src/work/marci/merge_node_graph_wrapper.h
author alpar
Wed, 30 Mar 2005 08:28:44 +0000
changeset 1272 17be4c5bc6c6
parent 1026 bd7ea1a718e2
child 1359 1581f961cfaa
permissions -rw-r--r--
- Non-template expressions and constraints (lin_expr.h isn't used)
     1 /* -*- C++ -*-
     2  * src/lemon/merge_node_graph_wrapper.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_MERGE_NODE_GRAPH_WRAPPER_H
    18 #define LEMON_MERGE_NODE_GRAPH_WRAPPER_H
    19 
    20 #include <lemon/invalid.h>
    21 #include <lemon/maps.h>
    22 #include <lemon/map_defines.h>
    23 #include <lemon/graph_wrapper.h>
    24 #include <iostream>
    25 
    26 using std::cout;
    27 using std::endl;
    28 
    29 #include <boost/type_traits.hpp>
    30 #include <boost/utility/enable_if.hpp>
    31 
    32 namespace lemon {
    33 
    34   template <class _Graph1>
    35   class P1 : public GraphWrapperBase<_Graph1> {
    36   };
    37 
    38   template <class _Graph2>
    39   class P2 : public GraphWrapperBase<_Graph2> {
    40   };
    41 
    42 
    43   template <typename _Graph1, typename _Graph2, typename Enable=void>
    44   class MergeNodeGraphWrapperBaseBase : 
    45     public P1<_Graph1>, public P2<_Graph2> {
    46   public:
    47     static void printNode() { std::cout << "node: generic" << std::endl; }
    48     typedef _Graph1 Graph1;
    49     typedef _Graph2 Graph2;
    50     typedef P1<_Graph1> Parent1;
    51     typedef P2<_Graph2> Parent2;
    52     typedef typename Parent1::Node Graph1Node;
    53     typedef typename Parent2::Node Graph2Node;
    54   protected:
    55     MergeNodeGraphWrapperBaseBase() { }
    56   public:
    57 
    58     class Node : public Graph1Node, public Graph2Node {
    59       friend class MergeNodeGraphWrapperBaseBase<_Graph1, _Graph2>;
    60     protected:
    61       bool backward; //true, iff backward
    62     public:
    63       Node() { }
    64       /// \todo =false is needed, or causes problems?
    65       /// If \c _backward is false, then we get an edge corresponding to the 
    66       /// original one, otherwise its oppositely directed pair is obtained.
    67       Node(const Graph1Node& n1, 
    68 	   const Graph2Node& n2, bool _backward) : 
    69 	Graph1Node(n1), Graph2Node(n2), backward(_backward) { }
    70       Node(Invalid i) : Graph1Node(i), Graph2Node(i), backward(true) { }
    71       bool operator==(const Node& v) const { 
    72 	if (backward) 
    73 	  return (v.backward && 
    74 		  static_cast<Graph2Node>(*this)==static_cast<Graph2Node>(v)); 
    75 	else 
    76 	  return (!v.backward && 
    77 		  static_cast<Graph1Node>(*this)==static_cast<Graph1Node>(v)); 
    78       } 
    79       bool operator!=(const Node& v) const { 
    80 	return !(*this==v);
    81       }
    82     };
    83 
    84     static bool forward(const Node& n) { return !n.backward; }
    85     static bool backward(const Node& n) { return n.backward; }
    86     static void setForward(Node& n) { n.backward=false; }
    87     static void setBackward(Node& n) { n.backward=true; }    
    88   };
    89 
    90 
    91   template <typename _Graph1, typename _Graph2>
    92   class MergeNodeGraphWrapperBaseBase<
    93     _Graph1, _Graph2, typename boost::enable_if<
    94     boost::is_same<typename _Graph1::Node, typename _Graph2::Node> >::type> : 
    95     public P1<_Graph1>, public P2<_Graph2> {
    96   public:
    97     static void printNode() { std::cout << "node: same" << std::endl; }
    98     typedef _Graph1 Graph1;
    99     typedef _Graph2 Graph2;
   100     typedef P1<_Graph1> Parent1;
   101     typedef P2<_Graph2> Parent2;
   102     typedef typename Parent1::Node Graph1Node;
   103     typedef typename Parent2::Node Graph2Node;
   104   protected:
   105     MergeNodeGraphWrapperBaseBase() { }
   106   public:
   107 
   108     class Node : public Graph1Node {
   109       friend class MergeNodeGraphWrapperBaseBase<_Graph1, _Graph2>;
   110     protected:
   111       bool backward; //true, iff backward
   112     public:
   113       Node() { }
   114       /// \todo =false is needed, or causes problems?
   115       /// If \c _backward is false, then we get an edge corresponding to the 
   116       /// original one, otherwise its oppositely directed pair is obtained.
   117       Node(const Graph1Node& n1, 
   118 	   const Graph2Node& n2, bool _backward) : 
   119 	Graph1Node(!_backward ? n1 : n2), backward(_backward) { }
   120       Node(Invalid i) : Graph1Node(i), backward(true) { }
   121       bool operator==(const Node& v) const { 
   122 	return (backward==v.backward && 
   123 		static_cast<Graph1Node>(*this)==static_cast<Graph1Node>(v));
   124       } 
   125       bool operator!=(const Node& v) const { 
   126 	return !(*this==v);
   127       }
   128     };
   129 
   130     static bool forward(const Node& n) { return !n.backward; }
   131     static bool backward(const Node& n) { return n.backward; }
   132     static void setForward(Node& n) { n.backward=false; }
   133     static void setBackward(Node& n) { n.backward=true; }
   134   };
   135 
   136 
   137   template <typename _Graph1, typename _Graph2>
   138   class MergeNodeGraphWrapperBaseBase<
   139     _Graph1, _Graph2, typename boost::enable_if<
   140     boost::is_base_and_derived<typename _Graph1::Node, typename _Graph2::Node> >::type> : 
   141     public P1<_Graph1>, public P2<_Graph2> {
   142   public :
   143     static void printNode() { std::cout << "node: 2nd is derived" << std::endl; }
   144     typedef _Graph1 Graph1;
   145     typedef _Graph2 Graph2;
   146     typedef P1<_Graph1> Parent1;
   147     typedef P2<_Graph2> Parent2;
   148     typedef typename Parent1::Node Graph1Node;
   149     typedef typename Parent2::Node Graph2Node;
   150   protected:
   151     MergeNodeGraphWrapperBaseBase() { }
   152   public:
   153 
   154     class Node : public Graph2Node {
   155       friend class MergeNodeGraphWrapperBaseBase<_Graph1, _Graph2>;
   156     protected:
   157       bool backward; //true, iff backward
   158     public:
   159       Node() { }
   160       /// \todo =false is needed, or causes problems?
