lemon/lp_base.h
author athos
Mon, 04 Dec 2006 16:48:13 +0000
changeset 2324 18fc834761d9
parent 2312 07e46cbb7d85
child 2328 b4931ae52069
permissions -rw-r--r--
Some query functions got implemented, but only for GLPK.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_LP_BASE_H
    20 #define LEMON_LP_BASE_H
    21 
    22 #include<vector>
    23 #include<map>
    24 #include<limits>
    25 #include<cmath>
    26 
    27 #include<lemon/bits/utility.h>
    28 #include<lemon/error.h>
    29 #include<lemon/bits/invalid.h>
    30 
    31 ///\file
    32 ///\brief The interface of the LP solver interface.
    33 ///\ingroup gen_opt_group
    34 namespace lemon {
    35 
    36 
    37   ///Internal data structure to convert floating id's to fix one's
    38     
    39   ///\todo This might be implemented to be also usable in other places.
    40   class _FixId 
    41   {
    42   protected:
    43     int _first_index;
    44     int first_free;
    45   public:
    46     std::vector<int> index;
    47     std::vector<int> cross;
    48     _FixId() : _first_index(-1), first_free(-1) {};
    49     ///Convert a floating id to a fix one
    50 
    51     ///\param n is a floating id
    52     ///\return the corresponding fix id
    53     int fixId(int n) const {return cross[n];}
    54     ///Convert a fix id to a floating one
    55 
    56     ///\param n is a fix id
    57     ///\return the corresponding floating id
    58     int floatingId(int n) const { return index[n];}
    59     ///Add a new floating id.
    60 
    61     ///\param n is a floating id
    62     ///\return the fix id of the new value
    63     ///\todo Multiple additions should also be handled.
    64     int insert(int n)
    65     {
    66       if(cross.empty()) _first_index=n;
    67       if(n>=int(cross.size())) {
    68 	cross.resize(n+1);
    69 	if(first_free==-1) {
    70 	  cross[n]=index.size();
    71 	  index.push_back(n);
    72 	}
    73 	else {
    74 	  cross[n]=first_free;
    75 	  int next=index[first_free];
    76 	  index[first_free]=n;
    77 	  first_free=next;
    78 	}
    79 	return cross[n];
    80       }
    81       else {
    82 	///\todo Create an own exception type.
    83 	throw LogicError(); //floatingId-s must form a continuous range;
    84       }
    85     }
    86     ///Remove a fix id.
    87 
    88     ///\param n is a fix id
    89     ///
    90     void erase(int n) 
    91     {
    92       int fl=index[n];
    93       index[n]=first_free;
    94       first_free=n;
    95       for(int i=fl+1;i<int(cross.size());++i) {
    96 	cross[i-1]=cross[i];
    97 	index[cross[i]]--;
    98       }
    99       cross.pop_back();
   100     }
   101     ///An upper bound on the largest fix id.
   102 
   103     ///\todo Do we need this?
   104     ///
   105     std::size_t maxFixId() { return cross.size()-1; }
   106   
   107     ///Returns the first (smallest) inserted index
   108 
   109     ///Returns the first (smallest) inserted index
   110     ///or -1 if no index has been inserted before.
   111     int firstIndex() {return _first_index;}
   112   };
   113 
   114   ///Common base class for LP solvers
   115   
   116   ///\todo Much more docs
   117   ///\ingroup gen_opt_group
   118   class LpSolverBase {
   119 
   120   protected:
   121     _FixId rows;
   122     _FixId cols;
   123 
   124   public:
   125 
   126     ///Possible outcomes of an LP solving procedure
   127     enum SolveExitStatus {
   128       ///This means that the problem has been successfully solved: either
   129       ///an optimal solution has been found or infeasibility/unboundedness
   130       ///has been proved.
   131       SOLVED = 0,
   132       ///Any other case (including the case when some user specified
   133       ///limit has been exceeded)
   134       UNSOLVED = 1
   135     };
   136       
   137       ///\e
   138     enum SolutionStatus {
   139       ///Feasible solution hasn't been found (but may exist).
   140 
   141       ///\todo NOTFOUND might be a better name.
   142       ///
   143       UNDEFINED = 0,
   144       ///The problem has no feasible solution
   145       INFEASIBLE = 1,
   146       ///Feasible solution found
   147       FEASIBLE = 2,
   148       ///Optimal solution exists and found
   149       OPTIMAL = 3,
   150       ///The cost function is unbounded
   151 
   152       ///\todo Give a feasible solution and an infinite ray (and the
   153       ///corresponding bases)
   154       INFINITE = 4
   155     };
   156 
   157     ///\e The type of the investigated LP problem
   158     enum ProblemTypes {
   159       ///Primal-dual feasible
   160       PRIMAL_DUAL_FEASIBLE = 0,
   161       ///Primal feasible dual infeasible
   162       PRIMAL_FEASIBLE_DUAL_INFEASIBLE = 1,
   163       ///Primal infeasible dual feasible
   164       PRIMAL_INFEASIBLE_DUAL_FEASIBLE = 2,
   165       ///Primal-dual infeasible
   166       PRIMAL_DUAL_INFEASIBLE = 3,
   167       ///Could not determine so far
   168       UNKNOWN = 4
   169     };
   170 
   171     ///The floating point type used by the solver
   172     typedef double Value;
   173     ///The infinity constant
   174     static const Value INF;
   175     ///The not a number constant
   176     static const Value NaN;
   177 
   178     static inline bool isNaN(const Value& v) { return v!=v; }
   179     
   180     friend class Col;
   181     friend class ColIt;
   182     friend class Row;
   183     
   184     ///Refer to a column of the LP.
   185 
   186     ///This type is used to refer to a column of the LP.
   187     ///
   188     ///Its value remains valid and correct even after the addition or erase of
   189     ///other columns.
   190     ///
   191     ///\todo Document what can one do with a Col (INVALID, comparing,
   192     ///it is similar to Node/Edge)
   193     class Col {
   194     protected:
   195       int id;
   196       friend class LpSolverBase;
   197       friend class MipSolverBase;
   198     public:
   199       typedef Value ExprValue;
   200       typedef True LpSolverCol;
   201       Col() {}
   202       Col(const Invalid&) : id(-1) {}
   203       bool operator< (Col c) const  {return id< c.id;}
   204       bool operator> (Col c) const  {return id> c.id;}
   205       bool operator==(Col c) const  {return id==c.id;}
   206       bool operator!=(Col c) const  {return id!=c.id;}
   207     };
   208 
   209     class ColIt : public Col {
   210       LpSolverBase *_lp;
   211     public:
   212       ColIt() {}
   213       ColIt(LpSolverBase &lp) : _lp(&lp)
   214       {
   215 	id = _lp->cols.cross.empty()?-1:
   216 	  _lp->cols.fixId(_lp->cols.firstIndex());
   217       }
   218       ColIt(const Invalid&) : Col(INVALID) {}
   219       ColIt &operator++() 
   220       {
   221 	int fid = _lp->cols.floatingId(id)+1;
   222 	id = unsigned(fid)<_lp->cols.cross.size() ? _lp->cols.fixId(fid) : -1;
   223 	return *this;
   224       }
   225     };
   226 
   227     static int id(const Col& col) { return col.id; }
   228  
   229       
   230     ///Refer to a row of the LP.
