src/hugo/preflow.h
author alpar
Thu, 23 Sep 2004 15:05:20 +0000
changeset 906 17f31d280385
parent 874 2195bc090dfe
child 911 89a4fbb99cad
permissions -rw-r--r--
Copyright header added.
     1 /* -*- C++ -*-
     2  * src/hugo/preflow.h - Part of HUGOlib, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef HUGO_PREFLOW_H
    18 #define HUGO_PREFLOW_H
    19 
    20 #include <vector>
    21 #include <queue>
    22 
    23 #include <hugo/invalid.h>
    24 #include <hugo/maps.h>
    25 
    26 /// \file
    27 /// \ingroup flowalgs
    28 /// Implementation of the preflow algorithm.
    29 
    30 namespace hugo {
    31 
    32   /// \addtogroup flowalgs
    33   /// @{                                                   
    34 
    35   ///%Preflow algorithms class.
    36 
    37   ///This class provides an implementation of the \e preflow \e
    38   ///algorithm producing a flow of maximum value in a directed
    39   ///graph. The preflow algorithms are the fastest max flow algorithms
    40   ///up to now. The \e source node, the \e target node, the \e
    41   ///capacity of the edges and the \e starting \e flow value of the
    42   ///edges should be passed to the algorithm through the
    43   ///constructor. It is possible to change these quantities using the
    44   ///functions \ref setSource, \ref setTarget, \ref setCap and \ref
    45   ///setFlow.
    46   ///
    47   ///After running \ref phase1() or \ref preflow(), the actual flow
    48   ///value can be obtained by calling \ref flowValue(). The minimum
    49   ///value cut can be written into a <tt>bool</tt> node map by
    50   ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes
    51   ///the inclusionwise minimum and maximum of the minimum value cuts,
    52   ///resp.)
    53   ///
    54   ///\param Graph The directed graph type the algorithm runs on.
    55   ///\param Num The number type of the capacities and the flow values.
    56   ///\param CapMap The capacity map type.
    57   ///\param FlowMap The flow map type.
    58   ///
    59   ///\author Jacint Szabo 
    60   template <typename Graph, typename Num,
    61 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    62             typename FlowMap=typename Graph::template EdgeMap<Num> >
    63   class Preflow {
    64   protected:
    65     typedef typename Graph::Node Node;
    66     typedef typename Graph::NodeIt NodeIt;
    67     typedef typename Graph::EdgeIt EdgeIt;
    68     typedef typename Graph::OutEdgeIt OutEdgeIt;
    69     typedef typename Graph::InEdgeIt InEdgeIt;
    70 
    71     typedef typename Graph::template NodeMap<Node> NNMap;
    72     typedef typename std::vector<Node> VecNode;
    73 
    74     const Graph* g;
    75     Node s;
    76     Node t;
    77     const CapMap* capacity;
    78     FlowMap* flow;
    79     int n;      //the number of nodes of G
    80     
    81     typename Graph::template NodeMap<int> level;  
    82     typename Graph::template NodeMap<Num> excess;
    83 
    84     // constants used for heuristics
    85     static const int H0=20;
    86     static const int H1=1;
    87 
    88     public:
    89 
    90     ///Indicates the property of the starting flow map.
    91 
    92     ///Indicates the property of the starting flow map. The meanings are as follows:
    93     ///- \c ZERO_FLOW: constant zero flow
    94     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
    95     ///the sum of the out-flows in every node except the \e source and
    96     ///the \e target.
    97     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
    98     ///least the sum of the out-flows in every node except the \e source.
    99     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
   100     ///set to the constant zero flow in the beginning of the algorithm in this case.
   101     ///
   102     enum FlowEnum{
   103       NO_FLOW,
   104       ZERO_FLOW,
   105       GEN_FLOW,
   106       PRE_FLOW
   107     };
   108 
   109     ///Indicates the state of the preflow algorithm.
   110 
   111     ///Indicates the state of the preflow algorithm. The meanings are as follows:
   112     ///- \c AFTER_NOTHING: before running the algorithm or at an unspecified state.
