2 * lemon/fib_heap.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_FIB_HEAP_H
18 #define LEMON_FIB_HEAP_H
22 ///\brief Fibonacci Heap implementation.
30 /// \addtogroup auxdat
35 ///This class implements the \e Fibonacci \e heap data structure. A \e heap
36 ///is a data structure for storing items with specified values called \e
37 ///priorities in such a way that finding the item with minimum priority is
38 ///efficient. \c Compare specifies the ordering of the priorities. In a heap
39 ///one can change the priority of an item, add or erase an item, etc.
41 ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
42 ///heap. In case of many calls to these operations, it is better to use a
45 ///\param Item Type of the items to be stored.
46 ///\param Prio Type of the priority of the items.
47 ///\param ItemIntMap A read and writable Item int map, used internally
48 ///to handle the cross references.
49 ///\param Compare A class for the ordering of the priorities. The
50 ///default is \c std::less<Prio>.
54 ///\author Jacint Szabo
57 template <typename Item,
62 template <typename Item,
65 typename Compare = std::less<Prio> >
69 typedef Prio PrioType;
74 std::vector<store> container;
81 ///Status of the nodes
83 ///The node is in the heap
85 ///The node has never been in the heap
87 ///The node was in the heap but it got out of it
91 /// \brief The constructor
93 /// \c _iimap should be given to the constructor, since it is
94 /// used internally to handle the cross references.
95 explicit FibHeap(ItemIntMap &_iimap)
96 : minimum(0), iimap(_iimap), num_items() {}
98 /// \brief The constructor
100 /// \c _iimap should be given to the constructor, since it is used
101 /// internally to handle the cross references. \c _comp is an
102 /// object for ordering of the priorities.
103 FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(0),
104 iimap(_iimap), comp(_comp), num_items() {}
106 /// \brief The number of items stored in the heap.
108 /// Returns the number of items stored in the heap.
109 int size() const { return num_items; }
111 /// \brief Checks if the heap stores no items.
113 /// Returns \c true if and only if the heap stores no items.
114 bool empty() const { return num_items==0; }
116 /// \brief Make empty this heap.
118 /// Make empty this heap.
120 if (num_items != 0) {
121 for (int i = 0; i < (int)container.size(); ++i) {
122 iimap[container[i].name] = -2;
125 container.clear(); minimum = 0; num_items = 0;
128 /// \brief \c item gets to the heap with priority \c value independently
129 /// if \c item was already there.
131 /// This method calls \ref push(\c item, \c value) if \c item is not
132 /// stored in the heap and it calls \ref decrease(\c item, \c value) or
133 /// \ref increase(\c item, \c value) otherwise.
134 void set (Item const item, PrioType const value);
136 /// \brief Adds \c item to the heap with priority \c value.
138 /// Adds \c item to the heap with priority \c value.
139 /// \pre \c item must not be stored in the heap.
140 void push (Item const item, PrioType const value);
142 /// \brief Returns the item with minimum priority relative to \c Compare.
144 /// This method returns the item with minimum priority relative to \c
146 /// \pre The heap must be nonempty.
147 Item top() const { return container[minimum].name; }
149 /// \brief Returns the minimum priority relative to \c Compare.
151 /// It returns the minimum priority relative to \c Compare.
152 /// \pre The heap must be nonempty.
153 PrioType prio() const { return container[minimum].prio; }
155 /// \brief Returns the priority of \c item.
157 /// This function returns the priority of \c item.
158 /// \pre \c item must be in the heap.
159 PrioType& operator[](const Item& item) {
160 return container[iimap[item]].prio;
163 /// \brief Returns the priority of \c item.
165 /// It returns the priority of \c item.
166 /// \pre \c item must be in the heap.
167 const PrioType& operator[](const Item& item) const {
168 return container[iimap[item]].prio;
172 /// \brief Deletes the item with minimum priority relative to \c Compare.
174 /// This method deletes the item with minimum priority relative to \c
175 /// Compare from the heap.
176 /// \pre The heap must be non-empty.
179 /// \brief Deletes \c item from the heap.
181 /// This method deletes \c item from the heap, if \c item was already
182 /// stored in the heap. It is quite inefficient in Fibonacci heaps.
183 void erase (const Item& item);
185 /// \brief Decreases the priority of \c item to \c value.
187 /// This method decreases the priority of \c item to \c value.
188 /// \pre \c item must be stored in the heap with priority at least \c
189 /// value relative to \c Compare.
190 void decrease (Item item, PrioType const value);
192 /// \brief Increases the priority of \c item to \c value.
194 /// This method sets the priority of \c item to \c value. Though
195 /// there is no precondition on the priority of \c item, this
196 /// method should be used only if it is indeed necessary to increase
197 /// (relative to \c Compare) the priority of \c item, because this
198 /// method is inefficient.
199 void increase (Item item, PrioType const value) {
205 /// \brief Returns if \c item is in, has already been in, or has never
206 /// been in the heap.
208 /// This method returns PRE_HEAP if \c item has never been in the
209 /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
210 /// otherwise. In the latter case it is possible that \c item will
211 /// get back to the heap again.
