lemon/topology.h
author marci
Wed, 30 Nov 2005 17:00:17 +0000
changeset 1840 173b53b28d7c
parent 1808 c499025ca638
child 1875 98698b69a902
permissions -rw-r--r--
max flow with lp column generation
     1 /* -*- C++ -*-
     2  * lemon/topology.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_TOPOLOGY_H
    18 #define LEMON_TOPOLOGY_H
    19 
    20 #include <lemon/dfs.h>
    21 #include <lemon/bfs.h>
    22 #include <lemon/graph_utils.h>
    23 #include <lemon/graph_adaptor.h>
    24 #include <lemon/maps.h>
    25 
    26 #include <lemon/concept/graph.h>
    27 #include <lemon/concept/undir_graph.h>
    28 #include <lemon/concept_check.h>
    29 
    30 #include <lemon/bin_heap.h>
    31 #include <lemon/linear_heap.h>
    32 
    33 #include <stack>
    34 #include <functional>
    35 
    36 /// \ingroup topology
    37 /// \file
    38 /// \brief Topology related algorithms
    39 ///
    40 /// Topology related algorithms
    41 
    42 namespace lemon {
    43 
    44   /// \ingroup topology
    45   ///
    46   /// \brief Check that the given undirected graph is connected.
    47   ///
    48   /// Check that the given undirected graph connected.
    49   /// \param graph The undirected graph.
    50   /// \return %True when there is path between any two nodes in the graph.
    51   /// \note By definition, the empty graph is connected.
    52   template <typename UndirGraph>
    53   bool connected(const UndirGraph& graph) {
    54     checkConcept<concept::UndirGraph, UndirGraph>();
    55     typedef typename UndirGraph::NodeIt NodeIt;
    56     if (NodeIt(graph) == INVALID) return true;
    57     Dfs<UndirGraph> dfs(graph);
    58     dfs.run(NodeIt(graph));
    59     for (NodeIt it(graph); it != INVALID; ++it) {
    60       if (!dfs.reached(it)) {
    61 	return false;
    62       }
    63     }
    64     return true;
    65   }
    66 
    67   /// \ingroup topology
    68   ///
    69   /// \brief Count the number of connected components of an undirected graph
    70   ///
    71   /// Count the number of connected components of an undirected graph
    72   ///
    73   /// \param graph The graph. It should be undirected.
    74   /// \return The number of components
    75   /// \note By definition, the empty graph consists
    76   /// of zero connected components.
    77   template <typename UndirGraph>
    78   int countConnectedComponents(const UndirGraph &graph) {
    79     checkConcept<concept::UndirGraph, UndirGraph>();
    80     typedef typename UndirGraph::Node Node;
    81     typedef typename UndirGraph::Edge Edge;
    82 
    83     typedef NullMap<Node, Edge> PredMap;
    84     typedef NullMap<Node, int> DistMap;
    85 
    86     int compNum = 0;
    87     typename Bfs<UndirGraph>::
    88       template DefPredMap<PredMap>::
    89       template DefDistMap<DistMap>::
    90       Create bfs(graph);
    91 
    92     PredMap predMap;
    93     bfs.predMap(predMap);
    94 
    95     DistMap distMap;
    96     bfs.distMap(distMap);
    97 
    98     bfs.init();
    99     for(typename UndirGraph::NodeIt n(graph); n != INVALID; ++n) {
   100       if (!bfs.reached(n)) {
   101 	bfs.addSource(n);
   102 	bfs.start();
   103 	++compNum;
   104       }
   105     }
   106     return compNum;
   107   }
   108 
   109   /// \ingroup topology
   110   ///
   111   /// \brief Find the connected components of an undirected graph
   112   ///
   113   /// Find the connected components of an undirected graph.
   114   ///
   115   /// \image html connected_components.png
   116   /// \image latex connected_components.eps "Connected components" width=\textwidth
   117   ///
   118   /// \param graph The graph. It should be undirected.
   119   /// \retval compMap A writable node map. The values will be set from 0 to
   120   /// the number of the connected components minus one. Each values of the map
   121   /// will be set exactly once, the values of a certain component will be
   122   /// set continuously.
   123   /// \return The number of components
   124   ///
   125   template <class UndirGraph, class NodeMap>
   126   int connectedComponents(const UndirGraph &graph, NodeMap &compMap) {
   127     checkConcept<concept::UndirGraph, UndirGraph>();
   128     typedef typename UndirGraph::Node Node;
   129     typedef typename UndirGraph::Edge Edge;
   130     checkConcept<concept::WriteMap<Node, int>, NodeMap>();
   131 
   132     typedef NullMap<Node, Edge> PredMap;
   133     typedef NullMap<Node, int> DistMap;
   134 
   135     int compNum = 0;
   136     typename Bfs<UndirGraph>::
   137       template DefPredMap<PredMap>::
   138       template DefDistMap<DistMap>::
   139       Create bfs(graph);
   140 
   141     PredMap predMap;
   142     bfs.predMap(predMap);
   143 
   144     DistMap distMap;
   145     bfs.distMap(distMap);
   146     
   147     bfs.init();
   148     for(typename UndirGraph::NodeIt n(graph); n != INVALID; ++n) {
   149       if(!bfs.reached(n)) {
   150 	bfs.addSource(n);
   151 	while (!bfs.emptyQueue()) {
   152 	  compMap.set(bfs.nextNode(), compNum);
   153 	  bfs.processNextNode();
   154 	}
   155 	++compNum;
   156       }
   157     }
   158     return compNum;
   159   }
   160 
   161   namespace _topology_bits {
   162 
   163     template <typename Graph, typename Iterator >
   164     struct LeaveOrderVisitor : public DfsVisitor<Graph> {
   165     public:
   166       typedef typename Graph::Node Node;
   167       LeaveOrderVisitor(Iterator it) : _it(it) {}
   168 
   169       void leave(const Node& node) {
   170 	*(_it++) = node;
   171       }
   172 
   173     private:
   174       Iterator _it;
   175     };
   176 
   177     template <typename Graph, typename Map>
   178     struct FillMapVisitor : public DfsVisitor<Graph> {
   179     public:
   180       typedef typename Graph::Node Node;
   181       typedef typename Map::Value Value;
   182 
   183       FillMapVisitor(Map& map, Value& value) 
   184 	: _map(map), _value(value) {}
   185 
   186       void reach(const Node& node) {
   187 	_map.set(node, _value);
   188       }
   189     private:
   190       Map& _map;
   191       Value& _value;
   192     };
   193 
   194     template <typename Graph, typename EdgeMap>
   195     struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Graph> {
   196     public:
   197       typedef typename Graph::Node Node;
   198       typedef typename Graph::Edge Edge;
   199 
   200       StronglyConnectedCutEdgesVisitor(const Graph& graph, EdgeMap& cutMap, 
   201 				       int& cutNum) 
   202 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), 
   203 	  _compMap(graph), _num(0) {
   204       }
   205 
   206       void stop(const Node&) {
   207 	++_num;
   208       }
   209 
   210       void reach(const Node& node) {
   211 	_compMap.set(node, _num);
   212       }
   213 
   214       void examine(const Edge& edge) {
   215  	if (_compMap[_graph.source(edge)] != _compMap[_graph.target(edge)]) {
   216  	  _cutMap.set(edge, true);
   217  	  ++_cutNum;
   218  	}
   219       }
   220     private:
   221       const Graph& _graph;
   222       EdgeMap& _cutMap;
   223       int& _cutNum;
   224 
   225       typename Graph::template NodeMap<int> _compMap;
   226       int _num;
   227     };
   228 
   229   }
   230 
   231 
   232   /// \ingroup topology
   233   ///
   234   /// \brief Check that the given directed graph is strongly connected.
