src/lemon/bin_heap.h
author alpar
Wed, 30 Mar 2005 08:28:44 +0000
changeset 1272 17be4c5bc6c6
parent 1191 c988f12c6c0c
child 1331 7e93d3f0406d
permissions -rw-r--r--
- Non-template expressions and constraints (lin_expr.h isn't used)
     1 /* -*- C++ -*-
     2  * src/lemon/bin_heap.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_BIN_HEAP_H
    18 #define LEMON_BIN_HEAP_H
    19 
    20 ///\ingroup auxdat
    21 ///\file
    22 ///\brief Binary Heap implementation.
    23 
    24 #include <vector>
    25 #include <utility>
    26 #include <functional>
    27 
    28 namespace lemon {
    29 
    30   /// \addtogroup auxdat
    31   /// @{
    32 
    33   /// A Binary Heap implementation.
    34   
    35   ///This class implements the \e binary \e heap data structure. A \e heap
    36   ///is a data structure for storing items with specified values called \e
    37   ///priorities in such a way that finding the item with minimum priority is
    38   ///efficient. \c Compare specifies the ordering of the priorities. In a heap
    39   ///one can change the priority of an item, add or erase an item, etc.
    40   ///
    41   ///\param Item Type of the items to be stored.  
    42   ///\param Prio Type of the priority of the items.
    43   ///\param ItemIntMap A read and writable Item int map, used internally
    44   ///to handle the cross references.
    45   ///\param Compare A class for the ordering of the priorities. The
    46   ///default is \c std::less<Prio>.
    47   ///
    48   ///\sa FibHeap
    49   ///\sa Dijkstra
    50   template <typename Item, typename Prio, typename ItemIntMap,
    51 	    typename Compare = std::less<Prio> >
    52   class BinHeap {
    53 
    54   public:
    55     typedef Item                             ItemType;
    56     // FIXME: stl-ben nem ezt hivjak value_type -nak, hanem a kovetkezot...
    57     typedef Prio                             PrioType;
    58     typedef std::pair<ItemType,PrioType>     PairType;
    59     typedef ItemIntMap                       ItemIntMapType;
    60     typedef Compare                          PrioCompare;
    61 
    62     /**
    63      * Each Item element have a state associated to it. It may be "in heap",
    64      * "pre heap" or "post heap". The later two are indifferent from the
    65      * heap's point of view, but may be useful to the user.
    66      *
    67      * The ItemIntMap _should_ be initialized in such way, that it maps
    68      * PRE_HEAP (-1) to any element to be put in the heap...
    69      */
    70     ///\todo it is used nowhere
    71     ///
    72     enum state_enum {
    73       IN_HEAP = 0,
    74       PRE_HEAP = -1,
    75       POST_HEAP = -2
    76     };
    77 
    78   private:
    79     std::vector<PairType> data;
    80     Compare comp;
    81     // FIXME: jo ez igy???
    82     ItemIntMap &iim;
    83 
    84   public:
    85     ///The constructor
    86 
    87     /**
    88        \c _iim should be given to the constructor, since it is used
    89        internally to handle the cross references.
    90     */
    91     explicit BinHeap(ItemIntMap &_iim) : iim(_iim) {}
    92     
    93     ///The constructor
    94 
    95     /**
    96        \c _iim should be given to the constructor, since it is used
    97        internally to handle the cross references. \c _comp is an
    98        object for ordering of the priorities.
    99     */
   100     BinHeap(ItemIntMap &_iim, const Compare &_comp) 
   101       : iim(_iim), comp(_comp) {}
   102 
   103 
   104     ///The number of items stored in the heap.
   105 
   106     /**
   107        Returns the number of items stored in the heap.
   108     */
   109     int size() const { return data.size(); }
   110     
   111     ///Checks if the heap stores no items.
   112     
   113     /**
   114        Returns \c true if and only if the heap stores no items.
   115     */
   116     bool empty() const { return data.empty(); }
   117 
   118   private:
   119     static int parent(int i) { return (i-1)/2; }
   120     static int second_child(int i) { return 2*i+2; }
   121     bool less(const PairType &p1, const PairType &p2) const {
   122       return comp(p1.second, p2.second);
   123     }
   124 
   125     int bubble_up(int hole, PairType p);
   126     int bubble_down(int hole, PairType p, int length);
   127 
   128     void move(const PairType &p, int i) {
   129       data[i] = p;
   130       iim.set(p.first, i);
   131     }
   132 
   133     void rmidx(int h) {
   134       int n = data.size()-1;
   135       if( h>=0 && h<=n ) {
   136 	iim.set(data[h].first, POST_HEAP);
   137 	if ( h<n ) {
   138 	  bubble_down(h, data[n], n);
   139 	}
   140 	data.pop_back();
   141       }
   142     }
   143 
   144   public:
   145     ///Adds \c p.first to the heap with priority \c p.second.
   146     
   147     /**
   148        Adds \c p.first to the heap with priority \c p.second.
   149        \c p.first must not be stored in the heap. 