   231 
   232     ///This type is used to refer to a row of the LP.
   233     ///
   234     ///Its value remains valid and correct even after the addition or erase of
   235     ///other rows.
   236     ///
   237     ///\todo Document what can one do with a Row (INVALID, comparing,
   238     ///it is similar to Node/Edge)
   239     class Row {
   240     protected:
   241       int id;
   242       friend class LpSolverBase;
   243     public:
   244       typedef Value ExprValue;
   245       typedef True LpSolverRow;
   246       Row() {}
   247       Row(const Invalid&) : id(-1) {}
   248 
   249       bool operator< (Row c) const  {return id< c.id;}
   250       bool operator> (Row c) const  {return id> c.id;}
   251       bool operator==(Row c) const  {return id==c.id;}
   252       bool operator!=(Row c) const  {return id!=c.id;} 
   253     };
   254 
   255     static int id(const Row& row) { return row.id; }
   256 
   257   protected:
   258 
   259     int _lpId(const Col& col) const {
   260       return cols.floatingId(id(col));
   261     }
   262 
   263     int _lpId(const Row& row) const {
   264       return rows.floatingId(id(row));
   265     }
   266 
   267 
   268   public:
   269     
   270     ///Linear expression of variables and a constant component
   271     
   272     ///This data structure strores a linear expression of the variables
   273     ///(\ref Col "Col"s) and also has a constant component.
   274     ///
   275     ///There are several ways to access and modify the contents of this
   276     ///container.
   277     ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   278     ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
   279     ///read and modify the coefficients like
   280     ///these.
   281     ///\code
   282     ///e[v]=5;
   283     ///e[v]+=12;
   284     ///e.erase(v);
   285     ///\endcode
   286     ///or you can also iterate through its elements.
   287     ///\code
   288     ///double s=0;
   289     ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   290     ///  s+=i->second;
   291     ///\endcode
   292     ///(This code computes the sum of all coefficients).
   293     ///- Numbers (<tt>double</tt>'s)
   294     ///and variables (\ref Col "Col"s) directly convert to an
   295     ///\ref Expr and the usual linear operations are defined, so  
   296     ///\code
   297     ///v+w
   298     ///2*v-3.12*(v-w/2)+2
   299     ///v*2.1+(3*v+(v*12+w+6)*3)/2
   300     ///\endcode
   301     ///are valid \ref Expr "Expr"essions.
   302     ///The usual assignment operations are also defined.
   303     ///\code
   304     ///e=v+w;
   305     ///e+=2*v-3.12*(v-w/2)+2;
   306     ///e*=3.4;
   307     ///e/=5;
   308     ///\endcode
   309     ///- The constant member can be set and read by \ref constComp()
   310     ///\code
   311     ///e.constComp()=12;
   312     ///double c=e.constComp();
   313     ///\endcode
   314     ///
   315     ///\note \ref clear() not only sets all coefficients to 0 but also
   316     ///clears the constant components.
   317     ///
   318     ///\sa Constr
   319     ///
   320     class Expr : public std::map<Col,Value>
   321     {
   322     public:
   323       typedef LpSolverBase::Col Key; 
   324       typedef LpSolverBase::Value Value;
   325       
   326     protected:
   327       typedef std::map<Col,Value> Base;
   328       
   329       Value const_comp;
   330   public:
   331       typedef True IsLinExpression;
   332       ///\e
   333       Expr() : Base(), const_comp(0) { }
   334       ///\e
   335       Expr(const Key &v) : const_comp(0) {
   336 	Base::insert(std::make_pair(v, 1));
   337       }
   338       ///\e
   339       Expr(const Value &v) : const_comp(v) {}
   340       ///\e
   341       void set(const Key &v,const Value &c) {
   342 	Base::insert(std::make_pair(v, c));
   343       }
   344       ///\e
   345       Value &constComp() { return const_comp; }
   346       ///\e
   347       const Value &constComp() const { return const_comp; }
   348       
   349       ///Removes the components with zero coefficient.
   350       void simplify() {
   351 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   352 	  Base::iterator j=i;
   353 	  ++j;
   354 	  if ((*i).second==0) Base::erase(i);
   355 	  i=j;
   356 	}
   357       }
   358 
   359       void simplify() const {
   360         const_cast<Expr*>(this)->simplify();
   361       }
   362 
   363       ///Removes the coefficients closer to zero than \c tolerance.
   364       void simplify(double &tolerance) {
   365 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   366 	  Base::iterator j=i;
   367 	  ++j;
   368 	  if (std::fabs((*i).second)<tolerance) Base::erase(i);
   369 	  i=j;
   370 	}
   371       }
   372 
   373       ///Sets all coefficients and the constant component to 0.
   374       void clear() {
   375 	Base::clear();
   376 	const_comp=0;
   377       }
   378 
   379       ///\e
   380       Expr &operator+=(const Expr &e) {
   381 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   382 	  (*this)[j->first]+=j->second;
   383 	const_comp+=e.const_comp;
   384 	return *this;
   385       }
   386       ///\e
   387       Expr &operator-=(const Expr &e) {
   388 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   389 	  (*this)[j->first]-=j->second;
   390 	const_comp-=e.const_comp;
   391 	return *this;
   392       }
   393       ///\e
   394       Expr &operator*=(const Value &c) {
   395 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   396 	  j->second*=c;
   397 	const_comp*=c;
   398 	return *this;
   399       }
   400       ///\e
   401       Expr &operator/=(const Value &c) {
   402 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   403 	  j->second/=c;
   404 	const_comp/=c;
   405 	return *this;
   406       }
   407     };
   408     
   409     ///Linear constraint
   410 
   411     ///This data stucture represents a linear constraint in the LP.
   412     ///Basically it is a linear expression with a lower or an upper bound
   413     ///(or both). These parts of the constraint can be obtained by the member
   414     ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
   415     ///respectively.
   416     ///There are two ways to construct a constraint.
   417     ///- You can set the linear expression and the bounds directly
   418     ///  by the functions above.