   235   ///
   236   /// Check that the given directed graph is strongly connected. The
   237   /// graph is strongly connected when any two nodes of the graph are
   238   /// connected with directed paths in both direction.
   239   /// \return %False when the graph is not strongly connected.
   240   /// \see connected
   241   ///
   242   /// \note By definition, the empty graph is strongly connected.
   243   template <typename Graph>
   244   bool stronglyConnected(const Graph& graph) {
   245     checkConcept<concept::StaticGraph, Graph>();
   246     if (NodeIt(graph) == INVALID) return true;
   247 
   248     typedef typename Graph::Node Node;
   249     typedef typename Graph::NodeIt NodeIt;
   250 
   251     using namespace _topology_bits;
   252 
   253     typedef DfsVisitor<Graph> Visitor;
   254     Visitor visitor;
   255 
   256     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   257     dfs.init();
   258     dfs.addSource(NodeIt(graph));
   259     dfs.start();
   260 
   261     for (NodeIt it(graph); it != INVALID; ++it) {
   262       if (!dfs.reached(it)) {
   263 	return false;
   264       }
   265     }
   266 
   267     typedef RevGraphAdaptor<const Graph> RGraph;
   268     RGraph rgraph(graph);
   269 
   270     typedef DfsVisitor<Graph> RVisitor;
   271     RVisitor rvisitor;
   272 
   273     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   274     rdfs.init();    
   275     rdfs.addSource(NodeIt(graph));
   276     rdfs.start();
   277 
   278     for (NodeIt it(graph); it != INVALID; ++it) {
   279       if (!rdfs.reached(it)) {
   280 	return false;
   281       }
   282     }
   283 
   284     return true;
   285   }
   286 
   287   /// \ingroup topology
   288   ///
   289   /// \brief Count the strongly connected components of a directed graph
   290   ///
   291   /// Count the strongly connected components of a directed graph.
   292   /// The strongly connected components are the classes of an equivalence
   293   /// relation on the nodes of the graph. Two nodes are connected with
   294   /// directed paths in both direction.
   295   ///
   296   /// \param graph The graph.
   297   /// \return The number of components
   298   /// \note By definition, the empty graph has zero
   299   /// strongly connected components.
   300   template <typename Graph>
   301   int countStronglyConnectedComponents(const Graph& graph) {
   302     checkConcept<concept::StaticGraph, Graph>();
   303 
   304     using namespace _topology_bits;
   305 
   306     typedef typename Graph::Node Node;
   307     typedef typename Graph::Edge Edge;
   308     typedef typename Graph::NodeIt NodeIt;
   309     typedef typename Graph::EdgeIt EdgeIt;
   310     
   311     typedef std::vector<Node> Container;
   312     typedef typename Container::iterator Iterator;
   313 
   314     Container nodes(countNodes(graph));
   315     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   316     Visitor visitor(nodes.begin());
   317       
   318     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   319     dfs.init();
   320     for (NodeIt it(graph); it != INVALID; ++it) {
   321       if (!dfs.reached(it)) {
   322 	dfs.addSource(it);
   323 	dfs.start();
   324       }
   325     }
   326 
   327     typedef typename Container::reverse_iterator RIterator;
   328     typedef RevGraphAdaptor<const Graph> RGraph;
   329 
   330     RGraph rgraph(graph);
   331 
   332     typedef DfsVisitor<Graph> RVisitor;
   333     RVisitor rvisitor;
   334 
   335     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   336 
   337     int compNum = 0;
   338 
   339     rdfs.init();
   340     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   341       if (!rdfs.reached(*it)) {
   342 	rdfs.addSource(*it);
   343 	rdfs.start();
   344 	++compNum;
   345       }
   346     }
   347     return compNum;
   348   }
   349 
   350   /// \ingroup topology
   351   ///
   352   /// \brief Find the strongly connected components of a directed graph
   353   ///
   354   /// Find the strongly connected components of a directed graph.
   355   /// The strongly connected components are the classes of an equivalence
   356   /// relation on the nodes of the graph. Two nodes are in relationship
   357   /// when there are directed paths between them in both direction.
   358   ///
   359   /// \image html strongly_connected_components.png
   360   /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
   361   ///
   362   /// \param graph The graph.
   363   /// \retval compMap A writable node map. The values will be set from 0 to
   364   /// the number of the strongly connected components minus one. Each values 
   365   /// of the map will be set exactly once, the values of a certain component 
   366   /// will be set continuously.
   367   /// \return The number of components
   368   ///
   369   template <typename Graph, typename NodeMap>
   370   int stronglyConnectedComponents(const Graph& graph, NodeMap& compMap) {
   371     checkConcept<concept::StaticGraph, Graph>();
   372     typedef typename Graph::Node Node;
   373     typedef typename Graph::NodeIt NodeIt;
   374     checkConcept<concept::WriteMap<Node, int>, NodeMap>();
   375 
   376     using namespace _topology_bits;
   377     
   378     typedef std::vector<Node> Container;
   379     typedef typename Container::iterator Iterator;
   380 
   381     Container nodes(countNodes(graph));
   382     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   383     Visitor visitor(nodes.begin());
   384       
   385     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   386     dfs.init();
   387     for (NodeIt it(graph); it != INVALID; ++it) {
   388       if (!dfs.reached(it)) {
   389 	dfs.addSource(it);
   390 	dfs.start();
   391       }
   392     }
   393 
   394     typedef typename Container::reverse_iterator RIterator;
   395     typedef RevGraphAdaptor<const Graph> RGraph;
   396 
   397     RGraph rgraph(graph);
   398 
   399     int compNum = 0;
   400 
   401     typedef FillMapVisitor<RGraph, NodeMap> RVisitor;
   402     RVisitor rvisitor(compMap, compNum);
   403 
   404     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   405 
   406     rdfs.init();
   407     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   408       if (!rdfs.reached(*it)) {
   409 	rdfs.addSource(*it);
   410 	rdfs.start();
   411 	++compNum;
   412       }
   413     }
   414     return compNum;
   415   }
   416 
   417   /// \ingroup topology
   418   ///
   419   /// \brief Find the cut edges of the strongly connected components.