   113     ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1
   114     ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2()
   115     ///
   116     enum StatusEnum {
   117       AFTER_NOTHING,
   118       AFTER_PREFLOW_PHASE_1,      
   119       AFTER_PREFLOW_PHASE_2
   120     };
   121     
   122     protected: 
   123       FlowEnum flow_prop;
   124     StatusEnum status; // Do not needle this flag only if necessary.
   125     
   126   public: 
   127     ///The constructor of the class.
   128 
   129     ///The constructor of the class. 
   130     ///\param _G The directed graph the algorithm runs on. 
   131     ///\param _s The source node.
   132     ///\param _t The target node.
   133     ///\param _capacity The capacity of the edges. 
   134     ///\param _flow The flow of the edges. 
   135     ///Except the graph, all of these parameters can be reset by
   136     ///calling \ref setSource, \ref setTarget, \ref setCap and \ref
   137     ///setFlow, resp.
   138       Preflow(const Graph& _G, Node _s, Node _t, 
   139 	      const CapMap& _capacity, FlowMap& _flow) :
   140 	g(&_G), s(_s), t(_t), capacity(&_capacity),
   141 	flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   142 	flow_prop(NO_FLOW), status(AFTER_NOTHING) { }
   143 
   144 
   145                                                                               
   146     ///Runs the preflow algorithm.  
   147 
   148     ///Runs the preflow algorithm.
   149     ///
   150     void run() {
   151       phase1(flow_prop);
   152       phase2();
   153     }
   154     
   155     ///Runs the preflow algorithm.  
   156     
   157     ///Runs the preflow algorithm. 
   158     ///\pre The starting flow map must be
   159     /// - a constant zero flow if \c fp is \c ZERO_FLOW,
   160     /// - an arbitrary flow if \c fp is \c GEN_FLOW,
   161     /// - an arbitrary preflow if \c fp is \c PRE_FLOW,
   162     /// - any map if \c fp is NO_FLOW.
   163     ///If the starting flow map is a flow or a preflow then 
   164     ///the algorithm terminates faster.
   165     void run(FlowEnum fp) {
   166       flow_prop=fp;
   167       run();
   168     }
   169       
   170     ///Runs the first phase of the preflow algorithm.
   171 
   172     ///The preflow algorithm consists of two phases, this method runs the
   173     ///first phase. After the first phase the maximum flow value and a
   174     ///minimum value cut can already be computed, though a maximum flow
   175     ///is not yet obtained. So after calling this method \ref flowValue
   176     ///and \ref minCut gives proper results.
   177     ///\warning \ref minMinCut and \ref maxMinCut do not
   178     ///give minimum value cuts unless calling \ref phase2.
   179     ///\pre The starting flow must be
   180     /// - a constant zero flow if \c fp is \c ZERO_FLOW,
   181     /// - an arbitary flow if \c fp is \c GEN_FLOW,
   182     /// - an arbitary preflow if \c fp is \c PRE_FLOW,
   183     /// - any map if \c fp is NO_FLOW.
   184     void phase1(FlowEnum fp)
   185     {
   186       flow_prop=fp;
   187       phase1();
   188     }
   189 
   190     
   191     ///Runs the first phase of the preflow algorithm.
   192 
   193     ///The preflow algorithm consists of two phases, this method runs the
   194     ///first phase. After the first phase the maximum flow value and a
   195     ///minimum value cut can already be computed, though a maximum flow
   196     ///is not yet obtained. So after calling this method \ref flowValue
   197     ///and \ref actMinCut gives proper results.
   198     ///\warning \ref minCut, \ref minMinCut and \ref maxMinCut do not
   199     ///give minimum value cuts unless calling \ref phase2.
   200     void phase1()
   201     {
   202       int heur0=(int)(H0*n);  //time while running 'bound decrease'
   203       int heur1=(int)(H1*n);  //time while running 'highest label'
   204       int heur=heur1;         //starting time interval (#of relabels)
   205       int numrelabel=0;
   206 
   207       bool what_heur=1;
   208       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   209 
   210       bool end=false;
   211       //Needed for 'bound decrease', true means no active 
   212       //nodes are above bound b.