   419     ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
   420     ///  are defined between expressions, or even between constraints whenever
   421     ///  it makes sense. Therefore if \c e and \c f are linear expressions and
   422     ///  \c s and \c t are numbers, then the followings are valid expressions
   423     ///  and thus they can be used directly e.g. in \ref addRow() whenever
   424     ///  it makes sense.
   425     ///\code
   426     ///  e<=s
   427     ///  e<=f
   428     ///  e==f
   429     ///  s<=e<=t
   430     ///  e>=t
   431     ///\endcode
   432     ///\warning The validity of a constraint is checked only at run time, so
   433     ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
   434     ///\ref LogicError exception.
   435     class Constr
   436     {
   437     public:
   438       typedef LpSolverBase::Expr Expr;
   439       typedef Expr::Key Key;
   440       typedef Expr::Value Value;
   441       
   442     protected:
   443       Expr _expr;
   444       Value _lb,_ub;
   445     public:
   446       ///\e
   447       Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   448       ///\e
   449       Constr(Value lb,const Expr &e,Value ub) :
   450 	_expr(e), _lb(lb), _ub(ub) {}
   451       ///\e
   452       Constr(const Expr &e,Value ub) : 
   453 	_expr(e), _lb(NaN), _ub(ub) {}
   454       ///\e
   455       Constr(Value lb,const Expr &e) :
   456 	_expr(e), _lb(lb), _ub(NaN) {}
   457       ///\e
   458       Constr(const Expr &e) : 
   459 	_expr(e), _lb(NaN), _ub(NaN) {}
   460       ///\e
   461       void clear() 
   462       {
   463 	_expr.clear();
   464 	_lb=_ub=NaN;
   465       }
   466 
   467       ///Reference to the linear expression 
   468       Expr &expr() { return _expr; }
   469       ///Cont reference to the linear expression 
   470       const Expr &expr() const { return _expr; }
   471       ///Reference to the lower bound.
   472 
   473       ///\return
   474       ///- \ref INF "INF": the constraint is lower unbounded.
   475       ///- \ref NaN "NaN": lower bound has not been set.
   476       ///- finite number: the lower bound
   477       Value &lowerBound() { return _lb; }
   478       ///The const version of \ref lowerBound()
   479       const Value &lowerBound() const { return _lb; }
   480       ///Reference to the upper bound.
   481 
   482       ///\return
   483       ///- \ref INF "INF": the constraint is upper unbounded.
   484       ///- \ref NaN "NaN": upper bound has not been set.
   485       ///- finite number: the upper bound
   486       Value &upperBound() { return _ub; }
   487       ///The const version of \ref upperBound()
   488       const Value &upperBound() const { return _ub; }
   489       ///Is the constraint lower bounded?
   490       bool lowerBounded() const { 
   491 	using namespace std;
   492 	return finite(_lb);
   493       }
   494       ///Is the constraint upper bounded?
   495       bool upperBounded() const {
   496 	using namespace std;
   497 	return finite(_ub);
   498       }
   499     };
   500     
   501     ///Linear expression of rows
   502     
   503     ///This data structure represents a column of the matrix,
   504     ///thas is it strores a linear expression of the dual variables
   505     ///(\ref Row "Row"s).
   506     ///
   507     ///There are several ways to access and modify the contents of this
   508     ///container.
   509     ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
   510     ///if \c e is an DualExpr and \c v
   511     ///and \c w are of type \ref Row, then you can
   512     ///read and modify the coefficients like
   513     ///these.
   514     ///\code
   515     ///e[v]=5;
   516     ///e[v]+=12;
   517     ///e.erase(v);
   518     ///\endcode
   519     ///or you can also iterate through its elements.
   520     ///\code
   521     ///double s=0;
   522     ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
   523     ///  s+=i->second;
   524     ///\endcode
   525     ///(This code computes the sum of all coefficients).
   526     ///- Numbers (<tt>double</tt>'s)
   527     ///and variables (\ref Row "Row"s) directly convert to an
   528     ///\ref DualExpr and the usual linear operations are defined, so
   529     ///\code
   530     ///v+w
   531     ///2*v-3.12*(v-w/2)
   532     ///v*2.1+(3*v+(v*12+w)*3)/2
   533     ///\endcode
   534     ///are valid \ref DualExpr "DualExpr"essions.
   535     ///The usual assignment operations are also defined.
   536     ///\code
   537     ///e=v+w;
   538     ///e+=2*v-3.12*(v-w/2);
   539     ///e*=3.4;
   540     ///e/=5;
   541     ///\endcode
   542     ///
   543     ///\sa Expr
   544     ///
   545     class DualExpr : public std::map<Row,Value>
   546     {
   547     public:
   548       typedef LpSolverBase::Row Key; 
   549       typedef LpSolverBase::Value Value;
   550       
   551     protected:
   552       typedef std::map<Row,Value> Base;
   553       
   554     public:
   555       typedef True IsLinExpression;
   556       ///\e
   557       DualExpr() : Base() { }
   558       ///\e
   559       DualExpr(const Key &v) {
   560 	Base::insert(std::make_pair(v, 1));
   561       }
   562       ///\e
   563       void set(const Key &v,const Value &c) {
   564 	Base::insert(std::make_pair(v, c));
   565       }
   566       
   567       ///Removes the components with zero coefficient.
   568       void simplify() {
   569 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   570 	  Base::iterator j=i;
   571 	  ++j;
   572 	  if ((*i).second==0) Base::erase(i);
   573 	  i=j;
   574 	}
   575       }
   576 
   577       void simplify() const {
   578         const_cast<DualExpr*>(this)->simplify();
   579       }
   580 
   581       ///Removes the coefficients closer to zero than \c tolerance.
   582       void simplify(double &tolerance) {
   583 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   584 	  Base::iterator j=i;
   585 	  ++j;
   586 	  if (std::fabs((*i).second)<tolerance) Base::erase(i);
   587 	  i=j;
   588 	}
   589       }
   590 
   591       ///Sets all coefficients to 0.