   420   ///
   421   /// Find the cut edges of the strongly connected components.
   422   /// The strongly connected components are the classes of an equivalence
   423   /// relation on the nodes of the graph. Two nodes are in relationship
   424   /// when there are directed paths between them in both direction.
   425   /// The strongly connected components are separated by the cut edges.
   426   ///
   427   /// \param graph The graph.
   428   /// \retval cutMap A writable node map. The values will be set true when the
   429   /// edge is a cut edge.
   430   ///
   431   /// \return The number of cut edges
   432   template <typename Graph, typename EdgeMap>
   433   int stronglyConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
   434     checkConcept<concept::StaticGraph, Graph>();
   435     typedef typename Graph::Node Node;
   436     typedef typename Graph::Edge Edge;
   437     typedef typename Graph::NodeIt NodeIt;
   438     checkConcept<concept::WriteMap<Edge, bool>, EdgeMap>();
   439 
   440     using namespace _topology_bits;
   441     
   442     typedef std::vector<Node> Container;
   443     typedef typename Container::iterator Iterator;
   444 
   445     Container nodes(countNodes(graph));
   446     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   447     Visitor visitor(nodes.begin());
   448       
   449     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   450     dfs.init();
   451     for (NodeIt it(graph); it != INVALID; ++it) {
   452       if (!dfs.reached(it)) {
   453 	dfs.addSource(it);
   454 	dfs.start();
   455       }
   456     }
   457 
   458     typedef typename Container::reverse_iterator RIterator;
   459     typedef RevGraphAdaptor<const Graph> RGraph;
   460 
   461     RGraph rgraph(graph);
   462 
   463     int cutNum = 0;
   464 
   465     typedef StronglyConnectedCutEdgesVisitor<RGraph, EdgeMap> RVisitor;
   466     RVisitor rvisitor(rgraph, cutMap, cutNum);
   467 
   468     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   469 
   470     rdfs.init();
   471     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   472       if (!rdfs.reached(*it)) {
   473 	rdfs.addSource(*it);
   474 	rdfs.start();
   475       }
   476     }
   477     return cutNum;
   478   }
   479 
   480   namespace _topology_bits {
   481     
   482     template <typename Graph>
   483     class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   484     public:
   485       typedef typename Graph::Node Node;
   486       typedef typename Graph::Edge Edge;
   487       typedef typename Graph::UndirEdge UndirEdge;
   488 
   489       CountBiNodeConnectedComponentsVisitor(const Graph& graph, int &compNum) 
   490 	: _graph(graph), _compNum(compNum), 
   491 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   492 
   493       void start(const Node& node) {
   494 	_predMap.set(node, INVALID);
   495       }
   496       
   497       void reach(const Node& node) {
   498 	_numMap.set(node, _num);
   499 	_retMap.set(node, _num);
   500 	++_num;
   501       }
   502 
   503       void discover(const Edge& edge) {
   504 	_predMap.set(_graph.target(edge), _graph.source(edge));
   505       }
   506 
   507       void examine(const Edge& edge) {
   508 	if (_graph.source(edge) == _graph.target(edge) && 
   509 	    _graph.direction(edge)) {
   510 	  ++_compNum;
   511 	  return;
   512 	}
   513 	if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
   514 	  return;
   515 	}
   516 	if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   517 	  _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   518 	}
   519       }
   520 
   521       void backtrack(const Edge& edge) {
   522 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   523 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   524 	}  
   525 	if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   526 	  ++_compNum;
   527 	}
   528       }
   529       
   530     private:
   531       const Graph& _graph;
   532       int& _compNum; 
   533 
   534       typename Graph::template NodeMap<int> _numMap;
   535       typename Graph::template NodeMap<int> _retMap;
   536       typename Graph::template NodeMap<Node> _predMap;
   537       int _num;
   538     };
   539 
   540     template <typename Graph, typename EdgeMap>
   541     class BiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   542     public:
   543       typedef typename Graph::Node Node;
   544       typedef typename Graph::Edge Edge;
   545       typedef typename Graph::UndirEdge UndirEdge;
   546 
   547       BiNodeConnectedComponentsVisitor(const Graph& graph, 
   548 				       EdgeMap& compMap, int &compNum) 
   549 	: _graph(graph), _compMap(compMap), _compNum(compNum), 
   550 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   551 
   552       void start(const Node& node) {
   553 	_predMap.set(node, INVALID);
   554       }
   555       
   556       void reach(const Node& node) {
   557 	_numMap.set(node, _num);
   558 	_retMap.set(node, _num);
   559 	++_num;
   560       }
   561 
   562       void discover(const Edge& edge) {
   563 	Node target = _graph.target(edge);
   564 	_predMap.set(target, edge);
   565 	_edgeStack.push(edge);
   566       }
   567 
   568       void examine(const Edge& edge) {
   569 	Node source = _graph.source(edge);
   570 	Node target = _graph.target(edge);
   571 	if (source == target && _graph.direction(edge)) {
   572 	  _compMap.set(edge, _compNum);
   573 	  ++_compNum;
   574 	  return;
   575 	}
   576 	if (_numMap[target] < _numMap[source]) {
   577 	  if (_predMap[source] != _graph.oppositeEdge(edge)) {
   578 	    _edgeStack.push(edge);
   579 	  }
   580 	}
   581 	if (_predMap[source] != INVALID && 
   582 	    target == _graph.source(_predMap[source])) {
   583 	  return;
   584 	}
   585 	if (_retMap[source] > _numMap[target]) {
   586 	  _retMap.set(source, _numMap[target]);
   587 	}
   588       }
   589 
   590       void backtrack(const Edge& edge) {
   591 	Node source = _graph.source(edge);
   592 	Node target = _graph.target(edge);
   593 	if (_retMap[source] > _retMap[target]) {
   594 	  _retMap.set(source, _retMap[target]);
   595 	}  
   596 	if (_numMap[source] <= _retMap[target]) {