   213 
   214       int k=n-2;  //bound on the highest level under n containing a node
   215       int b=k;    //bound on the highest level under n of an active node
   216 
   217       VecNode first(n, INVALID);
   218       NNMap next(*g, INVALID);
   219 
   220       NNMap left(*g, INVALID);
   221       NNMap right(*g, INVALID);
   222       VecNode level_list(n,INVALID);
   223       //List of the nodes in level i<n, set to n.
   224 
   225       preflowPreproc(first, next, level_list, left, right);
   226 
   227       //Push/relabel on the highest level active nodes.
   228       while ( true ) {
   229 	if ( b == 0 ) {
   230 	  if ( !what_heur && !end && k > 0 ) {
   231 	    b=k;
   232 	    end=true;
   233 	  } else break;
   234 	}
   235 
   236 	if ( first[b]==INVALID ) --b;
   237 	else {
   238 	  end=false;
   239 	  Node w=first[b];
   240 	  first[b]=next[w];
   241 	  int newlevel=push(w, next, first);
   242 	  if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, 
   243 				       left, right, b, k, what_heur);
   244 
   245 	  ++numrelabel;
   246 	  if ( numrelabel >= heur ) {
   247 	    numrelabel=0;
   248 	    if ( what_heur ) {
   249 	      what_heur=0;
   250 	      heur=heur0;
   251 	      end=false;
   252 	    } else {
   253 	      what_heur=1;
   254 	      heur=heur1;
   255 	      b=k;
   256 	    }
   257 	  }
   258 	}
   259       }
   260       flow_prop=PRE_FLOW;
   261       status=AFTER_PREFLOW_PHASE_1;
   262     }
   263     // Heuristics:
   264     //   2 phase
   265     //   gap
   266     //   list 'level_list' on the nodes on level i implemented by hand
   267     //   stack 'active' on the active nodes on level i      
   268     //   runs heuristic 'highest label' for H1*n relabels
   269     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   270     //   Parameters H0 and H1 are initialized to 20 and 1.
   271 
   272 
   273     ///Runs the second phase of the preflow algorithm.
   274 
   275     ///The preflow algorithm consists of two phases, this method runs
   276     ///the second phase. After calling \ref phase1 and then
   277     ///\ref phase2 the methods \ref flowValue, \ref minCut,
   278     ///\ref minMinCut and \ref maxMinCut give proper results.
   279     ///\pre \ref phase1 must be called before.
   280     void phase2()
   281     {
   282 
   283       int k=n-2;  //bound on the highest level under n containing a node
   284       int b=k;    //bound on the highest level under n of an active node
   285 
   286     
   287       VecNode first(n, INVALID);
   288       NNMap next(*g, INVALID); 
   289       level.set(s,0);
   290       std::queue<Node> bfs_queue;
   291       bfs_queue.push(s);
   292 
   293       while ( !bfs_queue.empty() ) {
   294 
   295 	Node v=bfs_queue.front();
   296 	bfs_queue.pop();
   297 	int l=level[v]+1;
   298 
   299 	for(InEdgeIt e(*g,v); e!=INVALID; ++e) {
   300 	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
   301 	  Node u=g->tail(e);
   302 	  if ( level[u] >= n ) {
   303 	    bfs_queue.push(u);
   304 	    level.set(u, l);
   305 	    if ( excess[u] > 0 ) {
   306 	      next.set(u,first[l]);
   307 	      first[l]=u;
   308 	    }
   309 	  }
   310 	}
   311 
   312 	for(OutEdgeIt e(*g,v); e!=INVALID; ++e) {
   313 	  if ( 0 >= (*flow)[e] ) continue;
   314 	  Node u=g->head(e);
   315 	  if ( level[u] >= n ) {
   316 	    bfs_queue.push(u);
   317 	    level.set(u, l);
   318 	    if ( excess[u] > 0 ) {
   319 	      next.set(u,first[l]);
   320 	      first[l]=u;
   321 	    }
   322 	  }
   323 	}
   324       }
   325       b=n-2;
   326 
   327       while ( true ) {
   328 
   329 	if ( b == 0 ) break;
   330 	if ( first[b]==INVALID ) --b;
   331 	else {
   332 	  Node w=first[b];
   333 	  first[b]=next[w];
   334 	  int newlevel=push(w,next, first);
   335 	  
   336 	  //relabel
   337 	  if ( excess[w] > 0 ) {
   338 	    level.set(w,++newlevel);
   339 	    next.set(w,first[newlevel]);
   340 	    first[newlevel]=w;
   341 	    b=newlevel;
   342 	  }
   343 	} 
   344       } // while(true)
   345       flow_prop=GEN_FLOW;
   346       status=AFTER_PREFLOW_PHASE_2;
   347     }
   348 
   349     /// Returns the value of the maximum flow.
