src/hugo/dfs.h
author alpar
Thu, 23 Sep 2004 15:05:20 +0000
changeset 906 17f31d280385
parent 802 bc0c74eeb151
child 911 89a4fbb99cad
permissions -rw-r--r--
Copyright header added.
     1 /* -*- C++ -*-
     2  * src/hugo/dfs.h - Part of HUGOlib, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef HUGO_DFS_H
    18 #define HUGO_DFS_H
    19 
    20 ///\ingroup flowalgs
    21 ///\file
    22 ///\brief %DFS algorithm.
    23 ///
    24 ///\todo Revise Manual.
    25 
    26 #include <hugo/bin_heap.h>
    27 #include <hugo/invalid.h>
    28 
    29 namespace hugo {
    30 
    31 /// \addtogroup flowalgs
    32 /// @{
    33 
    34   ///%DFS algorithm class.
    35 
    36   ///This class provides an efficient implementation of %DFS algorithm.
    37   ///
    38   ///\param GR The graph type the algorithm runs on.
    39   ///
    40   ///\author Alpar Juttner
    41 
    42 #ifdef DOXYGEN
    43   template <typename GR>
    44 #else
    45   template <typename GR>
    46 #endif
    47   class Dfs{
    48   public:
    49     ///The type of the underlying graph.
    50     typedef GR Graph;
    51     /// .
    52     typedef typename Graph::Node Node;
    53     /// .
    54     typedef typename Graph::NodeIt NodeIt;
    55     /// .
    56     typedef typename Graph::Edge Edge;
    57     /// .
    58     typedef typename Graph::OutEdgeIt OutEdgeIt;
    59     
    60     ///\brief The type of the map that stores the last
    61     ///edges of the paths on the %DFS tree.
    62     typedef typename Graph::template NodeMap<Edge> PredMap;
    63     ///\brief The type of the map that stores the last but one
    64     ///nodes of the paths on the %DFS tree.
    65     typedef typename Graph::template NodeMap<Node> PredNodeMap;
    66     ///The type of the map that stores the dists of the nodes on the %DFS tree.
    67     typedef typename Graph::template NodeMap<int> DistMap;
    68 
    69   private:
    70     /// Pointer to the underlying graph.
    71     const Graph *G;
    72     ///Pointer to the map of predecessors edges.
    73     PredMap *predecessor;
    74     ///Indicates if \ref predecessor is locally allocated (\c true) or not.
    75     bool local_predecessor;
    76     ///Pointer to the map of predecessors nodes.
    77     PredNodeMap *pred_node;
    78     ///Indicates if \ref pred_node is locally allocated (\c true) or not.
    79     bool local_pred_node;
    80     ///Pointer to the map of distances.
    81     DistMap *distance;
    82     ///Indicates if \ref distance is locally allocated (\c true) or not.
    83     bool local_distance;
    84 
    85     ///The source node of the last execution.
    86     Node source;
    87 
    88 
    89     ///Initializes the maps.
    90     void init_maps() 
    91     {
    92       if(!predecessor) {
    93 	local_predecessor = true;
    94 	predecessor = new PredMap(*G);
    95       }
    96       if(!pred_node) {
    97 	local_pred_node = true;
    98 	pred_node = new PredNodeMap(*G);
    99       }
   100       if(!distance) {
   101 	local_distance = true;
   102 	distance = new DistMap(*G);
   103       }
   104     }
   105     
   106   public :    
   107     ///Constructor.
   108     
   109     ///\param _G the graph the algorithm will run on.
   110     Dfs(const Graph& _G) :
   111       G(&_G),
   112       predecessor(NULL), local_predecessor(false),
   113       pred_node(NULL), local_pred_node(false),
   114       distance(NULL), local_distance(false)
   115     { }
   116     
   117     ///Destructor.
   118     ~Dfs() 
   119     {
   120       if(local_predecessor) delete predecessor;
   121       if(local_pred_node) delete pred_node;
   122       if(local_distance) delete distance;
   123     }
   124 
   125     ///Sets the map storing the predecessor edges.
   126 
   127     ///Sets the map storing the predecessor edges.
   128     ///If you don't use this function before calling \ref run(),
   129     ///it will allocate one. The destuctor deallocates this
   130     ///automatically allocated map, of course.
   131     ///\return <tt> (*this) </tt>
   132     Dfs &setPredMap(PredMap &m) 
   133     {
   134       if(local_predecessor) {
   135 	delete predecessor;
   136 	local_predecessor=false;
   137       }
   138       predecessor = &m;
   139       return *this;
   140     }
   141 
   142     ///Sets the map storing the predecessor nodes.
   143 
   144     ///Sets the map storing the predecessor nodes.
   145     ///If you don't use this function before calling \ref run(),
   146     ///it will allocate one. The destuctor deallocates this
   147     ///automatically allocated map, of course.
