiates a \ref PredMap. 
   154     /// \param G is the graph, to which we would like to define the PredMap.
   155     /// \todo The graph alone may be insufficient for the initialization
   156     static PredMap *createPredMap(const Graph& graph) {
   157       return new PredMap(graph);
   158     }
   159 
   160     /// \brief The type of the matrix map that stores the dists of the nodes.
   161     ///
   162     /// The type of the matrix map that stores the dists of the nodes.
   163     /// It must meet the \ref concept::WriteMatrixMap "WriteMatrixMap" concept.
   164     ///
   165     typedef DynamicMatrixMap<Graph, typename Graph::Node, Value> DistMap;
   166     
   167     /// \brief Instantiates a DistMap.
   168     ///
   169     /// This function instantiates a \ref DistMap. 
   170     /// \param G is the graph, to which we would like to define the 
   171     /// \ref DistMap
   172     static DistMap *createDistMap(const _Graph& graph) {
   173       return new DistMap(graph);
   174     }
   175 
   176   };
   177 
   178   /// \brief %Johnson algorithm class.
   179   ///
   180   /// \ingroup flowalgs
   181   /// This class provides an efficient implementation of \c %Johnson 
   182   /// algorithm. The edge lengths are passed to the algorithm using a
   183   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   184   /// kind of length.
   185   ///
   186   /// The algorithm solves the shortest path problem for each pair
   187   /// of node when the edges can have negative length but the graph should
   188   /// not contain cycles with negative sum of length. If we can assume
   189   /// that all edge is non-negative in the graph then the dijkstra algorithm
   190   /// should be used from each node.
   191   ///
   192   /// The complexity of this algorithm is $O(n^2 * log(n) + n * log(n) * e)$ or
   193   /// with fibonacci heap O(n^2 * log(n) + n * e). Usually the fibonacci heap
   194   /// implementation is slower than either binary heap implementation or the 
   195   /// Floyd-Warshall algorithm. 
   196   ///
   197   /// The type of the length is determined by the
   198   /// \ref concept::ReadMap::Value "Value" of the length map.
   199   ///
   200   /// \param _Graph The graph type the algorithm runs on. The default value
   201   /// is \ref ListGraph. The value of _Graph is not used directly by
   202   /// Johnson, it is only passed to \ref JohnsonDefaultTraits.
   203   /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   204   /// edges. It is read once for each edge, so the map may involve in
   205   /// relatively time consuming process to compute the edge length if
   206   /// it is necessary. The default map type is \ref
   207   /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   208   /// of _LengthMap is not used directly by Johnson, it is only passed 
   209   /// to \ref JohnsonDefaultTraits.  \param _Traits Traits class to set
   210   /// various data types used by the algorithm.  The default traits
   211   /// class is \ref JohnsonDefaultTraits
   212   /// "JohnsonDefaultTraits<_Graph,_LengthMap>".  See \ref
   213   /// JohnsonDefaultTraits for the documentation of a Johnson traits
   214   /// class.
   215   ///
   216   /// \author Balazs Dezso
   217 
   218 #ifdef DOXYGEN
   219   template <typename _Graph, typename _LengthMap, typename _Traits>
   220 #else
   221   template <typename _Graph=ListGraph,
   222 	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   223 	    typename _Traits=JohnsonDefaultTraits<_Graph,_LengthMap> >
   224 #endif
   225   class Johnson {
   226   public:
   227     
   228     /// \brief \ref Exception for uninitialized parameters.
   229     ///
   230     /// This error represents problems in the initialization
   231     /// of the parameters of the algorithms.
   232 
   233     class UninitializedParameter : public lemon::UninitializedParameter {
   234     public:
   235       virtual const char* exceptionName() const {
   236 	return "lemon::Johnson::UninitializedParameter";
   237       }
   238     };
   239 
   240     typedef _Traits Traits;
   241     ///The type of the underlying graph.
   242     typedef typename _Traits::Graph Graph;
   243 
   244     typedef typename Graph::Node Node;
   245     typedef typename Graph::NodeIt NodeIt;
   246     typedef typename Graph::Edge Edge;
   247     typedef typename Graph::EdgeIt EdgeIt;
   248     
   249     /// \brief The type of the length of the edges.