   350 
   351     /// Returns the value of the maximum flow by returning the excess
   352     /// of the target node \ref t. This value equals to the value of
   353     /// the maximum flow already after running \ref phase1.
   354     Num flowValue() const {
   355       return excess[t];
   356     }
   357 
   358 
   359     ///Returns a minimum value cut.
   360 
   361     ///Sets \c M to the characteristic vector of a minimum value
   362     ///cut. This method can be called both after running \ref
   363     ///phase1 and \ref phase2. It is much faster after
   364     ///\ref phase1.  \pre M should be a bool-valued node-map. \pre
   365     ///If \ref mincut is called after \ref phase2 then M should
   366     ///be initialized to false.
   367     template<typename _CutMap>
   368     void minCut(_CutMap& M) const {
   369       switch ( status ) {
   370 	case AFTER_PREFLOW_PHASE_1:
   371 	for(NodeIt v(*g); v!=INVALID; ++v) {
   372 	  if (level[v] < n) {
   373 	    M.set(v, false);
   374 	  } else {
   375 	    M.set(v, true);
   376 	  }
   377 	}
   378 	break;
   379 	case AFTER_PREFLOW_PHASE_2:
   380 	minMinCut(M);
   381 	break;
   382 	case AFTER_NOTHING:
   383 	break;
   384       }
   385     }
   386 
   387     ///Returns the inclusionwise minimum of the minimum value cuts.
   388 
   389     ///Sets \c M to the characteristic vector of the minimum value cut
   390     ///which is inclusionwise minimum. It is computed by processing a
   391     ///bfs from the source node \c s in the residual graph.  \pre M
   392     ///should be a node map of bools initialized to false.  \pre \ref
   393     ///phase2 should already be run.
   394     template<typename _CutMap>
   395     void minMinCut(_CutMap& M) const {
   396 
   397       std::queue<Node> queue;
   398       M.set(s,true);
   399       queue.push(s);
   400       
   401       while (!queue.empty()) {
   402 	Node w=queue.front();
   403 	queue.pop();
   404 	
   405 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   406 	  Node v=g->head(e);
   407 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   408 	    queue.push(v);
   409 	    M.set(v, true);
   410 	  }
   411 	}
   412 	
   413 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   414 	  Node v=g->tail(e);
   415 	  if (!M[v] && (*flow)[e] > 0 ) {
   416 	    queue.push(v);
   417 	    M.set(v, true);
   418 	  }
   419 	}
   420       }
   421     }
   422     
   423     ///Returns the inclusionwise maximum of the minimum value cuts.
   424 
   425     ///Sets \c M to the characteristic vector of the minimum value cut
   426     ///which is inclusionwise maximum. It is computed by processing a
   427     ///backward bfs from the target node \c t in the residual graph.
   428     ///\pre \ref phase2() or preflow() should already be run.