   597 	  while (_edgeStack.top() != edge) {
   598 	    _compMap.set(_edgeStack.top(), _compNum);
   599 	    _edgeStack.pop();
   600 	  }
   601 	  _compMap.set(edge, _compNum);
   602 	  _edgeStack.pop();
   603 	  ++_compNum;
   604 	}
   605       }
   606       
   607     private:
   608       const Graph& _graph;
   609       EdgeMap& _compMap;
   610       int& _compNum; 
   611 
   612       typename Graph::template NodeMap<int> _numMap;
   613       typename Graph::template NodeMap<int> _retMap;
   614       typename Graph::template NodeMap<Edge> _predMap;
   615       std::stack<UndirEdge> _edgeStack;
   616       int _num;
   617     };
   618 
   619 
   620     template <typename Graph, typename NodeMap>
   621     class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Graph> {
   622     public:
   623       typedef typename Graph::Node Node;
   624       typedef typename Graph::Edge Edge;
   625       typedef typename Graph::UndirEdge UndirEdge;
   626 
   627       BiNodeConnectedCutNodesVisitor(const Graph& graph, NodeMap& cutMap,
   628 				     int& cutNum) 
   629 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
   630 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   631 
   632       void start(const Node& node) {
   633 	_predMap.set(node, INVALID);
   634 	rootCut = false;
   635       }
   636       
   637       void reach(const Node& node) {
   638 	_numMap.set(node, _num);
   639 	_retMap.set(node, _num);
   640 	++_num;
   641       }
   642 
   643       void discover(const Edge& edge) {
   644 	_predMap.set(_graph.target(edge), _graph.source(edge));
   645       }
   646 
   647       void examine(const Edge& edge) {
   648 	if (_graph.source(edge) == _graph.target(edge) && 
   649 	    _graph.direction(edge)) {
   650 	  if (!_cutMap[_graph.source(edge)]) {
   651 	    _cutMap.set(_graph.source(edge), true);
   652 	    ++_cutNum;
   653 	  }
   654 	  return;
   655 	}
   656 	if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
   657 	if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   658 	  _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   659 	}
   660       }
   661 
   662       void backtrack(const Edge& edge) {
   663 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   664 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   665 	}  
   666 	if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   667 	  if (_predMap[_graph.source(edge)] != INVALID) {
   668 	    if (!_cutMap[_graph.source(edge)]) {
   669 	      _cutMap.set(_graph.source(edge), true);
   670 	      ++_cutNum;
   671 	    }
   672 	  } else if (rootCut) {
   673 	    if (!_cutMap[_graph.source(edge)]) {
   674 	      _cutMap.set(_graph.source(edge), true);
   675 	      ++_cutNum;
   676 	    }
   677 	  } else {
   678 	    rootCut = true;
   679 	  }
   680 	}
   681       }
   682       
   683     private:
   684       const Graph& _graph;
   685       NodeMap& _cutMap;
   686       int& _cutNum; 
   687 
   688       typename Graph::template NodeMap<int> _numMap;
   689       typename Graph::template NodeMap<int> _retMap;
   690       typename Graph::template NodeMap<Node> _predMap;
   691       std::stack<UndirEdge> _edgeStack;
   692       int _num;
   693       bool rootCut;
   694     };
   695 
   696   }
   697 
   698   template <typename UndirGraph>
   699   int countBiNodeConnectedComponents(const UndirGraph& graph);
   700 
   701   /// \ingroup topology
   702   ///
   703   /// \brief Checks the graph is bi-node-connected.
   704   ///
   705   /// This function checks that the undirected graph is bi-node-connected  
   706   /// graph. The graph is bi-node-connected if any two undirected edge is 
   707   /// on same circle.
   708   ///
   709   /// \param graph The graph.
   710   /// \return %True when the graph bi-node-connected.
   711   /// \todo Make it faster.
   712   template <typename UndirGraph>
   713   bool biNodeConnected(const UndirGraph& graph) {
   714     return countBiNodeConnectedComponents(graph) == 1;
   715   }
   716 
   717   /// \ingroup topology
   718   ///
   719   /// \brief Count the biconnected components.
   720   ///
   721   /// This function finds the bi-node-connected components in an undirected 
   722   /// graph. The biconnected components are the classes of an equivalence 
   723   /// relation on the undirected edges. Two undirected edge is in relationship
   724   /// when they are on same circle.
   725   ///
   726   /// \param graph The graph.
   727   /// \return The number of components.
   728   template <typename UndirGraph>
   729   int countBiNodeConnectedComponents(const UndirGraph& graph) {
   730     checkConcept<concept::UndirGraph, UndirGraph>();
   731     typedef typename UndirGraph::NodeIt NodeIt;
   732 
   733     using namespace _topology_bits;
   734 
   735     typedef CountBiNodeConnectedComponentsVisitor<UndirGraph> Visitor;
   736 
   737     int compNum = 0;
   738     Visitor visitor(graph, compNum);
   739 
   740     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
   741     dfs.init();
   742     
   743     for (NodeIt it(graph); it != INVALID; ++it) {
   744       if (!dfs.reached(it)) {
   745 	dfs.addSource(it);
   746 	dfs.start();
   747       }
   748     }
   749     return compNum;
   750   }
   751 
   752   /// \ingroup topology
   753   ///
   754   /// \brief Find the bi-node-connected components.
   755   ///
   756   /// This function finds the bi-node-connected components in an undirected 
   757   /// graph. The bi-node-connected components are the classes of an equivalence
   758   /// relation on the undirected edges. Two undirected edge are in relationship
   759   /// when they are on same circle.
   760   ///
   761   /// \image html node_biconnected_components.png
   762   /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
   763   ///
   764   /// \param graph The graph.
   765   /// \retval compMap A writable undir edge map. The values will be set from 0
   766   /// to the number of the biconnected components minus one. Each values 
   767   /// of the map will be set exactly once, the values of a certain component 
   768   /// will be set continuously.
   769   /// \return The number of components.