   161       /// If \c _backward is false, then we get an edge corresponding to the 
   162       /// original one, otherwise its oppositely directed pair is obtained.
   163       Node(const Graph1Node& n1, 
   164 	   const Graph2Node& n2, bool _backward) : 
   165 	Graph2Node(n2), backward(_backward) { 
   166 	if (!backward) *this=n1;
   167       }
   168       Node(Invalid i) : Graph2Node(i), backward(true) { }
   169       bool operator==(const Node& v) const { 
   170 	if (backward) 
   171 	  return (v.backward && 
   172 		  static_cast<Graph2Node>(*this)==static_cast<Graph2Node>(v)); 
   173 	else 
   174 	  return (!v.backward && 
   175 		  static_cast<Graph1Node>(*this)==static_cast<Graph1Node>(v)); 
   176       } 
   177       bool operator!=(const Node& v) const { 
   178 	return !(*this==v);
   179       }
   180     };
   181 
   182     static bool forward(const Node& n) { return !n.backward; }
   183     static bool backward(const Node& n) { return n.backward; }
   184     static void setForward(Node& n) { n.backward=false; }
   185     static void setBackward(Node& n) { n.backward=true; }
   186   };
   187   
   188 
   189   template <typename _Graph1, typename _Graph2>
   190   class MergeNodeGraphWrapperBaseBase<
   191     _Graph1, _Graph2, typename boost::enable_if<
   192     boost::is_base_and_derived<typename _Graph2::Node, typename _Graph1::Node> >::type> : 
   193     public P1<_Graph1>, public P2<_Graph2> {
   194   public :
   195     static void printNode() { std::cout << "node: 1st is derived" << std::endl; }
   196     typedef _Graph1 Graph1;
   197     typedef _Graph2 Graph2;
   198     typedef P1<_Graph1> Parent1;
   199     typedef P2<_Graph2> Parent2;
   200     typedef typename Parent1::Node Graph1Node;
   201     typedef typename Parent2::Node Graph2Node;
   202   protected:
   203     MergeNodeGraphWrapperBaseBase() { }
   204   public:
   205 
   206     class Node : public Graph1Node {
   207       friend class MergeNodeGraphWrapperBaseBase<_Graph1, _Graph2>;
   208     protected:
   209       bool backward; //true, iff backward
   210     public:
   211       Node() { }
   212       /// \todo =false is needed, or causes problems?
   213       /// If \c _backward is false, then we get an edge corresponding to the 
   214       /// original one, otherwise its oppositely directed pair is obtained.
   215       Node(const Graph1Node& n1, 
   216 	   const Graph2Node& n2, bool _backward) : 
   217 	Graph1Node(n1), backward(_backward) { 
   218 	if (backward) *this=n2;
   219       }
   220       Node(Invalid i) : Graph1Node(i), backward(true) { }
   221       bool operator==(const Node& v) const { 
   222 	if (backward) 
   223 	  return (v.backward && 
   224 		  static_cast<Graph2Node>(*this)==static_cast<Graph2Node>(v)); 
   225 	else 
   226 	  return (!v.backward && 
   227 		  static_cast<Graph1Node>(*this)==static_cast<Graph1Node>(v)); 
   228       } 
   229       bool operator!=(const Node& v) const { 
   230 	return !(*this==v);
   231       }
   232     };
   233 
   234     static bool forward(const Node& n) { return !n.backward; }
   235     static bool backward(const Node& n) { return n.backward; }
   236     static void setForward(Node& n) { n.backward=false; }
   237     static void setBackward(Node& n) { n.backward=true; }
   238   };
   239 
   240 
   241   template <typename _Graph1, typename _Graph2>
   242   class MergeNodeGraphWrapperBase : 
   243     public MergeNodeGraphWrapperBaseBase<_Graph1, _Graph2> {
   244   public:
   245     typedef MergeNodeGraphWrapperBaseBase<_Graph1, _Graph2> Parent;
   246     typedef _Graph1 Graph1;
   247     typedef _Graph2 Graph2;
   248     typedef P1<_Graph1> Parent1;
   249     typedef P2<_Graph2> Parent2;
   250     typedef typename Parent1::Node Graph1Node;
   251     typedef typename Parent2::Node Graph2Node;
   252 
   253     typedef typename Parent::Node Node; 
   254     class Edge { };
   255     
   256     void first(Node& i) const {
   257       Parent1::graph->first(*static_cast<Graph1Node*>(&i));
   258       this->setForward(i);
   259       if (*static_cast<Graph1Node*>(&i)==INVALID) {
   260 	Parent2::graph->first(*static_cast<Graph2Node*>(&i));
   261 	this->setBackward(i);
   262       }
   263     }
   264     void next(Node& i) const {
   265       if (this->forward(i)) {
   266 	Parent1::graph->next(*static_cast<Graph1Node*>(&i));
   267 	if (*static_cast<Graph1Node*>(&i)==INVALID) {
   268 	  Parent2::graph->first(*static_cast<Graph2Node*>(&i));
   269 	  this->setBackward(i);
   270 	}
   271       } else {
   272 	Parent2::graph->next(*static_cast<Graph2Node*>(&i));
   273       }
   274     }
   275 
   276     int id(const Node& n) const { 
   277       if (this->forward(n)) 
   278 	return this->Parent1::graph->id(n);
   279       else
   280 	return this->Parent2::graph->id(n);
   281     }
   282 
   283     template <typename _Value> 
   284     class NodeMap { 
   285     protected:
   286       typedef typename _Graph1::template NodeMap<_Value> ParentMap1;
   287       typedef typename _Graph2::template NodeMap<_Value> ParentMap2;
   288       ParentMap1 forward_map;
   289       ParentMap2 backward_map;
   290     public:
   291       typedef _Value Value;
   292       typedef Node Key;
   293       NodeMap(const MergeNodeGraphWrapperBase<_Graph1, _Graph2>& gw) : 
   294 	forward_map(*(gw.Parent1::graph)), 
   295 	backward_map(*(gw.Parent2::graph)) { }
   296       NodeMap(const MergeNodeGraphWrapperBase<_Graph1, _Graph2>& gw, 
   297 	      const _Value& value) : 
   298 	forward_map(*(gw.Parent1::graph), value), 
   299 	backward_map(*(gw.Parent2::graph), value) { }
   300       _Value operator[](const Node& n) const {
   301 	if (Parent::forward(n)) 
   302 	  return forward_map[n];
   303 	else 
   304 	  return backward_map[n];
   305       }
   306       void set(const Node& n, const _Value& value) {
   307 	if (Parent::forward(n)) 
   308 	  forward_map.set(n, value);
   309 	else 
   310 	  backward_map.set(n, value);
   311       }
   312 //       using ParentMap1::operator[];
   313 //       using ParentMap2::operator[];
   314     };
   315 
   316   };
   317 
   318 
   319   /*! A graph wrapper class 
   320     for merging the node-set of two node-disjoint graphs 
   321     into the node-set of one graph. 