   429     template<typename _CutMap>
   430     void maxMinCut(_CutMap& M) const {
   431 
   432       for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true);
   433 
   434       std::queue<Node> queue;
   435 
   436       M.set(t,false);
   437       queue.push(t);
   438 
   439       while (!queue.empty()) {
   440         Node w=queue.front();
   441 	queue.pop();
   442 
   443 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   444 	  Node v=g->tail(e);
   445 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   446 	    queue.push(v);
   447 	    M.set(v, false);
   448 	  }
   449 	}
   450 
   451 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   452 	  Node v=g->head(e);
   453 	  if (M[v] && (*flow)[e] > 0 ) {
   454 	    queue.push(v);
   455 	    M.set(v, false);
   456 	  }
   457 	}
   458       }
   459     }
   460 
   461     ///Sets the source node to \c _s.
   462 
   463     ///Sets the source node to \c _s.
   464     /// 
   465     void setSource(Node _s) { 
   466       s=_s; 
   467       if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
   468       status=AFTER_NOTHING; 
   469     }
   470 
   471     ///Sets the target node to \c _t.
   472 
   473     ///Sets the target node to \c _t.
   474     ///
   475     void setTarget(Node _t) { 
   476       t=_t; 
   477       if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
   478       status=AFTER_NOTHING; 
   479     }
   480 
   481     /// Sets the edge map of the capacities to _cap.
   482 
   483     /// Sets the edge map of the capacities to _cap.
   484     /// 
   485     void setCap(const CapMap& _cap) { 
   486       capacity=&_cap; 
   487       status=AFTER_NOTHING; 
   488     }
   489 
   490     /// Sets the edge map of the flows to _flow.
   491 
   492     /// Sets the edge map of the flows to _flow.
   493     /// 
   494     void setFlow(FlowMap& _flow) { 
   495       flow=&_flow; 
   496       flow_prop=NO_FLOW;
   497       status=AFTER_NOTHING; 
   498     }
   499 
   500 
   501   private:
   502 
   503     int push(Node w, NNMap& next, VecNode& first) {
   504 
   505       int lev=level[w];
   506       Num exc=excess[w];
   507       int newlevel=n;       //bound on the next level of w
   508 
   509       for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   510 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   511 	Node v=g->head(e);
   512 
   513 	if( lev > level[v] ) { //Push is allowed now
   514 	  
   515 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   516 	    next.set(v,first[level[v]]);
   517 	    first[level[v]]=v;
   518 	  }
   519 
   520 	  Num cap=(*capacity)[e];
   521 	  Num flo=(*flow)[e];
   522 	  Num remcap=cap-flo;
   523 	  
   524 	  if ( remcap >= exc ) { //A nonsaturating push.
   525 	    
   526 	    flow->set(e, flo+exc);
   527 	    excess.set(v, excess[v]+exc);
   528 	    exc=0;
   529 	    break;
   530 
   531 	  } else { //A saturating push.
   532 	    flow->set(e, cap);
   533 	    excess.set(v, excess[v]+remcap);
   534 	    exc-=remcap;
   535 	  }
   536 	} else if ( newlevel > level[v] ) newlevel = level[v];
   537       } //for out edges wv
   538 
   539       if ( exc > 0 ) {
   540 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   541 	  
   542 	  if( (*flow)[e] <= 0 ) continue;
   543 	  Node v=g->tail(e);
   544 
   545 	  if( lev > level[v] ) { //Push is allowed now
   546 
   547 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   548 	      next.set(v,first[level[v]]);
   549 	      first[level[v]]=v;
   550 	    }
   551 
   552 	    Num flo=(*flow)[e];
   553 
   554 	    if ( flo >= exc ) { //A nonsaturating push.
   555 
   556 	      flow->set(e, flo-exc);
   557 	      excess.set(v, excess[v]+exc);
   558 	      exc=0;
   559 	      break;
   560 	    } else {  //A saturating push.
   561 
   562 	      excess.set(v, excess[v]+flo);
   563 	      exc-=flo;
   564 	      flow->set(e,0);
   565 	    }
   566 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   567 	} //for in edges vw
   568 
   569       } // if w still has excess after the out edge for cycle
   570 
   571       excess.set(w, exc);
   572       
   573       return newlevel;
   574     }
   575     
   576     
   577     
   578     void preflowPreproc(VecNode& first, NNMap& next, 
   579 			VecNode& level_list, NNMap& left, NNMap& right)
   580     {
   581       for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n);
   582       std::queue<Node> bfs_queue;
   583       
   584       if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
   585 	//Reverse_bfs from t in the residual graph,
   586 	//to find the starting level.