   592       void clear() {
   593 	Base::clear();
   594       }
   595 
   596       ///\e
   597       DualExpr &operator+=(const DualExpr &e) {
   598 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   599 	  (*this)[j->first]+=j->second;
   600 	return *this;
   601       }
   602       ///\e
   603       DualExpr &operator-=(const DualExpr &e) {
   604 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   605 	  (*this)[j->first]-=j->second;
   606 	return *this;
   607       }
   608       ///\e
   609       DualExpr &operator*=(const Value &c) {
   610 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   611 	  j->second*=c;
   612 	return *this;
   613       }
   614       ///\e
   615       DualExpr &operator/=(const Value &c) {
   616 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   617 	  j->second/=c;
   618 	return *this;
   619       }
   620     };
   621     
   622 
   623   private:
   624 
   625     template <typename _Base>
   626     class MappedIterator {
   627     public:
   628 
   629       typedef _Base Base;
   630 
   631       typedef typename Base::iterator_category iterator_category;
   632       typedef typename Base::difference_type difference_type;
   633       typedef const std::pair<int, Value> value_type;
   634       typedef value_type reference;
   635       class pointer {
   636       public:
   637         pointer(value_type& _value) : value(_value) {}
   638         value_type* operator->() { return &value; }
   639       private:
   640         value_type value;
   641       };
   642 
   643       MappedIterator(const Base& _base, const LpSolverBase& _lp) 
   644         : base(_base), lp(_lp) {}
   645 
   646       reference operator*() {
   647         return std::make_pair(lp._lpId(base->first), base->second);
   648       }
   649 
   650       pointer operator->() {
   651         return pointer(operator*());
   652       }
   653 
   654       MappedIterator& operator++() {
   655         ++base;
   656         return *this;
   657       }
   658 
   659       MappedIterator& operator++(int) {
   660         MappedIterator tmp(*this);
   661         ++base;
   662         return tmp;
   663       }
   664 
   665       bool operator==(const MappedIterator& it) const {
   666         return base == it.base;
   667       }
   668 
   669       bool operator!=(const MappedIterator& it) const {
   670         return base != it.base;
   671       }
   672 
   673     private:
   674       Base base;
   675       const LpSolverBase& lp;
   676     };
   677 
   678   protected:
   679 
   680     /// STL compatible iterator for lp col
   681     typedef MappedIterator<Expr::const_iterator> LpRowIterator;
   682     /// STL compatible iterator for lp row
   683     typedef MappedIterator<DualExpr::const_iterator> LpColIterator;
   684 
   685     //Abstract virtual functions
   686     virtual LpSolverBase &_newLp() = 0;
   687     virtual LpSolverBase &_copyLp(){
   688       ///\todo This should be implemented here, too, when we have
   689       ///problem retrieving routines. It can be overriden.
   690 
   691       //Starting:
   692       LpSolverBase & newlp(_newLp());
   693       return newlp;
   694       //return *(LpSolverBase*)0;
   695     };
   696 
   697     virtual int _addCol() = 0;
   698     virtual int _addRow() = 0; 
   699     virtual void _eraseCol(int col) = 0;
   700     virtual void _eraseRow(int row) = 0;
   701     virtual void _getColName(int col, std::string & name) = 0;
   702     virtual void _setColName(int col, const std::string & name) = 0;
   703     virtual void _setRowCoeffs(int i, LpRowIterator b, LpRowIterator e) = 0;
   704     virtual void _setColCoeffs(int i, LpColIterator b, LpColIterator e) = 0;
   705     virtual void _setCoeff(int row, int col, Value value) = 0;
   706     virtual Value _getCoeff(int row, int col) = 0;
   707 
   708     virtual void _setColLowerBound(int i, Value value) = 0;
   709     virtual void _setColUpperBound(int i, Value value) = 0;
   710 //     virtual void _setRowLowerBound(int i, Value value) = 0;
   711 //     virtual void _setRowUpperBound(int i, Value value) = 0;
   712     virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
   713     virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   714     virtual Value _getObjCoeff(int i) = 0;
   715     virtual void _clearObj()=0;
   716 
   717     virtual SolveExitStatus _solve() = 0;
   718     virtual Value _getPrimal(int i) = 0;
   719     virtual Value _getDual(int i) = 0;
   720     virtual Value _getPrimalValue() = 0;
   721     virtual bool _isBasicCol(int i) = 0;
   722     virtual SolutionStatus _getPrimalStatus() = 0;
   723     virtual SolutionStatus _getDualStatus() = 0;
   724     ///\todo This could be implemented here, too, using _getPrimalStatus() and
   725     ///_getDualStatus()
   726     virtual ProblemTypes _getProblemType() = 0;
   727 
   728     virtual void _setMax() = 0;
   729     virtual void _setMin() = 0;
   730     
   731 
   732     virtual bool _isMax() = 0;
   733 
   734     //Own protected stuff
   735     
   736     //Constant component of the objective function
   737     Value obj_const_comp;
   738         
   739   public:
   740 
   741     ///\e
   742     LpSolverBase() : obj_const_comp(0) {}
   743 
   744     ///\e
   745     virtual ~LpSolverBase() {}
   746 
   747     ///Creates a new LP problem
   748     LpSolverBase &newLp() {return _newLp();}
   749     ///Makes a copy of the LP problem
   750     LpSolverBase &copyLp() {return _copyLp();}
   751     
   752     ///\name Build up and modify the LP
   753 
   754     ///@{
   755 
   756     ///Add a new empty column (i.e a new variable) to the LP
   757     Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
   758 
   759     ///\brief Adds several new columns
   760     ///(i.e a variables) at once
   761     ///
   762     ///This magic function takes a container as its argument
   763     ///and fills its elements
   764     ///with new columns (i.e. variables)
   765     ///\param t can be
   766     ///- a standard STL compatible iterable container with
   767     ///\ref Col as its \c values_type
   768     ///like
   769     ///\code
   770     ///std::vector<LpSolverBase::Col>
   771     ///std::list<LpSolverBase::Col>
   772     ///\endcode
   773     ///- a standard STL compatible iterable container with
   774     ///\ref Col as its \c mapped_type
   775     ///like
   776     ///\code
   777     ///std::map<AnyType,LpSolverBase::Col>
   778     ///\endcode
   779     ///- an iterable lemon \ref concepts::WriteMap "write map" like 
   780     ///\code
   781     ///ListGraph::NodeMap<LpSolverBase::Col>
   782     ///ListGraph::EdgeMap<LpSolverBase::Col>
   783     ///\endcode
   784     ///\return The number of the created column.
   785 #ifdef DOXYGEN
   786     template<class T>
   787     int addColSet(T &t) { return 0;} 
   788 #else
   789     template<class T>
   790     typename enable_if<typename T::value_type::LpSolverCol,int>::type
   791     addColSet(T &t,dummy<0> = 0) {
   792       int s=0;
   793       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   794       return s;
   795     }
   796     template<class T>
   797     typename enable_if<typename T::value_type::second_type::LpSolverCol,
   798 		       int>::type
   799     addColSet(T &t,dummy<1> = 1) { 
   800       int s=0;
   801       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   802 	i->second=addCol();
   803 	s++;
   804       }
   805       return s;
   806     }
   807     template<class T>
   808     typename enable_if<typename T::MapIt::Value::LpSolverCol,
   809 		       int>::type
   810     addColSet(T &t,dummy<2> = 2) { 
   811       int s=0;
   812       for(typename T::MapIt i(t); i!=INVALID; ++i)
   813 	{
   814 	  i.set(addCol());
   815 	  s++;
   816 	}
   817       return s;
   818     }
   819 #endif
   820 
   821     ///Set a column (i.e a dual constraint) of the LP
   822 
   823     ///\param c is the column to be modified
   824     ///\param e is a dual linear expression (see \ref DualExpr)
   825     ///a better one.