   322     Different implementations are according to the relation of 
   323     _Graph1::Node and _Graph2::Node. 
   324     If _Graph1::Node and _Graph2::Node are unrelated, then 
   325     MergeNodeGraphWrapper<_Graph1, _Graph2>::Node 
   326     is derived from both. 
   327     If _Graph1::Node and _Graph2::Node are the same type, then 
   328     MergeNodeGraphWrapper<_Graph1, _Graph2>::Node 
   329     is derived from _Graph1::Node. 
   330     If one of _Graph1::Node and _Graph2::Node 
   331     is derived from the other one, then 
   332     MergeNodeGraphWrapper<_Graph1, _Graph2>::Node 
   333     is derived from the derived type.
   334     It does not satisfy 
   335     StaticGraph concept as it has no edge-set which 
   336     works together with the node-set.
   337   */
   338   template <typename _Graph1, typename _Graph2>
   339   class MergeNodeGraphWrapper : public 
   340   IterableGraphExtender<MergeNodeGraphWrapperBase<_Graph1, _Graph2> > {
   341   public:
   342     typedef _Graph1 Graph1;
   343     typedef _Graph2 Graph2;
   344     typedef IterableGraphExtender<
   345       MergeNodeGraphWrapperBase<_Graph1, _Graph2> > Parent;
   346   protected:
   347     MergeNodeGraphWrapper() { }
   348   public:
   349     MergeNodeGraphWrapper(_Graph1& _graph1, _Graph2& _graph2) { 
   350       Parent::Parent1::setGraph(_graph1);
   351       Parent::Parent2::setGraph(_graph2);
   352     }
   353   };
   354 
   355 
   356   /*! A grah wrapper base class 
   357     for merging the node-sets and edge-sets of 
   358     two node-disjoint graphs 
   359     into one graph.
   360     Generic implementation for unrelated _Graph1::Edge and _Graph2::Edge.
   361    */
   362   template <typename _Graph1, typename _Graph2, typename Enable=void>
   363   class MergeEdgeGraphWrapperBaseBase : 
   364     public MergeNodeGraphWrapperBase<_Graph1, _Graph2> {
   365   public:
   366     static void printEdge() { std::cout << "edge: generic" << std::endl; }
   367     typedef _Graph1 Graph1;
   368     typedef _Graph2 Graph2;
   369     typedef MergeNodeGraphWrapperBase<_Graph1, _Graph2> Parent;
   370     typedef typename Parent::Parent1 Parent1;
   371     typedef typename Parent::Parent2 Parent2;
   372 //     typedef P1<_Graph1> Parent1;
   373 //     typedef P2<_Graph2> Parent2;
   374     typedef typename Parent1::Edge Graph1Edge;
   375     typedef typename Parent2::Edge Graph2Edge;
   376   protected:
   377     MergeEdgeGraphWrapperBaseBase() { }
   378   public:
   379 
   380     class Edge : public Graph1Edge, public Graph2Edge {
   381       friend class MergeEdgeGraphWrapperBaseBase<_Graph1, _Graph2>;
   382     protected:
   383       bool backward; //true, iff backward
   384     public:
   385       Edge() { }
   386       /// \todo =false is needed, or causes problems?
   387       /// If \c _backward is false, then we get an edge corresponding to the 
   388       /// original one, otherwise its oppositely directed pair is obtained.
   389       Edge(const Graph1Edge& n1, 
   390 	   const Graph2Edge& n2, bool _backward) : 
   391 	Graph1Edge(n1), Graph2Edge(n2), backward(_backward) { }
   392       Edge(Invalid i) : Graph1Edge(i), Graph2Edge(i), backward(true) { }
   393       bool operator==(const Edge& v) const { 
   394 	if (backward) 
   395 	  return (v.backward && 
   396 		  static_cast<Graph2Edge>(*this)==static_cast<Graph2Edge>(v)); 
   397 	else 
   398 	  return (!v.backward && 
   399 		  static_cast<Graph1Edge>(*this)==static_cast<Graph1Edge>(v)); 
   400       } 
   401       bool operator!=(const Edge& v) const { 
   402 	return !(*this==v);
   403       }
   404     };
   405 
   406     using Parent::forward;
   407     using Parent::backward;
   408     using Parent::setForward;
   409     using Parent::setBackward;
   410     static bool forward(const Edge& e) { return !e.backward; }
   411     static bool backward(const Edge& e) { return e.backward; }
   412     static void setForward(Edge& e) { e.backward=false; }
   413     static void setBackward(Edge& e) { e.backward=true; }
   414   };
   415 
   416 
   417 
   418   /*! A graph wrapper base class 
   419     for merging the node-sets and edge-sets of 
   420     two node-disjoint graphs 
   421     into one graph.
   422     Specialization for the case when _Graph1::Edge and _Graph2::Edge
   423     are the same.
   424    */
   425   template <typename _Graph1, typename _Graph2>
   426   class MergeEdgeGraphWrapperBaseBase<
   427     _Graph1, _Graph2, typename boost::enable_if<
   428     boost::is_same<typename _Graph1::Edge, typename _Graph2::Edge> >::type> : 
   429     public MergeNodeGraphWrapperBase<_Graph1, _Graph2> {
   430   public:
   431     static void printEdge() { std::cout << "edge: same" << std::endl; }
   432     typedef _Graph1 Graph1;
   433     typedef _Graph2 Graph2;
   434     typedef MergeNodeGraphWrapperBase<_Graph1, _Graph2> Parent;
   435     typedef typename Parent::Parent1 Parent1;
   436     typedef typename Parent::Parent2 Parent2;
   437 //     typedef P1<_Graph1> Parent1;
   438 //     typedef P2<_Graph2> Parent2;
   439     typedef typename Parent1::Edge Graph1Edge;
   440     typedef typename Parent2::Edge Graph2Edge;
   441   protected:
   442     MergeEdgeGraphWrapperBaseBase() { }
   443   public:
   444 
   445     class Edge : public Graph1Edge {
   446       friend class MergeEdgeGraphWrapperBaseBase<_Graph1, _Graph2>;
   447     protected:
   448       bool backward; //true, iff backward
   449     public:
   450       Edge() { }
   451       /// \todo =false is needed, or causes problems?