   587 	level.set(t,0);
   588 	bfs_queue.push(t);
   589 	
   590 	while ( !bfs_queue.empty() ) {
   591 	  
   592 	  Node v=bfs_queue.front();
   593 	  bfs_queue.pop();
   594 	  int l=level[v]+1;
   595 	  
   596 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
   597 	    if ( (*capacity)[e] <= (*flow)[e] ) continue;
   598 	    Node w=g->tail(e);
   599 	    if ( level[w] == n && w != s ) {
   600 	      bfs_queue.push(w);
   601 	      Node z=level_list[l];
   602 	      if ( z!=INVALID ) left.set(z,w);
   603 	      right.set(w,z);
   604 	      level_list[l]=w;
   605 	      level.set(w, l);
   606 	    }
   607 	  }
   608 	  
   609 	  for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) {
   610 	    if ( 0 >= (*flow)[e] ) continue;
   611 	    Node w=g->head(e);
   612 	    if ( level[w] == n && w != s ) {
   613 	      bfs_queue.push(w);
   614 	      Node z=level_list[l];
   615 	      if ( z!=INVALID ) left.set(z,w);
   616 	      right.set(w,z);
   617 	      level_list[l]=w;
   618 	      level.set(w, l);
   619 	    }
   620 	  }
   621 	} //while
   622       } //if
   623 
   624 
   625       switch (flow_prop) {
   626 	case NO_FLOW:  
   627 	for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0);
   628 	case ZERO_FLOW:
   629 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
   630 	
   631 	//Reverse_bfs from t, to find the starting level.
   632 	level.set(t,0);
   633 	bfs_queue.push(t);
   634 	
   635 	while ( !bfs_queue.empty() ) {
   636 	  
   637 	  Node v=bfs_queue.front();
   638 	  bfs_queue.pop();
   639 	  int l=level[v]+1;
   640 	  
   641 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
   642 	    Node w=g->tail(e);
   643 	    if ( level[w] == n && w != s ) {
   644 	      bfs_queue.push(w);
   645 	      Node z=level_list[l];
   646 	      if ( z!=INVALID ) left.set(z,w);
   647 	      right.set(w,z);
   648 	      level_list[l]=w;
   649 	      level.set(w, l);
   650 	    }
   651 	  }
   652 	}
   653 	
   654 	//the starting flow
   655 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
   656 	  Num c=(*capacity)[e];
   657 	  if ( c <= 0 ) continue;
   658 	  Node w=g->head(e);
   659 	  if ( level[w] < n ) {
   660 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
   661 	      next.set(w,first[level[w]]);
   662 	      first[level[w]]=w;
   663 	    }
   664 	    flow->set(e, c);
   665 	    excess.set(w, excess[w]+c);
   666 	  }
   667 	}
   668 	break;
   669 
   670 	case GEN_FLOW:
   671 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
   672 	{
   673 	  Num exc=0;
   674 	  for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e];
   675 	  for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e];
   676 	  excess.set(t,exc);
   677 	}
   678 
   679 	//the starting flow
   680 	for(OutEdgeIt e(*g,s); e!=INVALID; ++e)	{
   681 	  Num rem=(*capacity)[e]-(*flow)[e];
   682 	  if ( rem <= 0 ) continue;
   683 	  Node w=g->head(e);
   684 	  if ( level[w] < n ) {
   685 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
   686 	      next.set(w,first[level[w]]);
   687 	      first[level[w]]=w;
   688 	    }   
   689 	    flow->set(e, (*capacity)[e]);
   690 	    excess.set(w, excess[w]+rem);
   691 	  }
   692 	}
   693 	
   694 	for(InEdgeIt e(*g,s); e!=INVALID; ++e) {