   250     typedef typename _Traits::LengthMap::Value Value;
   251     /// \brief The type of the map that stores the edge lengths.
   252     typedef typename _Traits::LengthMap LengthMap;
   253     /// \brief The type of the map that stores the last
   254     /// edges of the shortest paths. The type of the PredMap
   255     /// is a matrix map for Edges
   256     typedef typename _Traits::PredMap PredMap;
   257     /// \brief The type of the map that stores the dists of the nodes.
   258     /// The type of the DistMap is a matrix map for Values
   259     typedef typename _Traits::DistMap DistMap;
   260     /// \brief The operation traits.
   261     typedef typename _Traits::OperationTraits OperationTraits;
   262     ///The cross reference type used for the current heap.
   263     typedef typename _Traits::HeapCrossRef HeapCrossRef;
   264     ///The heap type used by the dijkstra algorithm.
   265     typedef typename _Traits::Heap Heap;
   266   private:
   267     /// Pointer to the underlying graph.
   268     const Graph *graph;
   269     /// Pointer to the length map
   270     const LengthMap *length;
   271     ///Pointer to the map of predecessors edges.
   272     PredMap *_pred;
   273     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   274     bool local_pred;
   275     ///Pointer to the map of distances.
   276     DistMap *_dist;
   277     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   278     bool local_dist;
   279     ///Pointer to the heap cross references.
   280     HeapCrossRef *_heap_cross_ref;
   281     ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
   282     bool local_heap_cross_ref;
   283     ///Pointer to the heap.
   284     Heap *_heap;
   285     ///Indicates if \ref _heap is locally allocated (\c true) or not.
   286     bool local_heap;
   287 
   288     /// Creates the maps if necessary.
   289     void create_maps() {
   290       if(!_pred) {
   291 	local_pred = true;
   292 	_pred = Traits::createPredMap(*graph);
   293       }
   294       if(!_dist) {
   295 	local_dist = true;
   296 	_dist = Traits::createDistMap(*graph);
   297       }
   298       if (!_heap_cross_ref) {
   299 	local_heap_cross_ref = true;
   300 	_heap_cross_ref = Traits::createHeapCrossRef(*graph);
   301       }
   302       if (!_heap) {
   303 	local_heap = true;
   304 	_heap = Traits::createHeap(*_heap_cross_ref);
   305       }
   306     }
   307 
   308   public :
   309 
   310     /// \name Named template parameters
   311 
   312     ///@{
   313 
   314     template <class T>
   315     struct DefPredMapTraits : public Traits {
   316       typedef T PredMap;
   317       static PredMap *createPredMap(const Graph& graph) {
   318 	throw UninitializedParameter();
   319       }
   320     };
   321 
   322     /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   323     /// type
   324     /// \ref named-templ-param "Named parameter" for setting PredMap type
   325     ///
   326     template <class T>
   327     struct DefPredMap 
   328       : public Johnson< Graph, LengthMap, DefPredMapTraits<T> > {
   329       typedef Johnson< Graph, LengthMap, DefPredMapTraits<T> > Create;
   330     };
   331     
   332     template <class T>
   333     struct DefDistMapTraits : public Traits {
   334       typedef T DistMap;
   335       static DistMap *createDistMap(const Graph& graph) {
   336 	throw UninitializedParameter();
   337       }
   338     };
   339     /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   340     /// type
   341     ///
   342     /// \ref named-templ-param "Named parameter" for setting DistMap type
   343     ///
   344     template <class T>
   345     struct DefDistMap 
   346       : public Johnson< Graph, LengthMap, DefDistMapTraits<T> > {
   347       typedef Johnson< Graph, LengthMap, DefDistMapTraits<T> > Create;
   348     };
   349     
   350     template <class T>
   351     struct DefOperationTraitsTraits : public Traits {
   352       typedef T OperationTraits;
   353     };
   354     
   355     /// \brief \ref named-templ-param "Named parameter" for setting 
   356     /// OperationTraits type
   357     ///
   358     /// \ref named-templ-param "Named parameter" for setting 
   359     /// OperationTraits type
   360     template <class T>
   361     struct DefOperationTraits