212 state_enum state(const Item &item) const {
215 if ( container[i].in ) i=0;
218 return state_enum(i);
224 void makeroot(int c);
225 void cut(int a, int b);
227 void fuse(int a, int b);
232 friend class FibHeap;
244 store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
250 // **********************************************************************
252 // **********************************************************************
254 template <typename Item, typename Prio, typename ItemIntMap,
256 void FibHeap<Item, Prio, ItemIntMap, Compare>::set
257 (Item const item, PrioType const value)
260 if ( i >= 0 && container[i].in ) {
261 if ( comp(value, container[i].prio) ) decrease(item, value);
262 if ( comp(container[i].prio, value) ) increase(item, value);
263 } else push(item, value);
266 template <typename Item, typename Prio, typename ItemIntMap,
268 void FibHeap<Item, Prio, ItemIntMap, Compare>::push
269 (Item const item, PrioType const value) {
272 int s=container.size();
273 iimap.set( item, s );
276 container.push_back(st);
279 container[i].parent=container[i].child=-1;
280 container[i].degree=0;
281 container[i].in=true;
282 container[i].marked=false;
286 container[container[minimum].right_neighbor].left_neighbor=i;
287 container[i].right_neighbor=container[minimum].right_neighbor;
288 container[minimum].right_neighbor=i;
289 container[i].left_neighbor=minimum;
290 if ( comp( value, container[minimum].prio) ) minimum=i;
292 container[i].right_neighbor=container[i].left_neighbor=i;
295 container[i].prio=value;
299 template <typename Item, typename Prio, typename ItemIntMap,
301 void FibHeap<Item, Prio, ItemIntMap, Compare>::pop() {
302 /*The first case is that there are only one root.*/
303 if ( container[minimum].left_neighbor==minimum ) {
304 container[minimum].in=false;
305 if ( container[minimum].degree!=0 ) {
306 makeroot(container[minimum].child);
307 minimum=container[minimum].child;
311 int right=container[minimum].right_neighbor;
313 container[minimum].in=false;
314 if ( container[minimum].degree > 0 ) {
315 int left=container[minimum].left_neighbor;
316 int child=container[minimum].child;
317 int last_child=container[child].left_neighbor;
321 container[left].right_neighbor=child;
322 container[child].left_neighbor=left;
323 container[right].left_neighbor=last_child;
324 container[last_child].right_neighbor=right;
328 } // the case where there are more roots
333 template <typename Item, typename Prio, typename ItemIntMap,
335 void FibHeap<Item, Prio, ItemIntMap, Compare>::erase
339 if ( i >= 0 && container[i].in ) {
340 if ( container[i].parent!=-1 ) {
341 int p=container[i].parent;
345 minimum=i; //As if its prio would be -infinity
350 template <typename Item, typename Prio, typename ItemIntMap,
352 void FibHeap<Item, Prio, ItemIntMap, Compare>::decrease
353 (Item item, PrioType const value) {
355 container[i].prio=value;
356 int p=container[i].parent;
358 if ( p!=-1 && comp(value, container[p].prio) ) {
362 if ( comp(value, container[minimum].prio) ) minimum=i;
366 template <typename Item, typename Prio, typename ItemIntMap,
368 void FibHeap<Item, Prio, ItemIntMap, Compare>::balance() {
370 int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1;
372 std::vector<int> A(maxdeg,-1);
375 *Recall that now minimum does not point to the minimum prio element.
376 *We set minimum to this during balance().
378 int anchor=container[minimum].left_neighbor;
384 if ( anchor==active ) end=true;
385 int d=container[active].degree;
386 next=container[active].right_neighbor;
389 if( comp(container[active].prio, container[A[d]].prio) ) {
402 while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
406 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
407 s=container[s].right_neighbor;
411 template <typename Item, typename Prio, typename ItemIntMap,
413 void FibHeap<Item, Prio, ItemIntMap, Compare>::makeroot
417 container[s].parent=-1;
418 s=container[s].right_neighbor;
423 template <typename Item, typename Prio, typename ItemIntMap,
425 void FibHeap<Item, Prio, ItemIntMap, Compare>::cut
428 *Replacing a from the children of b.
430 --container[b].degree;
432 if ( container[b].degree !=0 ) {
433 int child=container[b].child;
435 container[b].child=container[child].right_neighbor;
440 /*Lacing a to the roots.*/
441 int right=container[minimum].right_neighbor;
442 container[minimum].right_neighbor=a;
443 container[a].left_neighbor=minimum;
444 container[a].right_neighbor=right;
445 container[right].left_neighbor=a;
447 container[a].parent=-1;
448 container[a].marked=false;
452 template <typename Item, typename Prio, typename ItemIntMap,
454 void FibHeap<Item, Prio, ItemIntMap, Compare>::cascade
457 if ( container[a].parent!=-1 ) {
458 int p=container[a].parent;
460 if ( container[a].marked==false ) container[a].marked=true;
469 template <typename Item, typename Prio, typename ItemIntMap,
471 void FibHeap<Item, Prio, ItemIntMap, Compare>::fuse
475 /*Lacing b under a.*/
476 container[b].parent=a;
478 if (container[a].degree==0) {
479 container[b].left_neighbor=b;
480 container[b].right_neighbor=b;
481 container[a].child=b;
483 int child=container[a].child;
484 int last_child=container[child].left_neighbor;
485 container[child].left_neighbor=b;
486 container[b].right_neighbor=child;
487 container[last_child].right_neighbor=b;
488 container[b].left_neighbor=last_child;
491 ++container[a].degree;
493 container[b].marked=false;
498 *It is invoked only if a has siblings.
500 template <typename Item, typename Prio, typename ItemIntMap,
502 void FibHeap<Item, Prio, ItemIntMap, Compare>::unlace
504 int leftn=container[a].left_neighbor;
505 int rightn=container[a].right_neighbor;
506 container[leftn].right_neighbor=rightn;
507 container[rightn].left_neighbor=leftn;
514 #endif //LEMON_FIB_HEAP_H