   150     */
   151     void push(const PairType &p) {
   152       int n = data.size();
   153       data.resize(n+1);
   154       bubble_up(n, p);
   155     }
   156 
   157     ///Adds \c i to the heap with priority \c p. 
   158     
   159     /**
   160        Adds \c i to the heap with priority \c p. 
   161        \pre \c i must not be stored in the heap. 
   162     */
   163     void push(const Item &i, const Prio &p) { push(PairType(i,p)); }
   164 
   165     ///Returns the item with minimum priority relative to \c Compare.
   166     
   167     /**
   168        This method returns the item with minimum priority relative to \c
   169        Compare.  
   170        \pre The heap must be nonempty.  
   171     */
   172     Item top() const {
   173       return data[0].first;
   174     }
   175 
   176     ///Returns the minimum priority relative to \c Compare.
   177 
   178     /**
   179        It returns the minimum priority relative to \c Compare.
   180        \pre The heap must be nonempty.
   181     */
   182     Prio prio() const {
   183       return data[0].second;
   184     }
   185 
   186     ///Deletes the item with minimum priority relative to \c Compare.
   187 
   188     /**
   189     This method deletes the item with minimum priority relative to \c
   190     Compare from the heap.  
   191     \pre The heap must be non-empty.  
   192     */
   193     void pop() {
   194       rmidx(0);
   195     }
   196 
   197     ///Deletes \c i from the heap.
   198 
   199     /**
   200        This method deletes item \c i from the heap, if \c i was
   201        already stored in the heap. 
   202     */
   203     void erase(const Item &i) {
   204       rmidx(iim[i]);
   205     }
   206 
   207     
   208     ///Returns the priority of \c i.
   209 
   210     /**
   211        This function returns the priority of item \c i.  
   212        \pre \c i must be in the heap.
   213     */
   214     Prio operator[](const Item &i) const {
   215       int idx = iim[i];
   216       return data[idx].second;
   217     }
   218 
   219     ///\c i gets to the heap with priority \c p independently if \c i was already there.
   220 
   221     /**
   222        This method calls \ref push(\c i, \c p) if \c i is not stored
   223        in the heap and sets the priority of \c i to \c p otherwise.
   224     */
   225     void set(const Item &i, const Prio &p) {
   226       int idx = iim[i];
   227       if( idx < 0 ) {
   228 	push(i,p);
   229       }
   230       else if( comp(p, data[idx].second) ) {
   231 	bubble_up(idx, PairType(i,p));
   232       }
   233       else {
   234 	bubble_down(idx, PairType(i,p), data.size());
   235       }
   236     }
   237 
   238     ///Decreases the priority of \c i to \c p.
   239 
   240     /**
   241        This method decreases the priority of item \c i to \c p.
   242        \pre \c i must be stored in the heap with priority at least \c
   243        p relative to \c Compare.
   244     */
   245     void decrease(const Item &i, const Prio &p) {
   246       int idx = iim[i];
   247       bubble_up(idx, PairType(i,p));
   248     }
   249     
   250     ///Increases the priority of \c i to \c p.
   251 
   252     /**
   253        This method sets the priority of item \c i to \c p. 
   254        \pre \c i must be stored in the heap with priority at most \c
   255        p relative to \c Compare.
   256     */
   257     void increase(const Item &i, const Prio &p) {
   258       int idx = iim[i];
   259       bubble_down(idx, PairType(i,p), data.size());
   260     }
   261 
   262     ///Returns if \c item is in, has already been in, or has never been in the heap.
   263 
   264     /**
   265        This method returns PRE_HEAP if \c item has never been in the
   266        heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   267        otherwise. In the latter case it is possible that \c item will
   268        get back to the heap again.
   269     */
   270     state_enum state(const Item &i) const {
   271       int s = iim[i];
   272       if( s>=0 )
   273 	s=0;
   274       return state_enum(s);
   275     }
   276 
   277   }; // class BinHeap
   278 
   279   
   280   template <typename K, typename V, typename M, typename C>
   281   int BinHeap<K,V,M,C>::bubble_up(int hole, PairType p) {
   282     int par = parent(hole);
   283     while( hole>0 && less(p,data[par]) ) {
   284       move(data[par],hole);
   285       hole = par;
   286       par = parent(hole);
   287     }
   288     move(p, hole);
   289     return hole;
   290   }
   291 
   292   template <typename K, typename V, typename M, typename C>
   293   int BinHeap<K,V,M,C>::bubble_down(int hole, PairType p, int length) {
   294     int child = second_child(hole);
   295     while(child < length) {
   296       if( less(data[child-1], data[child]) ) {
   297 	--child;
   298       }
   299       if( !less(data[child], p) )
   300 	goto ok;
   301       move(data[child], hole);
   302       hole = child;
   303       child = second_child(hole);
   304     }
   305     child--;
   306     if( child<length && less(data[child], p) ) {
   307       move(data[child], hole);
   308       hole=child;
   309     }
   310   ok:
   311     move(p, hole);
   312     return hole;
   313   }
   314 
   315   ///@}
   316 
   317 } // namespace lemon
   318 
   319 #endif // LEMON_BIN_HEAP_H