   452       /// If \c _backward is false, then we get an edge corresponding to the 
   453       /// original one, otherwise its oppositely directed pair is obtained.
   454       Edge(const Graph1Edge& n1, 
   455 	   const Graph2Edge& n2, bool _backward) : 
   456 	Graph1Edge(!_backward ? n1 : n2), backward(_backward) { }
   457       Edge(Invalid i) : Graph1Edge(i), backward(true) { }
   458       bool operator==(const Edge& v) const { 
   459 	return (backward==v.backward && 
   460 		static_cast<Graph1Edge>(*this)==static_cast<Graph1Edge>(v)); 
   461       }
   462       bool operator!=(const Edge& v) const { 
   463 	return !(*this==v);
   464       }
   465     };
   466 
   467     using Parent::forward;
   468     using Parent::backward;
   469     using Parent::setForward;
   470     using Parent::setBackward;
   471     static bool forward(const Edge& e) { return !e.backward; }
   472     static bool backward(const Edge& e) { return e.backward; }
   473     static void setForward(Edge& e) { e.backward=false; }
   474     static void setBackward(Edge& e) { e.backward=true; }
   475   };
   476 
   477 
   478   /*! A grah wrapper base class 
   479     for merging the node-sets and edge-sets of 
   480     two node-disjoint graphs 
   481     into one graph. 
   482     Specialized implementation for the case 
   483     when _Graph1::Edge is a base class and _Graph2::Edge
   484     is derived from it.
   485    */
   486   template <typename _Graph1, typename _Graph2>
   487   class MergeEdgeGraphWrapperBaseBase<
   488     _Graph1, _Graph2, typename boost::enable_if<
   489     boost::is_base_and_derived<typename _Graph1::Edge, typename _Graph2::Edge> >::type> : 
   490     public MergeNodeGraphWrapperBase<_Graph1, _Graph2> {
   491   public:
   492     static void printEdge() { std::cout << "edge: 2nd is derived" << std::endl; }
   493     typedef _Graph1 Graph1;
   494     typedef _Graph2 Graph2;
   495     typedef MergeNodeGraphWrapperBase<_Graph1, _Graph2> Parent;
   496     typedef typename Parent::Parent1 Parent1;
   497     typedef typename Parent::Parent2 Parent2;
   498 //     typedef P1<_Graph1> Parent1;
   499 //     typedef P2<_Graph2> Parent2;
   500     typedef typename Parent1::Edge Graph1Edge;
   501     typedef typename Parent2::Edge Graph2Edge;
   502   protected:
   503     MergeEdgeGraphWrapperBaseBase() { }
   504   public:
   505 
   506     class Edge : public Graph2Edge {
   507       friend class MergeEdgeGraphWrapperBaseBase<_Graph1, _Graph2>;
   508     protected:
   509       bool backward; //true, iff backward
   510     public:
   511       Edge() { }
   512       /// \todo =false is needed, or causes problems?
   513       /// If \c _backward is false, then we get an edge corresponding to the 
   514       /// original one, otherwise its oppositely directed pair is obtained.
   515       Edge(const Graph1Edge& n1, 
   516 	   const Graph2Edge& n2, bool _backward) : 
   517 	Graph2Edge(n2), backward(_backward) { 
   518 	if (!backward) *this=n1;
   519       }
   520       Edge(Invalid i) : Graph2Edge(i), backward(true) { }
   521       bool operator==(const Edge& v) const { 
   522 	if (backward) 
   523 	  return (v.backward && 
   524 		  static_cast<Graph2Edge>(*this)==static_cast<Graph2Edge>(v)); 
   525 	else 
   526 	  return (!v.backward && 
   527 		  static_cast<Graph1Edge>(*this)==static_cast<Graph1Edge>(v)); 
   528       } 
   529       bool operator!=(const Edge& v) const { 
   530 	return !(*this==v);
   531       }
   532     };
   533 
   534     using Parent::forward;
   535     using Parent::backward;
   536     using Parent::setForward;
   537     using Parent::setBackward;
   538     static bool forward(const Edge& e) { return !e.backward; }
   539     static bool backward(const Edge& e) { return e.backward; }
   540     static void setForward(Edge& e) { e.backward=false; }
   541     static void setBackward(Edge& e) { e.backward=true; }
   542   };
   543 
   544 
   545   /*! A grah wrapper base class 
   546     for merging the node-sets and edge-sets of 
   547     two node-disjoint graphs 
   548     into one graph. 
   549     Specialized implementation for the case 
   550     when _Graph1::Edge is derived from _Graph2::Edge.
   551    */
   552   template <typename _Graph1, typename _Graph2>
   553   class MergeEdgeGraphWrapperBaseBase<
   554     _Graph1, _Graph2, typename boost::enable_if<
   555     boost::is_base_and_derived<typename _Graph2::Edge, typename _Graph1::Edge> >::type> : 
   556     public MergeNodeGraphWrapperBase<_Graph1, _Graph2> {
   557   public:
   558     static void printEdge() { std::cout << "edge: 1st is derived" << std::endl; }
   559     typedef _Graph1 Graph1;
   560     typedef _Graph2 Graph2;
   561     typedef MergeNodeGraphWrapperBaseBase<_Graph1, _Graph2> Parent;
   562     typedef typename Parent::Parent1 Parent1;
   563     typedef typename Parent::Parent2 Parent2;
   564 //     typedef P1<_Graph1> Parent1;
   565 //     typedef P2<_Graph2> Parent2;
   566     typedef typename Parent1::Edge Graph1Edge;
   567     typedef typename Parent2::Edge Graph2Edge;
   568   protected:
   569     MergeEdgeGraphWrapperBaseBase() { }
   570   public:
   571 
   572     class Edge : public Graph1Edge {
   573       friend class MergeEdgeGraphWrapperBaseBase<_Graph1, _Graph2>;
   574     protected:
   575       bool backward; //true, iff backward
   576     public:
   577       Edge() { }
   578       /// \todo =false is needed, or causes problems?
   579       /// If \c _backward is false, then we get an edge corresponding to the 
   580       /// original one, otherwise its oppositely directed pair is obtained.