   826     void col(Col c,const DualExpr &e) {
   827       e.simplify();
   828       _setColCoeffs(_lpId(c), LpColIterator(e.begin(), *this), 
   829                     LpColIterator(e.end(), *this));
   830     }
   831 
   832     ///Add a new column to the LP
   833 
   834     ///\param e is a dual linear expression (see \ref DualExpr)
   835     ///\param obj is the corresponding component of the objective
   836     ///function. It is 0 by default.
   837     ///\return The created column.
   838     Col addCol(const DualExpr &e, Value obj=0) {
   839       Col c=addCol();
   840       col(c,e);
   841       objCoeff(c,obj);
   842       return c;
   843     }
   844 
   845     ///Add a new empty row (i.e a new constraint) to the LP
   846 
   847     ///This function adds a new empty row (i.e a new constraint) to the LP.
   848     ///\return The created row
   849     Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   850 
   851     ///\brief Add several new rows
   852     ///(i.e a constraints) at once
   853     ///
   854     ///This magic function takes a container as its argument
   855     ///and fills its elements
   856     ///with new row (i.e. variables)
   857     ///\param t can be
   858     ///- a standard STL compatible iterable container with
   859     ///\ref Row as its \c values_type
   860     ///like
   861     ///\code
   862     ///std::vector<LpSolverBase::Row>
   863     ///std::list<LpSolverBase::Row>
   864     ///\endcode
   865     ///- a standard STL compatible iterable container with
   866     ///\ref Row as its \c mapped_type
   867     ///like
   868     ///\code
   869     ///std::map<AnyType,LpSolverBase::Row>
   870     ///\endcode
   871     ///- an iterable lemon \ref concepts::WriteMap "write map" like 
   872     ///\code
   873     ///ListGraph::NodeMap<LpSolverBase::Row>
   874     ///ListGraph::EdgeMap<LpSolverBase::Row>
   875     ///\endcode
   876     ///\return The number of rows created.
   877 #ifdef DOXYGEN
   878     template<class T>
   879     int addRowSet(T &t) { return 0;} 
   880 #else
   881     template<class T>
   882     typename enable_if<typename T::value_type::LpSolverRow,int>::type
   883     addRowSet(T &t,dummy<0> = 0) {
   884       int s=0;
   885       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
   886       return s;
   887     }
   888     template<class T>
   889     typename enable_if<typename T::value_type::second_type::LpSolverRow,
   890 		       int>::type
   891     addRowSet(T &t,dummy<1> = 1) { 
   892       int s=0;
   893       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   894 	i->second=addRow();
   895 	s++;
   896       }
   897       return s;
   898     }
   899     template<class T>
   900     typename enable_if<typename T::MapIt::Value::LpSolverRow,
   901 		       int>::type
   902     addRowSet(T &t,dummy<2> = 2) { 
   903       int s=0;
   904       for(typename T::MapIt i(t); i!=INVALID; ++i)
   905 	{
   906 	  i.set(addRow());
   907 	  s++;
   908 	}
   909       return s;
   910     }
   911 #endif
   912 
   913     ///Set a row (i.e a constraint) of the LP
   914 
   915     ///\param r is the row to be modified
   916     ///\param l is lower bound (-\ref INF means no bound)
   917     ///\param e is a linear expression (see \ref Expr)
   918     ///\param u is the upper bound (\ref INF means no bound)
   919     ///\bug This is a temportary function. The interface will change to
   920     ///a better one.
   921     ///\todo Option to control whether a constraint with a single variable is
   922     ///added or not.
   923     void row(Row r, Value l,const Expr &e, Value u) {
   924       e.simplify();
   925       _setRowCoeffs(_lpId(r), LpRowIterator(e.begin(), *this),
   926                     LpRowIterator(e.end(), *this));
   927 //       _setRowLowerBound(_lpId(r),l-e.constComp());
   928 //       _setRowUpperBound(_lpId(r),u-e.constComp());
   929        _setRowBounds(_lpId(r),l-e.constComp(),u-e.constComp());
   930     }
   931 
   932     ///Set a row (i.e a constraint) of the LP
   933 
   934     ///\param r is the row to be modified
   935     ///\param c is a linear expression (see \ref Constr)
   936     void row(Row r, const Constr &c) {
   937       row(r, c.lowerBounded()?c.lowerBound():-INF,
   938           c.expr(), c.upperBounded()?c.upperBound():INF);
   939     }
   940 
   941     ///Add a new row (i.e a new constraint) to the LP
   942 
   943     ///\param l is the lower bound (-\ref INF means no bound)
   944     ///\param e is a linear expression (see \ref Expr)
   945     ///\param u is the upper bound (\ref INF means no bound)
   946     ///\return The created row.
   947     ///\bug This is a temportary function. The interface will change to
   948     ///a better one.
   949     Row addRow(Value l,const Expr &e, Value u) {
   950       Row r=addRow();
   951       row(r,l,e,u);
   952       return r;
   953     }
   954 
   955     ///Add a new row (i.e a new constraint) to the LP
   956 
   957     ///\param c is a linear expression (see \ref Constr)
   958     ///\return The created row.
   959     Row addRow(const Constr &c) {
   960       Row r=addRow();
   961       row(r,c);
   962       return r;
   963     }
   964     ///Erase a coloumn (i.e a variable) from the LP
   965 
   966     ///\param c is the coloumn to be deleted
   967     ///\todo Please check this
   968     void eraseCol(Col c) {
   969       _eraseCol(_lpId(c));
   970       cols.erase(c.id);
   971     }
   972     ///Erase a  row (i.e a constraint) from the LP
   973 
   974     ///\param r is the row to be deleted
   975     ///\todo Please check this
   976     void eraseRow(Row r) {
   977       _eraseRow(_lpId(r));
   978       rows.erase(r.id);
   979     }
   980 
   981     /// Get the name of a column
   982     
   983     ///\param c is the coresponding coloumn 
   984     ///\return The name of the colunm
   985     std::string colName(Col c){
   986       std::string name;
   987       _getColName(_lpId(c), name);
   988       return name;
   989     }
   990     
   991     /// Set the name of a column
   992     
   993     ///\param c is the coresponding coloumn 
   994     ///\param name The name to be given
   995     void colName(Col c, const std::string& name){
   996       _setColName(_lpId(c), name);
   997     }
   998     
   999     /// Set an element of the coefficient matrix of the LP
  1000 
  1001     ///\param r is the row of the element to be modified
  1002     ///\param c is the coloumn of the element to be modified
  1003     ///\param val is the new value of the coefficient
  1004 
  1005     void coeff(Row r, Col c, Value val){
  1006       _setCoeff(_lpId(r),_lpId(c), val);
  1007     }
  1008 
  1009     /// Get an element of the coefficient matrix of the LP
  1010 
  1011     ///\param r is the row of the element in question
  1012     ///\param c is the coloumn of the element in question
  1013     ///\return the corresponding coefficient
  1014 
  1015     Value coeff(Row r, Col c){
  1016       return _getCoeff(_lpId(r),_lpId(c));
  1017     }
  1018 
  1019     /// Set the lower bound of a column (i.e a variable)
  1020 
  1021     /// The lower bound of a variable (column) has to be given by an 
  1022     /// extended number of type Value, i.e. a finite number of type 
  1023     /// Value or -\ref INF.