   770   ///
   771   template <typename UndirGraph, typename UndirEdgeMap>
   772   int biNodeConnectedComponents(const UndirGraph& graph, 
   773 				UndirEdgeMap& compMap) {
   774     checkConcept<concept::UndirGraph, UndirGraph>();
   775     typedef typename UndirGraph::NodeIt NodeIt;
   776     typedef typename UndirGraph::UndirEdge UndirEdge;
   777     checkConcept<concept::WriteMap<UndirEdge, int>, UndirEdgeMap>();
   778 
   779     using namespace _topology_bits;
   780 
   781     typedef BiNodeConnectedComponentsVisitor<UndirGraph, UndirEdgeMap> Visitor;
   782     
   783     int compNum = 0;
   784     Visitor visitor(graph, compMap, compNum);
   785 
   786     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
   787     dfs.init();
   788     
   789     for (NodeIt it(graph); it != INVALID; ++it) {
   790       if (!dfs.reached(it)) {
   791 	dfs.addSource(it);
   792 	dfs.start();
   793       }
   794     }
   795     return compNum;
   796   }
   797 
   798   /// \ingroup topology
   799   ///
   800   /// \brief Find the bi-node-connected cut nodes.
   801   ///
   802   /// This function finds the bi-node-connected cut nodes in an undirected 
   803   /// graph. The bi-node-connected components are the classes of an equivalence
   804   /// relation on the undirected edges. Two undirected edges are in 
   805   /// relationship when they are on same circle. The biconnected components 
   806   /// are separted by nodes which are the cut nodes of the components.
   807   ///
   808   /// \param graph The graph.
   809   /// \retval cutMap A writable edge map. The values will be set true when
   810   /// the node separate two or more components.
   811   /// \return The number of the cut nodes.
   812   template <typename UndirGraph, typename NodeMap>
   813   int biNodeConnectedCutNodes(const UndirGraph& graph, NodeMap& cutMap) {
   814     checkConcept<concept::UndirGraph, UndirGraph>();
   815     typedef typename UndirGraph::Node Node;
   816     typedef typename UndirGraph::NodeIt NodeIt;
   817     checkConcept<concept::WriteMap<Node, bool>, NodeMap>();
   818 
   819     using namespace _topology_bits;
   820 
   821     typedef BiNodeConnectedCutNodesVisitor<UndirGraph, NodeMap> Visitor;
   822     
   823     int cutNum = 0;
   824     Visitor visitor(graph, cutMap, cutNum);
   825 
   826     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
   827     dfs.init();
   828     
   829     for (NodeIt it(graph); it != INVALID; ++it) {
   830       if (!dfs.reached(it)) {
   831 	dfs.addSource(it);
   832 	dfs.start();
   833       }
   834     }
   835     return cutNum;
   836   }
   837 
   838   namespace _topology_bits {
   839     
   840     template <typename Graph>
   841     class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   842     public:
   843       typedef typename Graph::Node Node;
   844       typedef typename Graph::Edge Edge;
   845       typedef typename Graph::UndirEdge UndirEdge;
   846 
   847       CountBiEdgeConnectedComponentsVisitor(const Graph& graph, int &compNum) 
   848 	: _graph(graph), _compNum(compNum), 
   849 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   850 
   851       void start(const Node& node) {
   852 	_predMap.set(node, INVALID);
   853       }
   854       
   855       void reach(const Node& node) {
   856 	_numMap.set(node, _num);
   857 	_retMap.set(node, _num);
   858 	++_num;
   859       }
   860       
   861       void leave(const Node& node) {
   862 	if (_numMap[node] <= _retMap[node]) {
   863 	  ++_compNum;
   864 	}	
   865       }
   866 
   867       void discover(const Edge& edge) {
   868 	_predMap.set(_graph.target(edge), edge);
   869       }
   870 
   871       void examine(const Edge& edge) {
   872 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   873 	  return;
   874 	}
   875 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   876 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   877 	}
   878       }
   879 
   880       void backtrack(const Edge& edge) {
   881 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   882 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   883 	}  
   884       }
   885       
   886     private:
   887       const Graph& _graph;
   888       int& _compNum; 
   889 
   890       typename Graph::template NodeMap<int> _numMap;
   891       typename Graph::template NodeMap<int> _retMap;
   892       typename Graph::template NodeMap<Edge> _predMap;
   893       int _num;
   894     };
   895 
   896     template <typename Graph, typename NodeMap>
   897     class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   898     public:
   899       typedef typename Graph::Node Node;
   900       typedef typename Graph::Edge Edge;
   901       typedef typename Graph::UndirEdge UndirEdge;
   902 
   903       BiEdgeConnectedComponentsVisitor(const Graph& graph, 
   904 				       NodeMap& compMap, int &compNum) 
   905 	: _graph(graph), _compMap(compMap), _compNum(compNum), 
   906 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   907 
   908       void start(const Node& node) {
   909 	_predMap.set(node, INVALID);
   910       }
   911       
   912       void reach(const Node& node) {
   913 	_numMap.set(node, _num);
   914 	_retMap.set(node, _num);
   915 	_nodeStack.push(node);
   916 	++_num;
   917       }
   918       
   919       void leave(const Node& node) {
   920 	if (_numMap[node] <= _retMap[node]) {
   921 	  while (_nodeStack.top() != node) {
   922 	    _compMap.set(_nodeStack.top(), _compNum);
   923 	    _nodeStack.pop();
   924 	  }
   925 	  _compMap.set(node, _compNum);
   926 	  _nodeStack.pop();
   927 	  ++_compNum;
   928 	}	
   929       }
   930 
   931       void discover(const Edge& edge) {
   932 	_predMap.set(_graph.target(edge), edge);
   933       }
   934 
   935       void examine(const Edge& edge) {
   936 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   937 	  return;
   938 	}
   939 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   940 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   941 	}
   942       }
   943 
   944       void backtrack(const Edge& edge) {
   945 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   946 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   947 	}  
   948       }
   949       
   950     private:
   951       const Graph& _graph;
   952       NodeMap& _compMap;
   953       int& _compNum; 
   954 
   955       typename Graph::template NodeMap<int> _numMap;
   956       typename Graph::template NodeMap<int> _retMap;
   957       typename Graph::template NodeMap<Edge> _predMap;
   958       std::stack<Node> _nodeStack;
   959       int _num;
   960     };
   961 
   962 
   963     template <typename Graph, typename EdgeMap>
   964     class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Graph> {
   965     public:
   966       typedef typename Graph::Node Node;
   967       typedef typename Graph::Edge Edge;
   968       typedef typename Graph::UndirEdge UndirEdge;
   969 
   970       BiEdgeConnectedCutEdgesVisitor(const Graph& graph, 
   971 				     EdgeMap& cutMap, int &cutNum) 
   972 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), 
   973 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   974 
   975       void start(const Node& node) {
   976 	_predMap[node] = INVALID;
   977       }
   978       
   979       void reach(const Node& node) {
   980 	_numMap.set(node, _num);
   981 	_retMap.set(node, _num);
   982 	++_num;
   983       }
   984       
   985       void leave(const Node& node) {
   986 	if (_numMap[node] <= _retMap[node]) {
   987 	  if (_predMap[node] != INVALID) {
   988 	    _cutMap.set(_predMap[node], true);
   989 	    ++_cutNum;
   990 	  }
   991 	}	
   992       }
   993 
   994       void discover(const Edge& edge) {
   995 	_predMap.set(_graph.target(edge), edge);
   996       }
   997 
   998       void examine(const Edge& edge) {
   999 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
  1000 	  return;
  1001 	}
  1002 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1003 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1004 	}
  1005       }
  1006 
  1007       void backtrack(const Edge& edge) {
  1008 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1009 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1010 	}  
  1011       }
  1012       
  1013     private:
  1014       const Graph& _graph;
  1015       EdgeMap& _cutMap;
  1016       int& _cutNum; 
  1017 
  1018       typename Graph::template NodeMap<int> _numMap;
  1019       typename Graph::template NodeMap<int> _retMap;
  1020       typename Graph::template NodeMap<Edge> _predMap;
  1021       int _num;
  1022     };
  1023   }
  1024 
  1025   template <typename UndirGraph>
  1026   int countbiEdgeConnectedComponents(const UndirGraph& graph);
  1027 
  1028   /// \ingroup topology
  1029   ///
  1030   /// \brief Checks that the graph is bi-edge-connected.