   148     ///\return <tt> (*this) </tt>
   149     Dfs &setPredNodeMap(PredNodeMap &m) 
   150     {
   151       if(local_pred_node) {
   152 	delete pred_node;
   153 	local_pred_node=false;
   154       }
   155       pred_node = &m;
   156       return *this;
   157     }
   158 
   159     ///Sets the map storing the distances calculated by the algorithm.
   160 
   161     ///Sets the map storing the distances calculated by the algorithm.
   162     ///If you don't use this function before calling \ref run(),
   163     ///it will allocate one. The destuctor deallocates this
   164     ///automatically allocated map, of course.
   165     ///\return <tt> (*this) </tt>
   166     Dfs &setDistMap(DistMap &m) 
   167     {
   168       if(local_distance) {
   169 	delete distance;
   170 	local_distance=false;
   171       }
   172       distance = &m;
   173       return *this;
   174     }
   175     
   176   ///Runs %DFS algorithm from node \c s.
   177 
   178   ///This method runs the %DFS algorithm from a root node \c s
   179   ///in order to
   180   ///compute 
   181   ///- a %DFS tree and
   182   ///- the distance of each node from the root on this tree.
   183  
   184     void run(Node s) {
   185       
   186       init_maps();
   187       
   188       source = s;
   189       
   190       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   191 	predecessor->set(u,INVALID);
   192 	pred_node->set(u,INVALID);
   193       }
   194       
   195       int N=G->nodeNum();
   196       std::vector<typename Graph::OutEdgeIt> Q(N);
   197 
   198       int Qh=0;
   199       
   200       G->first(Q[Qh],s);
   201       distance->set(s, 0);
   202 
   203       Node n=s;
   204       Node m;
   205       OutEdgeIt e;
   206       do {
   207 	if((e=Q[Qh])!=INVALID)
   208 	  if((m=G->head(e))!=s && (*predecessor)[m=G->head(e)]==INVALID) {
   209 	    predecessor->set(m,e);
   210 	    pred_node->set(m,n);
   211 	    G->first(Q[++Qh],m);
   212 	    distance->set(m,Qh);
   213 	    n=m;
   214 	  }
   215 	  else ++Q[Qh];
   216 	else if(--Qh>=0) n=G->tail(Q[Qh]);
   217       } while(Qh>=0);
   218     }
   219     
   220     ///The distance of a node from the root on the %DFS tree.
   221 
   222     ///Returns the distance of a node from the root on the %DFS tree.
   223     ///\pre \ref run() must be called before using this function.
   224     ///\warning If node \c v in unreachable from the root the return value
   225     ///of this funcion is undefined.
   226     int dist(Node v) const { return (*distance)[v]; }
   227 
   228     ///Returns the 'previous edge' of the %DFS path tree.
   229 
   230     ///For a node \c v it returns the last edge of the path on the %DFS tree
   231     ///from the root to \c
   232     ///v. It is \ref INVALID
   233     ///if \c v is unreachable from the root or if \c v=s. The
   234     ///%DFS tree used here is equal to the %DFS tree used in
   235     ///\ref predNode(Node v).  \pre \ref run() must be called before using
   236     ///this function.
   237     Edge pred(Node v) const { return (*predecessor)[v]; }
   238 
   239     ///Returns the 'previous node' of the %DFS tree.
   240 
   241     ///For a node \c v it returns the 'previous node' on the %DFS tree,
   242     ///i.e. it returns the last but one node of the path from the
   243     ///root to \c /v on the %DFS tree.
   244     ///It is INVALID if \c v is unreachable from the root or if
   245     ///\c v=s.
   246     ///\pre \ref run() must be called before
   247     ///using this function.
   248     Node predNode(Node v) const { return (*pred_node)[v]; }
   249     
   250     ///Returns a reference to the NodeMap of distances on the %DFS tree.
   251     
   252     ///Returns a reference to the NodeMap of distances on the %DFS tree.
   253     ///\pre \ref run() must
   254     ///be called before using this function.
   255     const DistMap &distMap() const { return *distance;}
   256  
   257     ///Returns a reference to the %DFS tree map.
   258 
   259     ///Returns a reference to the NodeMap of the edges of the
   260     ///%DFS tree.
   261     ///\pre \ref run() must be called before using this function.
   262     const PredMap &predMap() const { return *predecessor;}
   263  
   264     ///Returns a reference to the map of last but one nodes of the %DFS tree.
   265 
   266     ///Returns a reference to the NodeMap of the last but one nodes of the paths
   267     ///on the
   268     ///%DFS tree.
   269     ///\pre \ref run() must be called before using this function.
   270     const PredNodeMap &predNodeMap() const { return *pred_node;}
   271 
   272     ///Checks if a node is reachable from the root.
   273 
   274     ///Returns \c true if \c v is reachable from the root.
   275     ///\note The root node is reported to be reached!
   276     ///
   277     ///\pre \ref run() must be called before using this function.
   278     ///
   279     bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; }
   280     
   281   };
   282   
   283 /// @}
   284   
   285 } //END OF NAMESPACE HUGO
   286 
   287 #endif
   288 
   289