   581       Edge(const Graph1Edge& n1, 
   582 	   const Graph2Edge& n2, bool _backward) : 
   583 	Graph1Edge(n1), backward(_backward) { 
   584 	if (backward) *this=n2;
   585       }
   586       Edge(Invalid i) : Graph1Edge(i), backward(true) { }
   587       bool operator==(const Edge& v) const { 
   588 	if (backward) 
   589 	  return (v.backward && 
   590 		  static_cast<Graph2Edge>(*this)==static_cast<Graph2Edge>(v)); 
   591 	else 
   592 	  return (!v.backward && 
   593 		  static_cast<Graph1Edge>(*this)==static_cast<Graph1Edge>(v)); 
   594       } 
   595       bool operator!=(const Edge& v) const { 
   596 	return !(*this==v);
   597       }
   598     };
   599 
   600     using Parent::forward;
   601     using Parent::backward;
   602     using Parent::setForward;
   603     using Parent::setBackward;
   604     static bool forward(const Edge& e) { return !e.backward; }
   605     static bool backward(const Edge& e) { return e.backward; }
   606     static void setForward(Edge& e) { e.backward=false; }
   607     static void setBackward(Edge& e) { e.backward=true; }
   608   };
   609 
   610 
   611   template <typename _Graph1, typename _Graph2>
   612   class MergeEdgeGraphWrapperBase : 
   613     public MergeEdgeGraphWrapperBaseBase<_Graph1, _Graph2> {
   614   public:
   615     typedef MergeEdgeGraphWrapperBaseBase<_Graph1, _Graph2> Parent;
   616     typedef _Graph1 Graph1;
   617     typedef _Graph2 Graph2;
   618     typedef typename Parent::Parent1 Parent1;
   619     typedef typename Parent::Parent2 Parent2;
   620     typedef typename Parent1::Node Graph1Node;
   621     typedef typename Parent2::Node Graph2Node;
   622     typedef typename Parent1::Edge Graph1Edge;
   623     typedef typename Parent2::Edge Graph2Edge;
   624 
   625     typedef typename Parent::Node Node;
   626     typedef typename Parent::Edge Edge;
   627 
   628     using Parent::first;
   629     void first(Edge& i) const {
   630       Parent1::graph->first(*static_cast<Graph1Edge*>(&i));
   631       this->setForward(i);
   632       if (*static_cast<Graph1Edge*>(&i)==INVALID) {
   633 	Parent2::graph->first(*static_cast<Graph2Edge*>(&i));
   634 	this->setBackward(i);
   635       }
   636     }
   637     void firstIn(Edge& i, const Node& n) const {
   638       if (forward(n)) {
   639 	Parent1::graph->firstIn(*static_cast<Graph1Edge*>(&i), n);
   640 	if (*static_cast<Graph1Edge*>(&i)==INVALID) 
   641 	  i=INVALID;
   642 	else
   643 	  this->setForward(i);
   644       } else {
   645 	Parent2::graph->firstIn(*static_cast<Graph2Edge*>(&i), n);
   646 	this->setBackward(i);
   647       }
   648     }
   649     void firstOut(Edge& i, const Node& n) const {
   650       if (forward(n)) {
   651 	Parent1::graph->firstOut(*static_cast<Graph1Edge*>(&i), n);
   652 	if (*static_cast<Graph1Edge*>(&i)==INVALID) 
   653 	  i=INVALID;
   654 	else
   655 	  this->setForward(i);
   656       } else {
   657 	Parent2::graph->firstOut(*static_cast<Graph2Edge*>(&i), n);
   658 	this->setBackward(i);
   659       }
   660     }
   661 
   662     using Parent::next;
   663     void next(Edge& i) const {
   664       if (forward(i)) {
   665 	Parent1::graph->next(*static_cast<Graph1Edge*>(&i));
   666 	if (*static_cast<Graph1Edge*>(&i)==INVALID) {
   667 	  Parent2::graph->first(*static_cast<Graph2Edge*>(&i));
   668 	  this->setBackward(i);
   669 	}
   670       } else {
   671 	Parent2::graph->next(*static_cast<Graph2Edge*>(&i));
   672       }
   673     }
   674     void nextIn(Edge& i) const {
   675       if (forward(i)) {
   676 	Parent1::graph->nextIn(*static_cast<Graph1Edge*>(&i));
   677  	if (*static_cast<Graph1Edge*>(&i)==INVALID) i=INVALID;
   678       } else {
   679 	Parent2::graph->nextIn(*static_cast<Graph2Edge*>(&i));
   680       }
   681     }
   682     void nextOut(Edge& i) const {
   683       if (Parent::forward(i)) {
   684 	Parent1::graph->nextOut(*static_cast<Graph1Edge*>(&i));
   685  	if (*static_cast<Graph1Edge*>(&i)==INVALID) i=INVALID;
   686       } else {
   687 	Parent2::graph->nextOut(*static_cast<Graph2Edge*>(&i));
   688       }
   689     }
   690 
   691     Node source(const Edge& i) const {
   692       if (forward(i)) {
   693 	return 
   694 	  Node(Parent1::graph->source(i), INVALID, false);
   695       } else {
   696 	return 
   697 	  Node(INVALID, Parent2::graph->source(i), true);
   698       }
   699     }
   700 
   701     Node target(const Edge& i) const {
   702       if (forward(i)) {
   703 	return 
   704 	  Node(Parent1::graph->target(i), INVALID, false);
   705       } else {
   706 	return 
   707 	  Node(INVALID, Parent2::graph->target(i), true);
   708       }
   709     }
   710 
   711     using Parent::id;
   712     int id(const Edge& n) const { 
   713       if (forward(n)) 
   714 	return this->Parent1::graph->id(n);
   715       else
   716 	return this->Parent2::graph->id(n);
   717     }
   718 
   719     template <typename _Value> 
   720     class EdgeMap { 
   721     protected:
   722       typedef typename Parent::Graph1::template EdgeMap<_Value> ParentMap1;
   723       typedef typename Parent::Graph2::template EdgeMap<_Value> ParentMap2;
   724       ParentMap1 forward_map;
   725       ParentMap2 backward_map;
   726     public:
   727       typedef _Value Value;
   728       typedef Edge Key;
   729       EdgeMap(const MergeEdgeGraphWrapperBase<_Graph1, _Graph2>& gw) : 
   730 	forward_map(*(gw.Parent1::graph)), 
   731 	backward_map(*(gw.Parent2::graph)) { }
   732       EdgeMap(const MergeEdgeGraphWrapperBase<_Graph1, _Graph2>& gw, 
   733 	      const _Value& value) : 
   734 	forward_map(*(gw.Parent1::graph), value), 
   735 	backward_map(*(gw.Parent2::graph), value) { }
   736       _Value operator[](const Edge& n) const {
   737 	if (Parent::forward(n)) 
   738 	  return forward_map[n];
   739 	else 
   740 	  return backward_map[n];
   741       }
   742       void set(const Edge& n, const _Value& value) {
   743 	if (Parent::forward(n)) 
   744 	  forward_map.set(n, value);
   745 	else 
   746 	  backward_map.set(n, value);
   747       }
   748 //       using ParentMap1::operator[];
   749 //       using ParentMap2::operator[];
   750     };
   751 
   752   };
   753 
   754 
   755 
   756   /*! A graph wrapper class 
   757     for merging two node-disjoint graphs 
   758     into one graph. 