  1024     void colLowerBound(Col c, Value value) {
  1025       _setColLowerBound(_lpId(c),value);
  1026     }
  1027     
  1028     ///\brief Set the lower bound of  several columns
  1029     ///(i.e a variables) at once
  1030     ///
  1031     ///This magic function takes a container as its argument
  1032     ///and applies the function on all of its elements.
  1033     /// The lower bound of a variable (column) has to be given by an 
  1034     /// extended number of type Value, i.e. a finite number of type 
  1035     /// Value or -\ref INF.
  1036 #ifdef DOXYGEN
  1037     template<class T>
  1038     void colLowerBound(T &t, Value value) { return 0;} 
  1039 #else
  1040     template<class T>
  1041     typename enable_if<typename T::value_type::LpSolverCol,void>::type
  1042     colLowerBound(T &t, Value value,dummy<0> = 0) {
  1043       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1044 	colLowerBound(*i, value);
  1045       }
  1046     }
  1047     template<class T>
  1048     typename enable_if<typename T::value_type::second_type::LpSolverCol,
  1049 		       void>::type
  1050     colLowerBound(T &t, Value value,dummy<1> = 1) { 
  1051       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1052 	colLowerBound(i->second, value);
  1053       }
  1054     }
  1055     template<class T>
  1056     typename enable_if<typename T::MapIt::Value::LpSolverCol,
  1057 		       void>::type
  1058     colLowerBound(T &t, Value value,dummy<2> = 2) { 
  1059       for(typename T::MapIt i(t); i!=INVALID; ++i){
  1060 	colLowerBound(*i, value);
  1061       }
  1062     }
  1063 #endif
  1064     
  1065     /// Set the upper bound of a column (i.e a variable)
  1066 
  1067     /// The upper bound of a variable (column) has to be given by an 
  1068     /// extended number of type Value, i.e. a finite number of type 
  1069     /// Value or \ref INF.
  1070     void colUpperBound(Col c, Value value) {
  1071       _setColUpperBound(_lpId(c),value);
  1072     };
  1073 
  1074     ///\brief Set the lower bound of  several columns
  1075     ///(i.e a variables) at once
  1076     ///
  1077     ///This magic function takes a container as its argument
  1078     ///and applies the function on all of its elements.
  1079     /// The upper bound of a variable (column) has to be given by an 
  1080     /// extended number of type Value, i.e. a finite number of type 
  1081     /// Value or \ref INF.
  1082 #ifdef DOXYGEN
  1083     template<class T>
  1084     void colUpperBound(T &t, Value value) { return 0;} 
  1085 #else
  1086     template<class T>
  1087     typename enable_if<typename T::value_type::LpSolverCol,void>::type
  1088     colUpperBound(T &t, Value value,dummy<0> = 0) {
  1089       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1090 	colUpperBound(*i, value);
  1091       }
  1092     }
  1093     template<class T>
  1094     typename enable_if<typename T::value_type::second_type::LpSolverCol,
  1095 		       void>::type
  1096     colUpperBound(T &t, Value value,dummy<1> = 1) { 
  1097       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1098 	colUpperBound(i->second, value);
  1099       }
  1100     }
  1101     template<class T>
  1102     typename enable_if<typename T::MapIt::Value::LpSolverCol,
  1103 		       void>::type
  1104     colUpperBound(T &t, Value value,dummy<2> = 2) { 
  1105       for(typename T::MapIt i(t); i!=INVALID; ++i){
  1106 	colUpperBound(*i, value);
  1107       }
  1108     }
  1109 #endif
  1110 
  1111     /// Set the lower and the upper bounds of a column (i.e a variable)
  1112 
  1113     /// The lower and the upper bounds of
  1114     /// a variable (column) have to be given by an 
  1115     /// extended number of type Value, i.e. a finite number of type 
  1116     /// Value, -\ref INF or \ref INF.
  1117     void colBounds(Col c, Value lower, Value upper) {
  1118       _setColLowerBound(_lpId(c),lower);
  1119       _setColUpperBound(_lpId(c),upper);
  1120     }
  1121     
  1122     ///\brief Set the lower and the upper bound of several columns
  1123     ///(i.e a variables) at once
  1124     ///
  1125     ///This magic function takes a container as its argument
  1126     ///and applies the function on all of its elements.
  1127     /// The lower and the upper bounds of
  1128     /// a variable (column) have to be given by an 
  1129     /// extended number of type Value, i.e. a finite number of type 
  1130     /// Value, -\ref INF or \ref INF.
  1131 #ifdef DOXYGEN
  1132     template<class T>
  1133     void colBounds(T &t, Value lower, Value upper) { return 0;} 
  1134 #else
  1135     template<class T>
  1136     typename enable_if<typename T::value_type::LpSolverCol,void>::type
  1137     colBounds(T &t, Value lower, Value upper,dummy<0> = 0) {
  1138       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1139 	colBounds(*i, lower, upper);
  1140       }
  1141     }
  1142     template<class T>
  1143     typename enable_if<typename T::value_type::second_type::LpSolverCol,
  1144 		       void>::type
  1145     colBounds(T &t, Value lower, Value upper,dummy<1> = 1) { 
  1146       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1147 	colBounds(i->second, lower, upper);
  1148       }
  1149     }
  1150     template<class T>
  1151     typename enable_if<typename T::MapIt::Value::LpSolverCol,
  1152 		       void>::type
  1153     colBounds(T &t, Value lower, Value upper,dummy<2> = 2) { 
  1154       for(typename T::MapIt i(t); i!=INVALID; ++i){
  1155 	colBounds(*i, lower, upper);
  1156       }
  1157     }
  1158 #endif
  1159     
  1160 //     /// Set the lower bound of a row (i.e a constraint)
  1161 
  1162 //     /// The lower bound of a linear expression (row) has to be given by an 
  1163 //     /// extended number of type Value, i.e. a finite number of type 
  1164 //     /// Value or -\ref INF.