  1031   ///
  1032   /// This function checks that the graph is bi-edge-connected. The undirected
  1033   /// graph is bi-edge-connected when any two nodes are connected with two
  1034   /// edge-disjoint paths.
  1035   ///
  1036   /// \param graph The undirected graph.
  1037   /// \return The number of components.
  1038   /// \todo Make it faster.
  1039   template <typename UndirGraph>
  1040   bool biEdgeConnected(const UndirGraph& graph) { 
  1041     return countBiEdgeConnectedComponents(graph) == 1;
  1042   }
  1043 
  1044   /// \ingroup topology
  1045   ///
  1046   /// \brief Count the bi-edge-connected components.
  1047   ///
  1048   /// This function count the bi-edge-connected components in an undirected 
  1049   /// graph. The bi-edge-connected components are the classes of an equivalence
  1050   /// relation on the nodes. Two nodes are in relationship when they are  
  1051   /// connected with at least two edge-disjoint paths.
  1052   ///
  1053   /// \param graph The undirected graph.
  1054   /// \return The number of components.
  1055   template <typename UndirGraph>
  1056   int countBiEdgeConnectedComponents(const UndirGraph& graph) { 
  1057     checkConcept<concept::UndirGraph, UndirGraph>();
  1058     typedef typename UndirGraph::NodeIt NodeIt;
  1059 
  1060     using namespace _topology_bits;
  1061 
  1062     typedef CountBiEdgeConnectedComponentsVisitor<UndirGraph> Visitor;
  1063     
  1064     int compNum = 0;
  1065     Visitor visitor(graph, compNum);
  1066 
  1067     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
  1068     dfs.init();
  1069     
  1070     for (NodeIt it(graph); it != INVALID; ++it) {
  1071       if (!dfs.reached(it)) {
  1072 	dfs.addSource(it);
  1073 	dfs.start();
  1074       }
  1075     }
  1076     return compNum;
  1077   }
  1078 
  1079   /// \ingroup topology
  1080   ///
  1081   /// \brief Find the bi-edge-connected components.
  1082   ///
  1083   /// This function finds the bi-edge-connected components in an undirected 
  1084   /// graph. The bi-edge-connected components are the classes of an equivalence
  1085   /// relation on the nodes. Two nodes are in relationship when they are  
  1086   /// connected at least two edge-disjoint paths.
  1087   ///
  1088   /// \image html edge_biconnected_components.png
  1089   /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
  1090   ///
  1091   /// \param graph The graph.
  1092   /// \retval compMap A writable node map. The values will be set from 0 to
  1093   /// the number of the biconnected components minus one. Each values 
  1094   /// of the map will be set exactly once, the values of a certain component 
  1095   /// will be set continuously.
  1096   /// \return The number of components.
  1097   ///
  1098   template <typename UndirGraph, typename NodeMap>
  1099   int biEdgeConnectedComponents(const UndirGraph& graph, NodeMap& compMap) { 
  1100     checkConcept<concept::UndirGraph, UndirGraph>();
  1101     typedef typename UndirGraph::NodeIt NodeIt;
  1102     typedef typename UndirGraph::Node Node;
  1103     checkConcept<concept::WriteMap<Node, int>, NodeMap>();
  1104 
  1105     using namespace _topology_bits;
  1106 
  1107     typedef BiEdgeConnectedComponentsVisitor<UndirGraph, NodeMap> Visitor;
  1108     
  1109     int compNum = 0;
  1110     Visitor visitor(graph, compMap, compNum);
  1111 
  1112     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
  1113     dfs.init();
  1114     
  1115     for (NodeIt it(graph); it != INVALID; ++it) {
  1116       if (!dfs.reached(it)) {
  1117 	dfs.addSource(it);
  1118 	dfs.start();
  1119       }
  1120     }
  1121     return compNum;
  1122   }
  1123 
  1124   /// \ingroup topology
  1125   ///
  1126   /// \brief Find the bi-edge-connected cut edges.
  1127   ///
  1128   /// This function finds the bi-edge-connected components in an undirected 
  1129   /// graph. The bi-edge-connected components are the classes of an equivalence
  1130   /// relation on the nodes. Two nodes are in relationship when they are 
  1131   /// connected with at least two edge-disjoint paths. The bi-edge-connected 
  1132   /// components are separted by edges which are the cut edges of the 
  1133   /// components.
  1134   ///
  1135   /// \param graph The graph.
  1136   /// \retval cutMap A writable node map. The values will be set true when the
  1137   /// edge is a cut edge.
  1138   /// \return The number of cut edges.