   759     Different implementations are according to the relation of 
   760     _Graph1::Edge and _Graph2::Edge. 
   761     If _Graph1::Edge and _Graph2::Edge are unrelated, then 
   762     MergeEdgeGraphWrapper<_Graph1, _Graph2>::Edge 
   763     is derived from both. 
   764     If _Graph1::Edge and _Graph2::Edge are the same type, then 
   765     MergeEdgeGraphWrapper<_Graph1, _Graph2>::Edge 
   766     is derived from _Graph1::Edge. 
   767     If one of _Graph1::Edge and _Graph2::Edge 
   768     is derived from the other one, then 
   769     MergeEdgeGraphWrapper<_Graph1, _Graph2>::Edge 
   770     is derived from the derived type.
   771     It does not satisfy 
   772   */
   773   template <typename _Graph1, typename _Graph2>
   774   class MergeEdgeGraphWrapper : public 
   775   IterableGraphExtender<MergeEdgeGraphWrapperBase<_Graph1, _Graph2> > {
   776   public:
   777     typedef _Graph1 Graph1;
   778     typedef _Graph2 Graph2;
   779     typedef IterableGraphExtender<
   780       MergeEdgeGraphWrapperBase<_Graph1, _Graph2> > Parent;
   781   protected:
   782     MergeEdgeGraphWrapper() { }
   783   public:
   784     MergeEdgeGraphWrapper(_Graph1& _graph1, _Graph2& _graph2) { 
   785       Parent::Parent1::setGraph(_graph1);
   786       Parent::Parent2::setGraph(_graph2);
   787     }
   788   };
   789 
   790   
   791   /*! A graph wrapper base class for the following functionality.
   792     If a bijection is given between the node-sets of two graphs, 
   793     then the second one can be considered as a new edge-set 
   794     over th first node-set. 
   795    */
   796   template <typename _Graph, typename _EdgeSetGraph>
   797   class NewEdgeSetGraphWrapperBase : public GraphWrapperBase<_Graph> {
   798   public:
   799     typedef GraphWrapperBase<_Graph> Parent; 
   800     typedef _Graph Graph;
   801     typedef _EdgeSetGraph EdgeSetGraph;
   802     typedef typename _Graph::Node Node;
   803     typedef typename _EdgeSetGraph::Node ENode;
   804   protected:
   805     EdgeSetGraph* edge_set_graph;
   806     typename Graph::NodeMap<ENode>* e_node;
   807     typename EdgeSetGraph::NodeMap<Node>* n_node;
   808     void setEdgeSetGraph(EdgeSetGraph& _edge_set_graph) { 
   809       edge_set_graph=&_edge_set_graph; 
   810     }
   811     /// For each node of \c Graph, this gives a node of \c EdgeSetGraph .
   812     void setNodeMap(typename EdgeSetGraph::NodeMap<Node>& _n_node) { 
   813       n_node=&_n_node; 
   814     }
   815     /// For each node of \c EdgeSetGraph, this gives a node of \c Graph .
   816     void setENodeMap(typename Graph::NodeMap<ENode>& _e_node) { 
   817       e_node=&_e_node; 
   818     }
   819   public:
   820     class Edge : public EdgeSetGraph::Edge {
   821       typedef typename EdgeSetGraph::Edge Parent;
   822     public:
   823       Edge() { }
   824       Edge(const Parent& e) : Parent(e) { }
   825       Edge(Invalid i) : Parent(i) { }
   826     };
   827 
   828     using Parent::first;
   829     void first(Edge &e) const { 
   830       edge_set_graph->first(e);
   831     }
   832     void firstOut(Edge& e, const Node& n) const {
   833 //       cout << e_node << endl;
   834 //       cout << n_node << endl;
   835       edge_set_graph->firstOut(e, (*e_node)[n]);
   836     }
   837     void firstIn(Edge& e, const Node& n) const {
   838       edge_set_graph->firstIn(e, (*e_node)[n]);
   839     }
   840 
   841     using Parent::next;
   842     void next(Edge &e) const { 
   843       edge_set_graph->next(e);
   844     }
   845     void nextOut(Edge& e) const {
   846       edge_set_graph->nextOut(e);
   847     }
   848     void nextIn(Edge& e) const {
   849       edge_set_graph->nextIn(e);
   850     }
   851 
   852     Node source(const Edge& e) const { 
   853       return (*n_node)[edge_set_graph->source(e)];
   854     }
   855     Node target(const Edge& e) const { 
   856       return (*n_node)[edge_set_graph->target(e)];
   857     }
   858 
   859     int edgeNum() const { return edge_set_graph->edgeNum(); }
   860 
   861 //     NNode addOldNode() {
   862 //       return Parent::addNode();
   863 //     }
   864 
   865 //     ENode addNewNode() {
   866 //       return edge_set_graph->addNode();
   867 //     }
   868 
   869     Edge addEdge(const Node& u, const Node& v) {
   870       return edge_set_graph->addEdge((*e_node)[u], (*e_node)[v]);
   871     }
   872 
   873     using Parent::erase;
   874     void erase(const Edge& i) const { edge_set_graph->erase(i); }
   875   
   876     void clear() const { Parent::clear(); edge_set_graph->clear(); }
   877 
   878     bool forward(const Edge& e) const { return edge_set_graph->forward(e); }
   879     bool backward(const Edge& e) const { return edge_set_graph->backward(e); }
   880 
   881     int id(const Node& e) const { return Parent::id(e); }
   882     int id(const Edge& e) const { return edge_set_graph->id(e); }
   883     
   884     Edge opposite(const Edge& e) const { return edge_set_graph->opposite(e); }
   885 
   886     template <typename _Value>
   887     class EdgeMap : public EdgeSetGraph::EdgeMap<_Value> {
   888     public:
   889       typedef typename EdgeSetGraph::EdgeMap<_Value> Parent; 
   890       typedef _Value Value;
   891       typedef Edge Key;
   892       EdgeMap(const NewEdgeSetGraphWrapperBase& gw) : 
   893 	Parent(*(gw.edge_set_graph)) { }
   894       EdgeMap(const NewEdgeSetGraphWrapperBase& gw, const _Value& _value) : 
   895 	Parent(*(gw.edge_set_graph), _value) { }
   896     };
   897 
   898   };
   899 
   900 
   901   /*! A graph wrapper class for the following functionality.