  1165 //     void rowLowerBound(Row r, Value value) {
  1166 //       _setRowLowerBound(_lpId(r),value);
  1167 //     };
  1168 //     /// Set the upper bound of a row (i.e a constraint)
  1169 
  1170 //     /// The upper bound of a linear expression (row) has to be given by an 
  1171 //     /// extended number of type Value, i.e. a finite number of type 
  1172 //     /// Value or \ref INF.
  1173 //     void rowUpperBound(Row r, Value value) {
  1174 //       _setRowUpperBound(_lpId(r),value);
  1175 //     };
  1176 
  1177     /// Set the lower and the upper bounds of a row (i.e a constraint)
  1178 
  1179     /// The lower and the upper bounds of
  1180     /// a constraint (row) have to be given by an 
  1181     /// extended number of type Value, i.e. a finite number of type 
  1182     /// Value, -\ref INF or \ref INF.
  1183     void rowBounds(Row c, Value lower, Value upper) {
  1184       _setRowBounds(_lpId(c),lower, upper);
  1185       // _setRowUpperBound(_lpId(c),upper);
  1186     }
  1187     
  1188     ///Set an element of the objective function
  1189     void objCoeff(Col c, Value v) {_setObjCoeff(_lpId(c),v); };
  1190 
  1191     ///Get an element of the objective function
  1192     Value objCoeff(Col c) {return _getObjCoeff(_lpId(c)); };
  1193 
  1194     ///Set the objective function
  1195 
  1196     ///\param e is a linear expression of type \ref Expr.
  1197     ///\bug Is should be called obj()
  1198     void setObj(Expr e) {
  1199       _clearObj();
  1200       for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
  1201 	objCoeff((*i).first,(*i).second);
  1202       obj_const_comp=e.constComp();
  1203     }
  1204 
  1205     ///Maximize
  1206     void max() { _setMax(); }
  1207     ///Minimize
  1208     void min() { _setMin(); }
  1209 
  1210     ///Query function: is this a maximization problem?
  1211     bool is_max() {return _isMax(); }
  1212 
  1213     ///Query function: is this a minimization problem?
  1214     bool is_min() {return !is_max(); }
  1215     
  1216     ///@}
  1217 
  1218 
  1219     ///\name Solve the LP
  1220 
  1221     ///@{
  1222 
  1223     ///\e Solve the LP problem at hand
  1224     ///
  1225     ///\return The result of the optimization procedure. Possible 
  1226     ///values and their meanings can be found in the documentation of 
  1227     ///\ref SolveExitStatus.
  1228     ///
  1229     ///\todo Which method is used to solve the problem
  1230     SolveExitStatus solve() { return _solve(); }
  1231     
  1232     ///@}
  1233     
  1234     ///\name Obtain the solution
  1235 
  1236     ///@{
  1237 
  1238     /// The status of the primal problem (the original LP problem)
  1239     SolutionStatus primalStatus() {
  1240       return _getPrimalStatus();
  1241     }
  1242 
  1243     /// The status of the dual (of the original LP) problem 
  1244     SolutionStatus dualStatus() {
  1245       return _getDualStatus();
  1246     }
  1247 
  1248     ///The type of the original LP problem
  1249     ProblemTypes problemType() {
  1250       return _getProblemType();
  1251     }
  1252 
  1253     ///\e
  1254     Value primal(Col c) { return _getPrimal(_lpId(c)); }
  1255 
  1256     ///\e
  1257     Value dual(Row r) { return _getDual(_lpId(r)); }
  1258 
  1259     ///\e
  1260     bool isBasicCol(Col c) { return _isBasicCol(_lpId(c)); }
  1261 
  1262     ///\e
  1263 
  1264     ///\return
  1265     ///- \ref INF or -\ref INF means either infeasibility or unboundedness
  1266     /// of the primal problem, depending on whether we minimize or maximize.
  1267     ///- \ref NaN if no primal solution is found.
  1268     ///- The (finite) objective value if an optimal solution is found.
  1269     Value primalValue() { return _getPrimalValue()+obj_const_comp;}
  1270     ///@}
  1271     
  1272   };  
  1273 
  1274 
  1275   ///Common base class for MIP solvers
  1276   ///\todo Much more docs
  1277   ///\ingroup gen_opt_group
  1278   class MipSolverBase : virtual public LpSolverBase{
  1279   public:
  1280 
  1281     ///Possible variable (coloumn) types (e.g. real, integer, binary etc.)
  1282     enum ColTypes {
  1283       ///Continuous variable
  1284       REAL = 0,
  1285       ///Integer variable
  1286 
  1287       ///Unfortunately, cplex 7.5 somewhere writes something like
  1288       ///#define INTEGER 'I'
  1289       INT = 1
  1290       ///\todo No support for other types yet.
  1291     };
  1292 
  1293     ///Sets the type of the given coloumn to the given type
  1294     ///
  1295     ///Sets the type of the given coloumn to the given type.
  1296     void colType(Col c, ColTypes col_type) {
  1297       _colType(_lpId(c),col_type);
  1298     }
  1299 
  1300     ///Gives back the type of the column.
  1301     ///
  1302     ///Gives back the type of the column.
  1303     ColTypes colType(Col c){
  1304       return _colType(_lpId(c));
  1305     }
  1306 
  1307     ///Sets the type of the given Col to integer or remove that property.
  1308     ///
  1309     ///Sets the type of the given Col to integer or remove that property.
  1310     void integer(Col c, bool enable) {
  1311       if (enable)
  1312 	colType(c,INT);
  1313       else
  1314 	colType(c,REAL);
  1315     }
  1316 
  1317     ///Gives back whether the type of the column is integer or not.
  1318     ///
  1319     ///Gives back the type of the column.
  1320     ///\return true if the column has integer type and false if not.