  1139   template <typename UndirGraph, typename UndirEdgeMap>
  1140   int biEdgeConnectedCutEdges(const UndirGraph& graph, UndirEdgeMap& cutMap) { 
  1141     checkConcept<concept::UndirGraph, UndirGraph>();
  1142     typedef typename UndirGraph::NodeIt NodeIt;
  1143     typedef typename UndirGraph::UndirEdge UndirEdge;
  1144     checkConcept<concept::WriteMap<UndirEdge, bool>, UndirEdgeMap>();
  1145 
  1146     using namespace _topology_bits;
  1147 
  1148     typedef BiEdgeConnectedCutEdgesVisitor<UndirGraph, UndirEdgeMap> Visitor;
  1149     
  1150     int cutNum = 0;
  1151     Visitor visitor(graph, cutMap, cutNum);
  1152 
  1153     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
  1154     dfs.init();
  1155     
  1156     for (NodeIt it(graph); it != INVALID; ++it) {
  1157       if (!dfs.reached(it)) {
  1158 	dfs.addSource(it);
  1159 	dfs.start();
  1160       }
  1161     }
  1162     return cutNum;
  1163   }
  1164 
  1165 
  1166   namespace _topology_bits {
  1167     
  1168     template <typename Graph, typename IntNodeMap>
  1169     class TopologicalSortVisitor : public DfsVisitor<Graph> {
  1170     public:
  1171       typedef typename Graph::Node Node;
  1172       typedef typename Graph::Edge edge;
  1173 
  1174       TopologicalSortVisitor(IntNodeMap& order, int num) 
  1175 	: _order(order), _num(num) {}
  1176       
  1177       void leave(const Node& node) {
  1178 	_order.set(node, --_num);
  1179       }
  1180 
  1181     private:
  1182       IntNodeMap& _order;
  1183       int _num;
  1184     };
  1185     
  1186   }
  1187 
  1188   /// \ingroup topology
  1189   ///
  1190   /// \brief Sort the nodes of a DAG into topolgical order.
  1191   ///
  1192   /// Sort the nodes of a DAG into topolgical order.
  1193   ///
  1194   /// \param graph The graph. It should be directed and acyclic.
  1195   /// \retval order A writable node map. The values will be set from 0 to
  1196   /// the number of the nodes in the graph minus one. Each values of the map
  1197   /// will be set exactly once, the values  will be set descending order.
  1198   ///
  1199   /// \see checkedTopologicalSort
  1200   /// \see dag
  1201   template <typename Graph, typename NodeMap>
  1202   void topologicalSort(const Graph& graph, NodeMap& order) {
  1203     using namespace _topology_bits;
  1204 
  1205     checkConcept<concept::StaticGraph, Graph>();
  1206     checkConcept<concept::WriteMap<typename Graph::Node, int>, NodeMap>();
  1207 
  1208     typedef typename Graph::Node Node;
  1209     typedef typename Graph::NodeIt NodeIt;
  1210     typedef typename Graph::Edge Edge;
  1211 
  1212     TopologicalSortVisitor<Graph, NodeMap> 
  1213       visitor(order, countNodes(graph)); 
  1214 
  1215     DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
  1216       dfs(graph, visitor);
  1217 
  1218     dfs.init();
  1219     for (NodeIt it(graph); it != INVALID; ++it) {
  1220       if (!dfs.reached(it)) {
  1221 	dfs.addSource(it);
  1222 	dfs.start();
  1223       }
  1224     }    
  1225   }
  1226 
  1227   /// \ingroup topology
  1228   ///
  1229   /// \brief Sort the nodes of a DAG into topolgical order.
  1230   ///
  1231   /// Sort the nodes of a DAG into topolgical order. It also checks
  1232   /// that the given graph is DAG.
  1233   ///
  1234   /// \param graph The graph. It should be directed and acyclic.
  1235   /// \retval order A readable - writable node map. The values will be set 
  1236   /// from 0 to the number of the nodes in the graph minus one. Each values 
  1237   /// of the map will be set exactly once, the values will be set descending 
  1238   /// order.
  1239   /// \return %False when the graph is not DAG.
  1240   ///
  1241   /// \see topologicalSort
  1242   /// \see dag
  1243   template <typename Graph, typename NodeMap>
  1244   bool checkedTopologicalSort(const Graph& graph, NodeMap& order) {
  1245     using namespace _topology_bits;
  1246 
  1247     checkConcept<concept::StaticGraph, Graph>();
  1248     checkConcept<concept::ReadWriteMap<typename Graph::Node, int>, NodeMap>();
  1249 
  1250     typedef typename Graph::Node Node;
  1251     typedef typename Graph::NodeIt NodeIt;
  1252     typedef typename Graph::Edge Edge;
  1253 
  1254     order = constMap<Node, int, -1>();
  1255 
  1256     TopologicalSortVisitor<Graph, NodeMap> 
  1257       visitor(order, countNodes(graph)); 
  1258 
  1259     DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
  1260       dfs(graph, visitor);
  1261 
  1262     dfs.init();
  1263     for (NodeIt it(graph); it != INVALID; ++it) {
  1264       if (!dfs.reached(it)) {
  1265 	dfs.addSource(it);
  1266 	while (!dfs.emptyQueue()) {
  1267  	  Edge edge = dfs.nextEdge();
  1268  	  Node target = graph.target(edge);
  1269  	  if (dfs.reached(target) && order[target] == -1) {
  1270  	    return false;
  1271  	  }
  1272  	  dfs.processNextEdge();
  1273  	}
  1274       }
  1275     }
  1276     return true;
  1277   }
  1278 
  1279   /// \ingroup topology
  1280   ///
  1281   /// \brief Check that the given directed graph is a DAG.
  1282   ///
  1283   /// Check that the given directed graph is a DAG. The DAG is
  1284   /// an Directed Acyclic Graph.
  1285   /// \return %False when the graph is not DAG.
  1286   /// \see acyclic
  1287   template <typename Graph>
  1288   bool dag(const Graph& graph) {
  1289 
  1290     checkConcept<concept::StaticGraph, Graph>();
  1291 
  1292     typedef typename Graph::Node Node;
  1293     typedef typename Graph::NodeIt NodeIt;
  1294     typedef typename Graph::Edge Edge;
  1295 
  1296     typedef typename Graph::template NodeMap<bool> ProcessedMap;
  1297 
  1298     typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>::
  1299       Create dfs(graph);
  1300 
  1301     ProcessedMap processed(graph);
  1302     dfs.processedMap(processed);
  1303 
  1304     dfs.init();
  1305     for (NodeIt it(graph); it != INVALID; ++it) {
  1306       if (!dfs.reached(it)) {
  1307 	dfs.addSource(it);
  1308 	while (!dfs.emptyQueue()) {
  1309 	  Edge edge = dfs.nextEdge();
  1310 	  Node target = graph.target(edge);
  1311 	  if (dfs.reached(target) && !processed[target]) {
  1312 	    return false;
  1313 	  }
  1314 	  dfs.processNextEdge();
  1315 	}
  1316       }
  1317     }    
  1318     return true;
  1319   }
  1320 
  1321   /// \ingroup topology
  1322   ///
  1323   /// \brief Check that the given undirected graph is acyclic.