   902     If a bijection is given between the node-sets of two graphs, 
   903     then the second one can be considered as a new edge-set 
   904     over th first node-set. 
   905    */
   906   template <typename _Graph, typename _EdgeSetGraph>
   907   class NewEdgeSetGraphWrapper : 
   908     public IterableGraphExtender<
   909     NewEdgeSetGraphWrapperBase<_Graph, _EdgeSetGraph> > {
   910   public:
   911     typedef _Graph Graph;
   912     typedef _EdgeSetGraph EdgeSetGraph;
   913     typedef IterableGraphExtender<
   914       NewEdgeSetGraphWrapperBase<_Graph, _EdgeSetGraph> > Parent;
   915   protected:
   916     NewEdgeSetGraphWrapper() { }
   917   public:
   918     NewEdgeSetGraphWrapper(_Graph& _graph, 
   919 			   _EdgeSetGraph& _edge_set_graph, 
   920 			   typename _Graph::
   921 			   NodeMap<typename _EdgeSetGraph::Node>& _e_node, 
   922 			   typename _EdgeSetGraph::
   923 			   NodeMap<typename _Graph::Node>& _n_node) { 
   924       setGraph(_graph);
   925       setEdgeSetGraph(_edge_set_graph);
   926       setNodeMap(_n_node);
   927       setENodeMap(_e_node);
   928     }
   929   };
   930 
   931   /*! A graph wrapper class for the following functionality.
   932     The same as NewEdgeSetGrapWrapper, but the bijection and the graph of 
   933     new edges is andled inthe class.
   934    */
   935   template <typename _Graph, typename _EdgeSetGraph>
   936   class NewEdgeSetGraphWrapper2 : 
   937     public IterableGraphExtender<
   938     NewEdgeSetGraphWrapperBase<_Graph, _EdgeSetGraph> > {
   939   public:
   940     typedef _Graph Graph;
   941     typedef _EdgeSetGraph EdgeSetGraph;
   942     typedef IterableGraphExtender<
   943       NewEdgeSetGraphWrapperBase<_Graph, _EdgeSetGraph> > Parent;
   944   protected:
   945     _EdgeSetGraph _edge_set_graph;
   946     typename Graph::template NodeMap<typename EdgeSetGraph::Node> _e_node;
   947     typename EdgeSetGraph::template NodeMap<typename Graph::Node> _n_node;
   948     NewEdgeSetGraphWrapper2() { }
   949   public:
   950     typedef typename Graph::Node Node;
   951     //    typedef typename Parent::Edge Edge;
   952 
   953     NewEdgeSetGraphWrapper2(_Graph& _graph) : 
   954       _edge_set_graph(), 
   955       _e_node(_graph), _n_node(_edge_set_graph) { 
   956       setGraph(_graph);
   957       setEdgeSetGraph(_edge_set_graph);
   958       setNodeMap(_n_node); setENodeMap(_e_node);
   959       Node n;
   960       for (this->first(n); n!=INVALID; this->next(n)) {
   961 	typename EdgeSetGraph::Node e=_edge_set_graph.addNode();
   962 	_e_node.set(n, e);
   963 	_n_node.set(e, n);
   964       }
   965     }
   966 
   967 //     Node addNode() {
   968 //       Node n=(*this).Parent::addNode();
   969 //       typename EdgeSetGraph::Node e=_edge_set_graph.addNode();
   970 //       _e_node.set(n, e);
   971 //       _n_node.set(e, n);
   972 //       return n;
   973 //     }
   974 
   975   };
   976 
   977   /*! A graph wrapper base class 
   978     for merging graphs of type _Graph1 and _Graph2 
   979     which are given on the same node-set 
   980     (specially on the node-set of Graph1) 
   981     into one graph.
   982     In an other point of view, _Graph1 is extended with 
   983     the edge-set of _Graph2.
   984     \warning we need specialize dimplementations
   985     \todo we need specialize dimplementations
   986     \bug we need specialize dimplementations
   987    */
   988   template <typename _Graph1, typename _Graph2, typename Enable=void>
   989   class AugmentingGraphWrapperBase : 
   990     public P1<_Graph1> {
   991   public:
   992     void printAugment() const { std::cout << "generic" << std::endl; }
   993     typedef _Graph1 Graph1;
   994     typedef _Graph2 Graph2;
   995     typedef P1<_Graph1> Parent1;
   996     typedef P2<_Graph2> Parent2;
   997     typedef typename Parent1::Edge Graph1Edge;
   998     typedef typename Parent2::Edge Graph2Edge;
   999   protected:
  1000     AugmentingGraphWrapperBase() { }
  1001     _Graph2* graph2;
  1002     void setGraph2(_Graph2& _graph2) { graph2=&_graph2; }
  1003   public:
  1004     
  1005     template <typename _Value> class EdgeMap;
  1006 
  1007     typedef typename Parent1::Node Node;
  1008 
  1009     class Edge : public Graph1Edge, public Graph2Edge {
  1010       friend class AugmentingGraphWrapperBase<_Graph1, _Graph2>;
  1011       template <typename _Value> friend class EdgeMap;
  1012     protected:
  1013       bool backward; //true, iff backward
  1014     public:
  1015       Edge() { }
  1016       /// \todo =false is needed, or causes problems?
  1017       /// If \c _backward is false, then we get an edge corresponding to the 
  1018       /// original one, otherwise its oppositely directed pair is obtained.