  1321     bool integer(Col c){
  1322       return (colType(c)==INT);
  1323     }
  1324 
  1325     /// The status of the MIP problem
  1326     SolutionStatus mipStatus() {
  1327       return _getMipStatus();
  1328     }
  1329 
  1330   protected:
  1331 
  1332     virtual ColTypes _colType(int col) = 0;
  1333     virtual void _colType(int col, ColTypes col_type) = 0;
  1334     virtual SolutionStatus _getMipStatus()=0;
  1335 
  1336   };
  1337   
  1338   ///\relates LpSolverBase::Expr
  1339   ///
  1340   inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
  1341 				      const LpSolverBase::Expr &b) 
  1342   {
  1343     LpSolverBase::Expr tmp(a);
  1344     tmp+=b;
  1345     return tmp;
  1346   }
  1347   ///\e
  1348   
  1349   ///\relates LpSolverBase::Expr
  1350   ///
  1351   inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
  1352 				      const LpSolverBase::Expr &b) 
  1353   {
  1354     LpSolverBase::Expr tmp(a);
  1355     tmp-=b;
  1356     return tmp;
  1357   }
  1358   ///\e
  1359   
  1360   ///\relates LpSolverBase::Expr
  1361   ///
  1362   inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
  1363 				      const LpSolverBase::Value &b) 
  1364   {
  1365     LpSolverBase::Expr tmp(a);
  1366     tmp*=b;
  1367     return tmp;
  1368   }
  1369   
  1370   ///\e
  1371   
  1372   ///\relates LpSolverBase::Expr
  1373   ///
  1374   inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
  1375 				      const LpSolverBase::Expr &b) 
  1376   {
  1377     LpSolverBase::Expr tmp(b);
  1378     tmp*=a;
  1379     return tmp;
  1380   }
  1381   ///\e
  1382   
  1383   ///\relates LpSolverBase::Expr
  1384   ///
  1385   inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
  1386 				      const LpSolverBase::Value &b) 
  1387   {
  1388     LpSolverBase::Expr tmp(a);
  1389     tmp/=b;
  1390     return tmp;
  1391   }
  1392   
  1393   ///\e
  1394   
  1395   ///\relates LpSolverBase::Constr
  1396   ///
  1397   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1398 					 const LpSolverBase::Expr &f) 
  1399   {
  1400     return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
  1401   }
  1402 
  1403   ///\e
  1404   
  1405   ///\relates LpSolverBase::Constr
  1406   ///
  1407   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
  1408 					 const LpSolverBase::Expr &f) 
  1409   {
  1410     return LpSolverBase::Constr(e,f);
  1411   }
  1412 
  1413   ///\e
  1414   
  1415   ///\relates LpSolverBase::Constr
  1416   ///
  1417   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1418 					 const LpSolverBase::Value &f) 
  1419   {
  1420     return LpSolverBase::Constr(e,f);
  1421   }
  1422 
  1423   ///\e
  1424   
  1425   ///\relates LpSolverBase::Constr
  1426   ///
  1427   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1428 					 const LpSolverBase::Expr &f) 
  1429   {
  1430     return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
  1431   }
  1432 
  1433 
  1434   ///\e
  1435   
  1436   ///\relates LpSolverBase::Constr
  1437   ///
  1438   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
  1439 					 const LpSolverBase::Expr &f) 
  1440   {
  1441     return LpSolverBase::Constr(f,e);
  1442   }
  1443 
  1444 
  1445   ///\e
  1446   
  1447   ///\relates LpSolverBase::Constr
  1448   ///
  1449   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1450 					 const LpSolverBase::Value &f) 
  1451   {
  1452     return LpSolverBase::Constr(f,e);
  1453   }
  1454 
  1455   ///\e
  1456   
  1457   ///\relates LpSolverBase::Constr
  1458   ///
  1459   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
  1460 					 const LpSolverBase::Expr &f) 
  1461   {
  1462     return LpSolverBase::Constr(0,e-f,0);
  1463   }
  1464 
  1465   ///\e
  1466   
  1467   ///\relates LpSolverBase::Constr
  1468   ///
  1469   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
  1470 					 const LpSolverBase::Constr&c) 
  1471   {
  1472     LpSolverBase::Constr tmp(c);
  1473     ///\todo Create an own exception type.
  1474     if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError();
  1475     else tmp.lowerBound()=n;
  1476     return tmp;
  1477   }
  1478   ///\e
  1479   
  1480   ///\relates LpSolverBase::Constr
  1481   ///
  1482   inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
  1483 					 const LpSolverBase::Value &n)
  1484   {
  1485     LpSolverBase::Constr tmp(c);
  1486     ///\todo Create an own exception type.
  1487     if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError();
  1488     else tmp.upperBound()=n;
  1489     return tmp;
  1490   }
  1491 
  1492   ///\e
  1493   
  1494   ///\relates LpSolverBase::Constr
  1495   ///
  1496   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
  1497 					 const LpSolverBase::Constr&c) 
  1498   {
  1499     LpSolverBase::Constr tmp(c);
  1500     ///\todo Create an own exception type.
  1501     if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError();
  1502     else tmp.upperBound()=n;
  1503     return tmp;
  1504   }
  1505   ///\e
  1506   
  1507   ///\relates LpSolverBase::Constr
  1508   ///
  1509   inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
  1510 					 const LpSolverBase::Value &n)
  1511   {
  1512     LpSolverBase::Constr tmp(c);
  1513     ///\todo Create an own exception type.
  1514     if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError();
  1515     else tmp.lowerBound()=n;
  1516     return tmp;
  1517   }
  1518 
  1519   ///\e
  1520   
  1521   ///\relates LpSolverBase::DualExpr
  1522   ///
  1523   inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
  1524                                           const LpSolverBase::DualExpr &b) 
  1525   {
  1526     LpSolverBase::DualExpr tmp(a);
  1527     tmp+=b;
  1528     return tmp;
  1529   }
  1530   ///\e
  1531   
  1532   ///\relates LpSolverBase::DualExpr
  1533   ///
  1534   inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
  1535                                           const LpSolverBase::DualExpr &b) 
  1536   {
  1537     LpSolverBase::DualExpr tmp(a);
  1538     tmp-=b;
  1539     return tmp;
  1540   }
  1541   ///\e
  1542   
  1543   ///\relates LpSolverBase::DualExpr
  1544   ///
  1545   inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
  1546                                           const LpSolverBase::Value &b) 
  1547   {
  1548     LpSolverBase::DualExpr tmp(a);
  1549     tmp*=b;
  1550     return tmp;
  1551   }
  1552   
  1553   ///\e
  1554   
  1555   ///\relates LpSolverBase::DualExpr
  1556   ///
  1557   inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
  1558                                           const LpSolverBase::DualExpr &b) 
  1559   {
  1560     LpSolverBase::DualExpr tmp(b);
  1561     tmp*=a;
  1562     return tmp;
  1563   }
  1564   ///\e
  1565   
  1566   ///\relates LpSolverBase::DualExpr
  1567   ///
  1568   inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
  1569                                           const LpSolverBase::Value &b) 
  1570   {
  1571     LpSolverBase::DualExpr tmp(a);
  1572     tmp/=b;
  1573     return tmp;
  1574   }
  1575   
  1576 
  1577 } //namespace lemon
  1578 
  1579 #endif //LEMON_LP_BASE_H