   362       : public Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   363       typedef Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > Create;
   364     };
   365 
   366     template <class H, class CR>
   367     struct DefHeapTraits : public Traits {
   368       typedef CR HeapCrossRef;
   369       typedef H Heap;
   370       static HeapCrossRef *createHeapCrossRef(const Graph &) {
   371 	throw UninitializedParameter();
   372       }
   373       static Heap *createHeap(HeapCrossRef &) 
   374       {
   375 	throw UninitializedParameter();
   376       }
   377     };
   378     ///\brief \ref named-templ-param "Named parameter" for setting heap and 
   379     ///cross reference type
   380 
   381     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   382     ///reference type
   383     ///
   384     template <class H, class CR = typename Graph::template NodeMap<int> >
   385     struct DefHeap
   386       : public Johnson< Graph, LengthMap, DefHeapTraits<H, CR> > { 
   387       typedef Johnson< Graph, LengthMap, DefHeapTraits<H, CR> > Create;
   388     };
   389 
   390     template <class H, class CR>
   391     struct DefStandardHeapTraits : public Traits {
   392       typedef CR HeapCrossRef;
   393       typedef H Heap;
   394       static HeapCrossRef *createHeapCrossRef(const Graph &G) {
   395 	return new HeapCrossRef(G);
   396       }
   397       static Heap *createHeap(HeapCrossRef &R) 
   398       {
   399 	return new Heap(R);
   400       }
   401     };
   402     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   403     ///reference type with automatic allocation
   404 
   405     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   406     ///reference type. It can allocate the heap and the cross reference 
   407     ///object if the cross reference's constructor waits for the graph as 
   408     ///parameter and the heap's constructor waits for the cross reference.
   409     template <class H, class CR = typename Graph::template NodeMap<int> >
   410     struct DefStandardHeap
   411       : public Johnson< Graph, LengthMap, DefStandardHeapTraits<H, CR> > { 
   412       typedef Johnson< Graph, LengthMap, DefStandardHeapTraits<H, CR> > 
   413       Create;
   414     };
   415     
   416     ///@}
   417 
   418   protected:
   419 
   420     Johnson() {}
   421 
   422   public:      
   423 
   424     typedef Johnson Create;
   425     
   426     /// \brief Constructor.
   427     ///
   428     /// \param _graph the graph the algorithm will run on.
   429     /// \param _length the length map used by the algorithm.
   430     Johnson(const Graph& _graph, const LengthMap& _length) :
   431       graph(&_graph), length(&_length),
   432       _pred(0), local_pred(false),
   433       _dist(0), local_dist(false),
   434       _heap_cross_ref(0), local_heap_cross_ref(false),
   435       _heap(0), local_heap(false) {}
   436     
   437     ///Destructor.
   438     ~Johnson() {
   439       if (local_pred) delete _pred;
   440       if (local_dist) delete _dist;
   441       if (local_heap_cross_ref) delete _heap_cross_ref;
   442       if (local_heap) delete _heap;
   443     }
   444 
   445     /// \brief Sets the length map.
   446     ///
   447     /// Sets the length map.
   448     /// \return \c (*this)
   449     Johnson &lengthMap(const LengthMap &m) {
   450       length = &m;
   451       return *this;
   452     }
   453 
   454     /// \brief Sets the map storing the predecessor edges.
   455     ///
   456     /// Sets the map storing the predecessor edges.
   457     /// If you don't use this function before calling \ref run(),
   458     /// it will allocate one. The destuctor deallocates this
   459     /// automatically allocated map, of course.
   460     /// \return \c (*this)
   461     Johnson &predMap(PredMap &m) {
   462       if(local_pred) {
   463 	delete _pred;
   464 	local_pred=false;
   465       }
   466       _pred = &m;
   467       return *this;
   468     }
   469 
   470     /// \brief Sets the map storing the distances calculated by the algorithm.
   471     ///
   472     /// Sets the map storing the distances calculated by the algorithm.
   473     /// If you don't use this function before calling \ref run(),
   474     /// it will allocate one. The destuctor deallocates this
   475     /// automatically allocated map, of course.