   695 	  if ( (*flow)[e] <= 0 ) continue;
   696 	  Node w=g->tail(e);
   697 	  if ( level[w] < n ) {
   698 	    if ( excess[w] <= 0 && w!=t ) {
   699 	      next.set(w,first[level[w]]);
   700 	      first[level[w]]=w;
   701 	    }  
   702 	    excess.set(w, excess[w]+(*flow)[e]);
   703 	    flow->set(e, 0);
   704 	  }
   705 	}
   706 	break;
   707 
   708 	case PRE_FLOW:	
   709 	//the starting flow
   710 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
   711 	  Num rem=(*capacity)[e]-(*flow)[e];
   712 	  if ( rem <= 0 ) continue;
   713 	  Node w=g->head(e);
   714 	  if ( level[w] < n ) flow->set(e, (*capacity)[e]);
   715 	}
   716 	
   717 	for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) {
   718 	  if ( (*flow)[e] <= 0 ) continue;
   719 	  Node w=g->tail(e);
   720 	  if ( level[w] < n ) flow->set(e, 0);
   721 	}
   722 	
   723 	//computing the excess
   724 	for(NodeIt w(*g); w!=INVALID; ++w) {
   725 	  Num exc=0;
   726 	  for(InEdgeIt e(*g,w); e!=INVALID; ++e) exc+=(*flow)[e];
   727 	  for(OutEdgeIt e(*g,w); e!=INVALID; ++e) exc-=(*flow)[e];
   728 	  excess.set(w,exc);
   729 	  
   730 	  //putting the active nodes into the stack
   731 	  int lev=level[w];
   732 	    if ( exc > 0 && lev < n && Node(w) != t ) {
   733 	      next.set(w,first[lev]);
   734 	      first[lev]=w;
   735 	    }
   736 	}
   737 	break;
   738       } //switch
   739     } //preflowPreproc
   740 
   741 
   742     void relabel(Node w, int newlevel, VecNode& first, NNMap& next, 
   743 		 VecNode& level_list, NNMap& left,
   744 		 NNMap& right, int& b, int& k, bool what_heur )
   745     {
   746 
   747       int lev=level[w];
   748 
   749       Node right_n=right[w];
   750       Node left_n=left[w];
   751 
   752       //unlacing starts
   753       if ( right_n!=INVALID ) {
   754 	if ( left_n!=INVALID ) {
   755 	  right.set(left_n, right_n);
   756 	  left.set(right_n, left_n);
   757 	} else {
   758 	  level_list[lev]=right_n;
   759 	  left.set(right_n, INVALID);
   760 	}
   761       } else {
   762 	if ( left_n!=INVALID ) {
   763 	  right.set(left_n, INVALID);
   764 	} else {
   765 	  level_list[lev]=INVALID;
   766 	}
   767       }
   768       //unlacing ends
   769 
   770       if ( level_list[lev]==INVALID ) {
   771 
   772 	//gapping starts
   773 	for (int i=lev; i!=k ; ) {
   774 	  Node v=level_list[++i];
   775 	  while ( v!=INVALID ) {
   776 	    level.set(v,n);
   777 	    v=right[v];
   778 	  }
   779 	  level_list[i]=INVALID;
   780 	  if ( !what_heur ) first[i]=INVALID;
   781 	}
   782 
   783 	level.set(w,n);
   784 	b=lev-1;
   785 	k=b;
   786 	//gapping ends
   787 
   788       } else {
   789 
   790 	if ( newlevel == n ) level.set(w,n);
   791 	else {
   792 	  level.set(w,++newlevel);
   793 	  next.set(w,first[newlevel]);
   794 	  first[newlevel]=w;
   795 	  if ( what_heur ) b=newlevel;
   796 	  if ( k < newlevel ) ++k;      //now k=newlevel
   797 	  Node z=level_list[newlevel];
   798 	  if ( z!=INVALID ) left.set(z,w);
   799 	  right.set(w,z);
   800 	  left.set(w,INVALID);
   801 	  level_list[newlevel]=w;
   802 	}
   803       }
   804     } //relabel
   805 
   806   }; 
   807 } //namespace hugo
   808 
   809 #endif //HUGO_PREFLOW_H
   810 
   811 
   812 
   813