  1324   ///
  1325   /// Check that the given undirected graph acyclic.
  1326   /// \param graph The undirected graph.
  1327   /// \return %True when there is no circle in the graph.
  1328   /// \see dag
  1329   template <typename UndirGraph>
  1330   bool acyclic(const UndirGraph& graph) {
  1331     checkConcept<concept::UndirGraph, UndirGraph>();
  1332     typedef typename UndirGraph::Node Node;
  1333     typedef typename UndirGraph::NodeIt NodeIt;
  1334     typedef typename UndirGraph::Edge Edge;
  1335     Dfs<UndirGraph> dfs(graph);
  1336     dfs.init();
  1337     for (NodeIt it(graph); it != INVALID; ++it) {
  1338       if (!dfs.reached(it)) {
  1339 	dfs.addSource(it);
  1340 	while (!dfs.emptyQueue()) {
  1341 	  Edge edge = dfs.nextEdge();
  1342 	  Node source = graph.source(edge);
  1343 	  Node target = graph.target(edge);
  1344 	  if (dfs.reached(target) && 
  1345 	      dfs.predEdge(source) != graph.oppositeEdge(edge)) {
  1346 	    return false;
  1347 	  }
  1348 	  dfs.processNextEdge();
  1349 	}
  1350       }
  1351     }
  1352     return true;
  1353   }
  1354 
  1355   /// \ingroup topology
  1356   ///
  1357   /// \brief Check that the given undirected graph is tree.
  1358   ///
  1359   /// Check that the given undirected graph is tree.
  1360   /// \param graph The undirected graph.
  1361   /// \return %True when the graph is acyclic and connected.
  1362   template <typename UndirGraph>
  1363   bool tree(const UndirGraph& graph) {
  1364     checkConcept<concept::UndirGraph, UndirGraph>();
  1365     typedef typename UndirGraph::Node Node;
  1366     typedef typename UndirGraph::NodeIt NodeIt;
  1367     typedef typename UndirGraph::Edge Edge;
  1368     Dfs<UndirGraph> dfs(graph);
  1369     dfs.init();
  1370     dfs.addSource(NodeIt(graph));
  1371     while (!dfs.emptyQueue()) {
  1372       Edge edge = dfs.nextEdge();
  1373       Node source = graph.source(edge);
  1374       Node target = graph.target(edge);
  1375       if (dfs.reached(target) && 
  1376 	  dfs.predEdge(source) != graph.oppositeEdge(edge)) {
  1377 	return false;
  1378       }
  1379       dfs.processNextEdge();
  1380     }
  1381     for (NodeIt it(graph); it != INVALID; ++it) {
  1382       if (!dfs.reached(it)) {
  1383 	return false;
  1384       }
  1385     }    
  1386     return true;
  1387   }
  1388 
  1389   /// \ingroup topology
  1390   ///
  1391   /// \brief Check if the given undirected graph is bipartite or not
  1392   ///
  1393   /// The function checks if the given undirected \c graph graph is bipartite 
  1394   /// or not. The \ref Bfs algorithm is used to calculate the result.
  1395   /// \param graph The undirected graph.
  1396   /// \return %True if \c graph is bipartite, %false otherwise.
  1397   /// \sa bipartitePartitions
  1398   ///
  1399   /// \author Balazs Attila Mihaly  
  1400   template<typename UndirGraph>
  1401   inline bool bipartite(const UndirGraph &graph){
  1402     checkConcept<concept::UndirGraph, UndirGraph>();
  1403     
  1404     typedef typename UndirGraph::NodeIt NodeIt;
  1405     typedef typename UndirGraph::EdgeIt EdgeIt;
  1406     
  1407     Bfs<UndirGraph> bfs(graph);
  1408     bfs.init();
  1409     for(NodeIt i(graph);i!=INVALID;++i){
  1410       if(!bfs.reached(i)){
  1411 	bfs.run(i);
  1412       }
  1413     }
  1414     for(EdgeIt i(graph);i!=INVALID;++i){
  1415       if(bfs.dist(graph.source(i))==bfs.dist(graph.target(i)))return false;
  1416     }
  1417     return true;
  1418   };
  1419   
  1420   /// \ingroup topology
  1421   ///
  1422   /// \brief Check if the given undirected graph is bipartite or not
  1423   ///
  1424   /// The function checks if the given undirected graph is bipartite 
  1425   /// or not. The  \ref  Bfs  algorithm  is   used  to  calculate the result. 
  1426   /// During the execution, the \c partMap will be set as the two 
  1427   /// partitions of the graph.
  1428   /// \param graph The undirected graph.
  1429   /// \retval partMap A writable bool map of nodes. It will be set as the
  1430   /// two partitions of the graph. 
  1431   /// \return %True if \c graph is bipartite, %false otherwise.
  1432   ///
  1433   /// \author Balazs Attila Mihaly  
  1434   ///
  1435   /// \image html bipartite_partitions.png
  1436   /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth
  1437   template<typename UndirGraph, typename NodeMap>
  1438   inline bool bipartitePartitions(const UndirGraph &graph, NodeMap &partMap){
  1439     checkConcept<concept::UndirGraph, UndirGraph>();
  1440     
  1441     typedef typename UndirGraph::Node Node;
  1442     typedef typename UndirGraph::NodeIt NodeIt;
  1443     typedef typename UndirGraph::EdgeIt EdgeIt;
  1444   
  1445     Bfs<UndirGraph> bfs(graph);
  1446     bfs.init();
  1447     for(NodeIt i(graph);i!=INVALID;++i){
  1448       if(!bfs.reached(i)){
  1449 	bfs.addSource(i);
  1450 	for(Node j=bfs.processNextNode();!bfs.emptyQueue();
  1451 	    j=bfs.processNextNode()){
  1452 	  partMap.set(j,bfs.dist(j)%2==0);
  1453 	}
  1454       }
  1455     }
  1456     for(EdgeIt i(graph);i!=INVALID;++i){
  1457       if(bfs.dist(graph.source(i)) == bfs.dist(graph.target(i)))return false;
  1458     }
  1459     return true;
  1460   };
  1461    
  1462 } //namespace lemon
  1463 
  1464 #endif //LEMON_TOPOLOGY_H