  1019       Edge(const Graph1Edge& n1, 
  1020 	   const Graph2Edge& n2, bool _backward) : 
  1021 	Graph1Edge(n1), Graph2Edge(n2), backward(_backward) { }
  1022       Edge(Invalid i) : Graph1Edge(i), Graph2Edge(i), backward(true) { }
  1023       bool operator==(const Edge& v) const { 
  1024 	if (backward) 
  1025 	  return (v.backward && 
  1026 		  static_cast<Graph2Edge>(*this)==static_cast<Graph2Edge>(v)); 
  1027 	else 
  1028 	  return (!v.backward && 
  1029 		  static_cast<Graph1Edge>(*this)==static_cast<Graph1Edge>(v)); 
  1030       } 
  1031       bool operator!=(const Edge& v) const { 
  1032 	return !(*this==v);
  1033       }
  1034     };
  1035 
  1036     using Parent1::first;
  1037     void first(Edge& i) const {
  1038       Parent1::graph->first(*static_cast<Graph1Edge*>(&i));
  1039       i.backward=false;
  1040       if (*static_cast<Graph1Edge*>(&i)==INVALID) {
  1041 	graph2->first(*static_cast<Graph2Edge*>(&i));
  1042 	i.backward=true;
  1043       }
  1044     }
  1045     void firstIn(Edge& i, const Node& n) const {
  1046       Parent1::graph->firstIn(*static_cast<Graph1Edge*>(&i), n);
  1047       i.backward=false;
  1048       if (*static_cast<Graph1Edge*>(&i)==INVALID) {
  1049 	graph2->firstIn(*static_cast<Graph2Edge*>(&i), n);
  1050 	i.backward=true;
  1051       }
  1052     }
  1053     void firstOut(Edge& i, const Node& n) const {
  1054       Parent1::graph->firstOut(*static_cast<Graph1Edge*>(&i), n);
  1055       i.backward=false;
  1056       if (*static_cast<Graph1Edge*>(&i)==INVALID) {
  1057 	graph2->firstOut(*static_cast<Graph2Edge*>(&i), n);
  1058 	i.backward=true;
  1059       }
  1060     }
  1061 
  1062     using Parent1::next;
  1063     void next(Edge& i) const {
  1064       if (!(i.backward)) {
  1065 	Parent1::graph->next(*static_cast<Graph1Edge*>(&i));
  1066 	if (*static_cast<Graph1Edge*>(&i)==INVALID) {
  1067 	  graph2->first(*static_cast<Graph2Edge*>(&i));
  1068 	  i.backward=true;
  1069 	}
  1070       } else {
  1071 	graph2->next(*static_cast<Graph2Edge*>(&i));
  1072       }
  1073     }
  1074     void nextIn(Edge& i) const {
  1075       if (!(i.backward)) {
  1076 	Node n=target(i);
  1077 	Parent1::graph->nextIn(*static_cast<Graph1Edge*>(&i));
  1078 	if (*static_cast<Graph1Edge*>(&i)==INVALID) {
  1079 	  graph2->firstIn(*static_cast<Graph2Edge*>(&i), n);
  1080 	  i.backward=true;
  1081 	}
  1082       } else {
  1083 	graph2->nextIn(*static_cast<Graph2Edge*>(&i));
  1084       }
  1085     }
  1086     void nextOut(Edge& i) const {
  1087       if (!(i.backward)) {
  1088 	Node n=source(i);
  1089 	Parent1::graph->nextOut(*static_cast<Graph1Edge*>(&i));
  1090 	if (*static_cast<Graph1Edge*>(&i)==INVALID) {
  1091 	  graph2->firstOut(*static_cast<Graph2Edge*>(&i), n);
  1092 	  i.backward=true;
  1093 	}
  1094       } else {
  1095 	graph2->nextOut(*static_cast<Graph2Edge*>(&i));
  1096       }
  1097     }
  1098 
  1099     Node source(const Edge& i) const {
  1100       if (!(i.backward)) {
  1101 	return Parent1::graph->source(i);
  1102       } else {
  1103 	return graph2->source(i);
  1104       }
  1105     }
  1106 
  1107     Node target(const Edge& i) const {
  1108       if (!(i.backward)) {
  1109 	return Parent1::graph->target(i);
  1110       } else {
  1111 	return graph2->target(i);
  1112       }
  1113     }
  1114 
  1115     int id(const Node& n) const {
  1116       return Parent1::id(n);
  1117     };
  1118     int id(const Edge& n) const { 
  1119       if (!n.backward) 
  1120 	return this->Parent1::graph->id(n);
  1121       else
  1122 	return this->graph2->id(n);
  1123     }
  1124 
  1125     template <typename _Value> 
  1126     class EdgeMap { 
  1127     protected:
  1128       typedef typename _Graph1::template EdgeMap<_Value> ParentMap1;
  1129       typedef typename _Graph2::template EdgeMap<_Value> ParentMap2;
  1130       ParentMap1 forward_map;
  1131       ParentMap2 backward_map;
  1132     public:
  1133       typedef _Value Value;
  1134       typedef Edge Key;
  1135       EdgeMap(const AugmentingGraphWrapperBase<_Graph1, _Graph2>& gw) : 
  1136 	forward_map(*(gw.Parent1::graph)), 
  1137 	backward_map(*(gw.graph2)) { }
  1138       EdgeMap(const AugmentingGraphWrapperBase<_Graph1, _Graph2>& gw, 
  1139 	      const _Value& value) : 
  1140 	forward_map(*(gw.Parent1::graph), value), 
  1141 	backward_map(*(gw.graph2), value) { }
  1142       _Value operator[](const Edge& n) const {
  1143 	if (!n.backward) 
  1144 	  return forward_map[n];
  1145 	else 
  1146 	  return backward_map[n];
  1147       }
  1148       void set(const Edge& n, const _Value& value) {
  1149 	if (!n.backward) 
  1150 	  forward_map.set(n, value);
  1151 	else 
  1152 	  backward_map.set(n, value);
  1153       }
  1154 //       using ParentMap1::operator[];
  1155 //       using ParentMap2::operator[];
  1156     };
  1157 
  1158   };
  1159 
  1160 
  1161   /*! A graph wrapper class 
  1162     for merging two graphs (of type _Graph1 and _Graph2)
  1163     with the same node-set 
  1164     (specially on the node-set of Graph1) 
  1165     into one graph. 
  1166     In an other point of view, _Graph1 is extended with 
  1167     the edge-set of _Graph2.
  1168    */  
  1169   template <typename _Graph1, typename _Graph2>
  1170   class AugmentingGraphWrapper : public 
  1171   IterableGraphExtender<AugmentingGraphWrapperBase<_Graph1, _Graph2> > {
  1172   public:
  1173     typedef 
  1174     IterableGraphExtender<AugmentingGraphWrapperBase<_Graph1, _Graph2> >
  1175     Parent;
  1176     typedef _Graph1 Graph1;
  1177     typedef _Graph2 Graph2;
  1178   protected:
  1179     AugmentingGraphWrapper() { }
  1180   public:
  1181     AugmentingGraphWrapper(_Graph1& _graph1, _Graph2& _graph2) { 
  1182       setGraph(_graph1); 
  1183       setGraph2(_graph2);
  1184     }
  1185   };
  1186 
  1187 } //namespace lemon
  1188 
  1189 #endif //LEMON_MERGE_NODE_GRAPH_WRAPPER_H