   476     /// \return \c (*this)
   477     Johnson &distMap(DistMap &m) {
   478       if(local_dist) {
   479 	delete _dist;
   480 	local_dist=false;
   481       }
   482       _dist = &m;
   483       return *this;
   484     }
   485 
   486   protected:
   487     
   488     template <typename PotentialMap>
   489     void shiftedRun(const PotentialMap& potential) {
   490       
   491       typename Graph::template EdgeMap<Value> shiftlen(*graph);
   492       for (EdgeIt it(*graph);  it != INVALID; ++it) {
   493       	shiftlen[it] = (*length)[it] 
   494 	  + potential[graph->source(it)] 
   495 	  - potential[graph->target(it)];
   496       }
   497       
   498       typename Dijkstra<Graph, typename Graph::template EdgeMap<Value> >::
   499 	template DefHeap<Heap, HeapCrossRef>::
   500 	Create dijkstra(*graph, shiftlen);
   501 
   502       dijkstra.heap(*_heap, *_heap_cross_ref);
   503       
   504       for (NodeIt it(*graph); it != INVALID; ++it) {
   505 	dijkstra.run(it);
   506 	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   507 	  if (dijkstra.reached(jt)) {
   508 	    _dist->set(it, jt, dijkstra.dist(jt) + 
   509 		       potential[jt] - potential[it]);
   510 	    _pred->set(it, jt, dijkstra.predEdge(jt));
   511 	  } else {
   512 	    _dist->set(it, jt, OperationTraits::infinity());
   513 	    _pred->set(it, jt, INVALID);
   514 	  }
   515 	}
   516       }
   517     }
   518 
   519   public:    
   520 
   521     ///\name Execution control
   522     /// The simplest way to execute the algorithm is to use
   523     /// one of the member functions called \c run(...).
   524     /// \n
   525     /// If you need more control on the execution,
   526     /// Finally \ref start() will perform the actual path
   527     /// computation.
   528 
   529     ///@{
   530 
   531     /// \brief Initializes the internal data structures.
   532     /// 
   533     /// Initializes the internal data structures.
   534     void init() {
   535       create_maps();
   536     }
   537 
   538     /// \brief Executes the algorithm.
   539     ///
   540     /// This method runs the %Johnson algorithm in order to compute 
   541     /// the shortest path to each node pairs. The algorithm 
   542     /// computes 
   543     /// - The shortest path tree for each node.
   544     /// - The distance between each node pairs.
   545     void start() {
   546 
   547       typedef typename BelmannFord<Graph, LengthMap>::
   548       template DefOperationTraits<OperationTraits>::
   549       template DefPredMap<NullMap<Node, Edge> >::
   550       Create BelmannFordType;
   551       
   552       BelmannFordType belmannford(*graph, *length);
   553 
   554       NullMap<Node, Edge> predMap;
   555 
   556       belmannford.predMap(predMap);
   557       
   558       belmannford.init(OperationTraits::zero());
   559       belmannford.start();
   560 
   561       shiftedRun(belmannford.distMap());
   562     }
   563 
   564     /// \brief Executes the algorithm and checks the negatvie cycles.
   565     ///
   566     /// This method runs the %Johnson algorithm in order to compute 
   567     /// the shortest path to each node pairs. If the graph contains
   568     /// negative cycle it gives back false. The algorithm 
   569     /// computes 
   570     /// - The shortest path tree for each node.
   571     /// - The distance between each node pairs.
   572     bool checkedStart() {
   573       
   574       typedef typename BelmannFord<Graph, LengthMap>::
   575       template DefOperationTraits<OperationTraits>::
   576       template DefPredMap<NullMap<Node, Edge> >::
   577       Create BelmannFordType;
   578 
   579       BelmannFordType belmannford(*graph, *length);
   580 
   581       NullMap<Node, Edge> predMap;
   582 
   583       belmannford.predMap(predMap);
   584       
   585       belmannford.init(OperationTraits::zero());
   586       if (!belmannford.checkedStart()) return false;
   587 
   588       shiftedRun(belmannford.distMap());
   589       return true;
   590     }
   591 
   592     
   593     /// \brief Runs %Johnson algorithm.
   594     ///    
   595     /// This method runs the %Johnson algorithm from a each node
   596     /// in order to compute the shortest path to each node pairs. 
   597     /// The algorithm computes
   598     /// - The shortest path tree for each node.
   599     /// - The distance between each node pairs.
   600     ///
   601     /// \note d.run(s) is just a shortcut of the following code.
   602     /// \code
   603     ///  d.init();
   604     ///  d.start();
   605     /// \endcode
   606     void run() {
   607       init();
   608       start();
   609     }
   610     
   611     ///@}
   612 
   613     /// \name Query Functions
   614     /// The result of the %Johnson algorithm can be obtained using these
   615     /// functions.\n
   616     /// Before the use of these functions,
   617     /// either run() or start() must be called.
   618     
   619     ///@{
   620 
   621     /// \brief Copies the shortest path to \c t into \c p
   622     ///    
   623     /// This function copies the shortest path to \c t into \c p.
   624     /// If it \c t is a source itself or unreachable, then it does not
   625     /// alter \c p.
   626     /// \return Returns \c true if a path to \c t was actually copied to \c p,
   627     /// \c false otherwise.
   628     /// \sa DirPath
   629     template <typename Path>
   630     bool getPath(Path &p, Node source, Node target) {
   631       if (connected(source, target)) {
   632 	p.clear();
   633 	typename Path::Builder b(target);
   634 	for(b.setStartNode(target); predEdge(source, target) != INVALID;
   635 	    target = predNode(target)) {
   636 	  b.pushFront(predEdge(source, target));
   637 	}
   638 	b.commit();
   639 	return true;
   640       }
   641       return false;
   642     }
   643 	  
   644     /// \brief The distance between two nodes.
   645     ///
   646     /// Returns the distance between two nodes.
   647     /// \pre \ref run() must be called before using this function.
   648     /// \warning If node \c v in unreachable from the root the return value
   649     /// of this funcion is undefined.
   650     Value dist(Node source, Node target) const { 
   651       return (*_dist)(source, target); 
   652     }
   653 
   654     /// \brief Returns the 'previous edge' of the shortest path tree.
   655     ///
   656     /// For the node \c node it returns the 'previous edge' of the shortest 
   657     /// path tree to direction of the node \c root 
   658     /// i.e. it returns the last edge of a shortest path from the node \c root 
   659     /// to \c node. It is \ref INVALID if \c node is unreachable from the root
   660     /// or if \c node=root. The shortest path tree used here is equal to the 
   661     /// shortest path tree used in \ref predNode(). 
   662     /// \pre \ref run() must be called before using this function.
   663     Edge predEdge(Node root, Node node) const { 
   664       return (*_pred)(root, node); 
   665     }
   666 
   667     /// \brief Returns the 'previous node' of the shortest path tree.
   668     ///
   669     /// For a node \c node it returns the 'previous node' of the shortest path 
   670     /// tree to direction of the node \c root, i.e. it returns the last but 
   671     /// one node from a shortest path from the \c root to \c node. It is 
   672     /// INVALID if \c node is unreachable from the root or if \c node=root. 
   673     /// The shortest path tree used here is equal to the 
   674     /// shortest path tree used in \ref predEdge().  
   675     /// \pre \ref run() must be called before using this function.
   676     Node predNode(Node root, Node node) const { 
   677       return (*_pred)(root, node) == INVALID ? 
   678       INVALID : graph->source((*_pred)(root, node)); 
   679     }
   680     
   681     /// \brief Returns a reference to the matrix node map of distances.
   682     ///
   683     /// Returns a reference to the matrix node map of distances. 
   684     ///
   685     /// \pre \ref run() must be called before using this function.
   686     const DistMap &distMap() const { return *_dist;}
   687  
   688     /// \brief Returns a reference to the shortest path tree map.
   689     ///
   690     /// Returns a reference to the matrix node map of the edges of the
   691     /// shortest path tree.
   692     /// \pre \ref run() must be called before using this function.
   693     const PredMap &predMap() const { return *_pred;}
   694  
   695     /// \brief Checks if a node is reachable from the root.
   696     ///
   697     /// Returns \c true if \c v is reachable from the root.
   698     /// \pre \ref run() must be called before using this function.
   699     ///
   700     bool connected(Node source, Node target) { 
   701       return (*_dist)(source, target) != OperationTraits::infinity(); 
   702     }
   703     
   704     ///@}
   705   };
   706  
   707 } //END OF NAMESPACE LEMON
   708 
   709 #endif